Free Access
Issue
Math. Model. Nat. Phenom.
Volume 4, Number 1, 2009
Modelling and numerical methods in contact mechanics
Page(s) 88 - 105
DOI https://doi.org/10.1051/mmnp/20094104
Published online 27 January 2009
  1. R.A. Adams. Sobolev Spaces. Academic Press, 1975.
  2. E. Béchet, H. Minnebo, N. Moës, B. Burgardt. Improved implementation and robustness study of the x-fem for stress analysis around cracks. Int. J. Numer. Meth. Engng., 64 (2005), 1033–1056. [CrossRef]
  3. T. Belytschko, N. Moës, S. Usui, C. Parimi. Arbitrary discontinuities in finite elements. Int. J. Numer. Meth. Engng., 50 (2001), 993–1013. [CrossRef]
  4. E. Chahine. Etude mathématique et numérique de méthodes d'éléments finis étendues pour le calcul en domaines fissurés. Thèse de Doctorat de l'INSA de Toulouse, 2008.
  5. E. Chahine, P. Laborde, Y. Renard. Crack-tip enrichment in the Xfem method using a cut-off function. To appear in Int. J. Numer. Meth. Engng.
  6. E. Chahine, P. Laborde, Y. Renard. Spider Xfem: an extended finite element variant for partially unknown crack-tip displacement. To appear in Europ. J. of Comp. Mech.
  7. E. Chahine, P. Laborde, Y. Renard. The extended finite element method with an integral matching condition. Submitted.
  8. P.G. Ciarlet. The finite element method for elliptic problems. Studies in Mathematics and its Applications No 4, North Holland, 1978.
  9. H. Ben Dhia. Multiscale mechanical problems : the Arlequin method. C. R. Acad. Sci., série I, Paris, 326 (1998), 899–904.
  10. M. Dupeux. Mesure des énergies de rupture interfaciale: problématique et exemples de résultats d'essais de gonflement-d'écollement. Mécanique et industrie, 5 (2004), 441–450. [CrossRef]
  11. A. Ern, J.-L. Guermond. Éléments finis: théorie, applications, mise en œuvre. Mathématiques et Applications 36, SMAI, Springer-Verlag, 2002.
  12. R. Glowinski, J. He, J. Rappaz, J. Wagner. Approximation of multi-scale elliptic problems using patches of elements. C. R. Math. Acad. Sci., Paris, 337 (2003), 679–684.
  13. P. Grisvard. Problèmes aux limites dans les polygones - mode d'emploi. EDF Bull. Dirctions Etudes Rech. Sér. C. Math. Inform. 1, MR 87g:35073 (1986), 21–59.
  14. P. Grisvard. Singularities in boundary value problems. Masson, 1992.
  15. D.B.P. Huynh, A.T. Patera. Reduced basis approximation and a posteriori error estimation for stress intensity factors. Int. J. Numer. Meth. Engng. 72 (2007), 1219–1259.
  16. P. Laborde, Y. Renard, J. Pommier, M. Salaün. High order extended finite element method for cracked domains. Int. J. Numer. Meth. Engng., 64 (2005), 354–381. [CrossRef]
  17. J. Lemaitre, J.-L. Chaboche. Mechanics of Solid Materials. Cambridge University Press, 1994.
  18. J.L. Lions, E. Magenes. Problèmes aux limites non homogènes et applications, volume 1. Dunod, 1968.
  19. Y. Maday, E.M. Rønquist. A reduced-basis element method. J. Sci. Comput., 17 (2002), (1-4), 447–459.
  20. J.M. Melenk, I. Babuška. The partition of unity finite element method: Basic theory and applications. Comput. Meths. Appl. Mech. Engrg., 139 (1996), 289–314. [CrossRef] [MathSciNet]
  21. N. Moës, T. Belytschko. X-fem: Nouvelles frontières pour les éléments finis. Revue européenne des éléments finis, 11 (1999), 131–150.
  22. N. Moës, J. Dolbow, T. Belytschko. A finite element method for crack growth without remeshing. Int. J. Numer. Meth. Engng., 46 (1999), 131–150. [CrossRef]
  23. A.K. Noor, J.M. Peters. Reduced basis technique for nonlinear analysis of structures. AIAA Journal, 18 (2002), No. 4, 455–462. [CrossRef]
  24. Y. Renard, J. Pommier. Getfem++. An open source generic C++ library for finite element methods, http://home.gna.org/getfem.
  25. G. Strang, G. Fix. An Analysis of the finite element method. Prentice-Hall, Englewood Cliffs, 1973.
  26. T. Strouboulis, I. Babuska, K. Copps. The design and analysis of the generalized finite element method. Comput. Meths. Appl. Mech. Engrg., 181 (2000), 43–69. [CrossRef]
  27. T. Strouboulis, I. Babuska, K. Copps. The generalized finite element method: an example of its implementation and illustration of its performance. Int. J. Numer. Meth. Engng., 47 (2000), 1401–1417. [CrossRef]
  28. N. Sukumar, Z. Y. Huang, J.-H. Prévost, Z. Suo. Partition of unity enrichment for bimaterial interface cracks. Int. J. Numer. Meth. Engng., 59 (2004), 1075–1102. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.