Free Access
Issue
Math. Model. Nat. Phenom.
Volume 4, Number 3, 2009
Cancer modelling (Part 2)
Page(s) 134 - 155
DOI https://doi.org/10.1051/mmnp/20094306
Published online 05 June 2009
  1. B.P. Ayati, G.F. Webb, A.R.A Anderson. Computational methods and results for structured mutliscale methods of tumor invasion. Multiscale Model. Simul., 5 (2006), 1–20. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  2. H.M. Byrne. The importance of intercellular adhesion in the development of carcinomas. I. MA J. Math. Appl. Med. Biol., 14 (1997), 305–323. [CrossRef]
  3. H.M. Byrne, M.A.J. Chaplain. Growth of nonnecrotic tumors in the presence and absence of inhibitors. Math. Biosci., 130 (1995), 130–151.
  4. H.M. Byrne, M.A.J. Chaplain. Modelling the role of cell-cell adhesion in the growth and development of carcinomas. Math. Comput. Modeling, 24 (1996), 1–17. [CrossRef]
  5. X. Chen, S. Cui, A. Friedman. A hyperbolic free boundary problem modeling tumor growth: Asymptotic behavior. Trans. Amer. Math. Soc., 357 (2005), 4771–4804. [CrossRef] [MathSciNet]
  6. X. Chen, A. Friedman. A free boundary problem for elliptic-hyperbolic system: An application to tumor growth. SIAM J. Math. Anal., 35 (2003), 974–986. [CrossRef] [MathSciNet]
  7. S. Cui, A. Friedman. A free boundary problem for a singular system of differential equations: An application to a model of tumor growth. Trans. Amer. Math. Soc., 355 (2003), 3537–3590. [CrossRef] [MathSciNet]
  8. S. Cui, A. Friedman. A hyperbolic free boundary problem modeling tumor growth. Interfaces Free Bound., 5 (2003) , 159–182.
  9. S.J.H. Franks, H.M. Byrne, J.P. King, J.C.E. Underwood, C.E. Lewis. Modelling the early growth of ductal carcinoma in situ of the breast. J. Math. Biology, 47 (2003), 424–452. [CrossRef] [MathSciNet] [PubMed]
  10. S.J.H. Franks, H.M. Byrne, J.P. King, J.C.E. Underwood, C.E. Lewis. Modelling the growth of comedo ductal carcinoma in situ. Mathematical Medicine & Biology, 20 (2003), 277–308. [CrossRef]
  11. S.J.H. Franks, H.M. Byrne, J.C.E. Underwood, C.E. Lewis. Biological inferences from a mathematical model of comedo ductal carcinoma in situ of the breast. J. Theoretical Biology, 232 (2005), 523–543. [CrossRef] [PubMed]
  12. S.J.H. Franks, J.P. King. Interactions between a uniformly proliferating tumour and its surroundings: Uniform material properties. Mathematical Medicine & Biology, 20 (2003), 47–89. [CrossRef]
  13. A. Friedman. Cancer models and their mathematical analysis. In: Tutorials in Mathematical Biosciences III. Lecture Notes in Mathematics, 1872, 223-246. Springer, Berlin, 2006.
  14. A. Friedman. A free boundary problem for a coupled system of elliptic, hyperbolic, and Stokes equations modeling tumor growth. Interfaces and Free Boundaries, 8 (2006), 247–261. [CrossRef] [MathSciNet]
  15. A. Friedman. Mathematical analysis and challenges arising from models of tumor growth. Math. Models & Methods in Applied Sciences, 17 (2007), 1751–1772. [CrossRef]
  16. A. Friedman. A multiscale tumor model. Interfaces and Free Boundaries, 10 (2008), 245–262. [CrossRef] [MathSciNet]
  17. A. Friedman, B. Hu. The role of oxygen in tissue maintenance: Mathematical modeling and qualitative analysis. Math. Mod. Meth. Appl. Sci., 18 (2008), 1–33. [CrossRef]
  18. A. Friedman, B. Hu, C-Y. Kao. Cell cycle control at the first restriction point and its effect on tissue growth. Submitted for publication.
  19. A. Friedman, F. Reitich. Quasi-static motion of a capillary drop, II: The three-dimensional case. J. Diff. Eqs., 186 (2002), 509–557. [CrossRef]
  20. Y. Jiang, J. Pjesivac-Grbovic, C. Cantrell, J.P. Freyer. A multiscale model for avascular tumor growth. Biophysical Journal, 89 (2005), 3884–3894. [CrossRef] [PubMed]
  21. N. Komaraova. Stochastic modeling of loss- and gain-of-function mutation in cancer. Bull. Math. Biology, 17 (2007), 1647–1673.
  22. H.A. Levine, S.L. Pamuk, B.D. Sleeman, M. Nilsen-Hamilton. Mathematical modeling of capillary formation and development in tumor angiogenesis: penetration into the stroma. Bull. Math. Biology, 63 (2001), 801–863. [CrossRef] [PubMed]
  23. G. Lolas. Mathematical modelling of proteolysis and cancer cell invasion of tissue. In: Tutorials in Mathematical Biosciences III, Lecture Notes in Mathematics, 1872, 77–130. Springer, Berlin, 2006.
  24. N. Mantzaris, S. Webb, H.G. Othmer. Mathematical modeling of tumor-induced angiogenesis. J. Math. Biol., 49 (2004), 87–111.
  25. M.A. Nowak, K. Sigmund. Evolutionary dynamics of biological games. Science, 303 (2004), 793–799. [CrossRef] [PubMed]
  26. G.J. Pettet, C.P. Please, M.J. Tindall, D.L.S. McElwain. The migration of cells in multicell tumor spheroids. Bull. Math. Biol., 63 (2001), 231–257. [CrossRef] [PubMed]
  27. R. Ribba, T. Colin, S. Schnell. A multiscale model of cancer, and its use in analyzing irradiation therapies. Theoretical Biology and Medical Modeling, 3 (2006), No. 7, 1–19. [CrossRef]
  28. V.A. Solonnikov. On quasistationary approximation in the problem of a capillary drop. In: J. Escher & G. Simonett (Eds.), Progress in Nonlinear Differential Equations and Their Applications, 35, 643-671. Birkhäuser Verlag, Basel, 1999.
  29. M.M. Vainberg, V.A. Trenogin. Theory of branching solutions of non-linear equations. Nordhoff International Publishing, Leyden, 1974.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.