Free Access
Math. Model. Nat. Phenom.
Volume 4, Number 1, 2009
Modelling and numerical methods in contact mechanics
Page(s) 1 - 20
Published online 27 January 2009
  1. J. Alberty, C. Carstensen, S. A. Funken, R. Klose. Matlab Implementation of the Finite Element Method in Elasticity. Berichtsreihe des Mathematischen Seminars Kiel, 00-21 (2000).
  2. D. N. Arnold, F. Brezzi, J. Douglas. PEERS: A new finite element for plane elasticity Japan J. Appl. Math., No. 1 (1984), 347–367.
  3. Z. Belhachmi, F. Ben Belgacem. Quadratic finite element for Signorini problem. Math. Comp., 72 (2003), No. 241, 83–104. [CrossRef] [MathSciNet]
  4. Z. Belhachmi, J.M. Sac-Epée, J. Sokolowski. Mixed finite element methods for a smooth domain formulation of a crack problem. SIAM J. Numer. Anal., 43 (2005), No. 3, 1295–1320. [CrossRef] [MathSciNet]
  5. F. Ben Belgacem. Numerical simulation of some variational inequalities arisen from unilateral contact problems by finite element method. Siam J. Numer. Anal, 37 (2000),No. 4, 1198–1216.
  6. F. Ben Belgacem, P. Hild, P. Laborde. Extension of the mortar finite element method to a variational inequality modelling unilateral contact. Math. Models Methods Appl. Sci., 9 (1999), No. 2, 287–303. [CrossRef] [MathSciNet]
  7. F. Ben Belgacem, Y. Renard. Hybrid finite element methods for the Signorini problem. Math. Comput., 72 (2003), No. 243, 1117–1145. [CrossRef] [MathSciNet]
  8. C. Bernardi, V. Girault. A local regularization operator for triangular and quadrilateral finite elements. SIAM. J. Numer. Anal., 35 (1998), No. 5, 1893–1916. [CrossRef] [MathSciNet]
  9. D. Braess, O. Klaas, R. Niekamp, E. Stein, F. Wobschal. Error Indicators For Mixed Finite Elements in 2-dimensional Linear Elasticity. Comput. Methods. Appl. Mech. Engrg., 127 (1995), No. 1-4, 345–356. [CrossRef] [MathSciNet]
  10. F. Brezzi, J. Douglas Jr, L.D. Marini. Two families of mixed finite elements for second order elliptic problems. Numer. Math., 47 (1985), No. 2, 217–235. [CrossRef] [MathSciNet]
  11. F. Brezzi, M. Fortin. Mixed and hybrid finite element methods. Springer Verlag, New York, Springer Series in Computational Mathematics, 15, 1991.
  12. C. Carstensen, G. Dolzmann, S.A. Funken, D.S. Helm. Locking-free adaptive mixed finite element in linear elasticity. Comput. Methods. Appl.Mech. Engrg., 190 (2000), No. 13-14, 1701–1718. [CrossRef] [MathSciNet]
  13. P.G. Ciarlet. Basic Error Estimates for Elliptic Problems. In the Handbook of Numerical Analysis, Vol II, P.G. Ciarlet & J.-L. Lions eds, North-Holland, (1991), 17–351.
  14. P. Coorevits, P. Hild, K. Lhalouani, T. Sassi. Mixed finite element methods for unilateral problems: convergence analysis and numerical studies. Math. Comp., 71, (2001), No. 237, 1–25.
  15. G. Duvaut, J.-L. Lions. Les inéquations en mécanique et en physique. Dunod, 1972.
  16. V. Girault, P.-A. Raviart. Finite element methods for the Navier-Stokes equations, Theory and algorithms. Springer-Verlag 1986.
  17. R. Glowinski. Lectures on numerical methods for nonlinear variational problems. Springer, Berlin, 1980.
  18. J. Haslinger, I. Hlaváček. Contact between Elastic Bodies -2.Finite Element Analysis, Aplikace Matematiky, 26 (1981), 263–290.
  19. J. Haslinger, I. Hlaváček, J. Nečas. Numerical Methods for Unilateral Problems in Solid Mechanics, in the Handbook of Numerical Analysis, Vol IV, Part 2, P.G. Ciarlet & J.-L. Lions eds, North-Holland, 1996.
  20. F. Hecht, O. Pironneau. FreeFem++,
  21. P. Hild, Y. Renard. An error estimates for the Signorini problem with Coulomb friction approximated by finite elements. Siam J. Numer. Anal., 45 (2007), No. 5, 2012–2031. [CrossRef] [MathSciNet]
  22. S. Hüeber, B.I. Wohlmuth. An optimal a priori error estimates for nonlinear multibody contact problems. SIAM J. Numer. Anal., 43 (2005), No. 1, 156–173
  23. A.M. Khludnev, J. Sokolowski. Smooth domain method for crack problems. Quarterly of Applied Mathematics., 62 (2004), No. 3, 401–422. [MathSciNet]
  24. N. Kikuchi, J. Oden. Contact problems in elasticity: A study of variational inequalities and finite element methods. SIAM, 1988.
  25. D. Kinderlehrer, G. Stamppachia. An introduction to variational inequalities and their applications, Academic Press, 1980.
  26. K. Lhalouani, T. Sassi. Nonconforming mixed variational formulation and domain decomposition for unilateral problems. East-West J. Numer. Math., 7 (1999), No. 1, 23–30. [MathSciNet]
  27. L. Slimane, A. Bendali, P. Laborde. Mixed formulations for a class of variational inequalities. M2AN, 38 (2004), 1, 177–201. [CrossRef] [EDP Sciences] [MathSciNet]
  28. R. Stenberg. A family of mixed finite elements for the elasticity problem. Numer. Math., 53 (1988), 5, 513–538. [CrossRef] [MathSciNet]
  29. S. Tahir. Méthodes d'approximation par éléments finis et analyse a posteriori d'inéquations variationnelles modélisant des problèmes de fissures unilatérales en élasticité linéaire. Ph.D. Thesis, University of Metz, France (2006).
  30. S. Tahir, Z. Belhachmi. Mixed finite elements discretizations of some variational inequalities arising in elasticity problems in domains with cracks. Electron. J. Diff. Eqns., Conference 11 (2004), 33–40.
  31. Z.-H. Zhong. Finite Element Procedures for Contact-Impact Problems. Oxford. University. Press, Oxford 1993.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.