Free Access
Issue
Math. Model. Nat. Phenom.
Volume 4, Number 4, 2009
Morphogenesis
Page(s) 131 - 148
DOI https://doi.org/10.1051/mmnp/20094405
Published online 11 July 2009
  1. M. Alber, H.G.E. Hentschel, B. Kazmierczak, S.A. Newman. Existence of solutions to a new model of biological pattern formation. J. Math. Anal. Appl., 308 (2005), No. 1, 175–194. [CrossRef] [MathSciNet]
  2. M. Alber, T. Glimm, H.G.E. Hentschel, B. Kazmierczak, Y.-T. Zhang, J. Zhu, S.A. Newman. The morphostatic limit for a model of skeletal pattern formation in the vertebrate limb. Bulletin of Mathematical Biology, 70 (2008), No. 2, 460–483. [CrossRef] [MathSciNet] [PubMed]
  3. Y. Cheng, C.-W. Shu. A discontinuous Galerkin finite element method for time dependent partial differential equations with higher order derivatives. Mathematics of Computation, 77 (2008), No. 262, 699–730. [CrossRef] [MathSciNet]
  4. B. Cockburn, G. Karniadakis, C.-W. Shu. The development of discontinuous Galerkin methods, in Discontinuous Galerkin Methods: Theory, Computation and Applications, B. Cockburn, G. Karniadakis, and C.-W. Shu, Editors. Lecture Notes in Computational Science and Engineering, 11 (2000), Springer, 3–50.
  5. B. Cockburn, C.-W. Shu. Runge-Kutta discontinuous Galerkin methods for convection-dominated problems. Journal of Scientific Computing, 16 (2001), No. 3, 173–261. [CrossRef] [MathSciNet]
  6. B. Cockburn, C.-W. Shu. The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM Journal on Numererical Analysis, 35 (1998), No. 6, 2440–2463. [CrossRef] [MathSciNet]
  7. H.G.E. Hentschel, T. Glimm, J.A. Glazier, S.A. Newman. Dynamical mechanisms for skeletal pattern formation in the vertebrate limb. Proc. R. Soc. B, 271 (2004), No. 1549, 1713–1722. [CrossRef]
  8. W. Hundsdorfer. Trapezoidal and midpoint splittings for initial-boundary value problems. Mathematics of Computation, 67 (1998), No. 223, 1047–1062. [CrossRef] [MathSciNet]
  9. P.K. Kundu. Fluid Mechanics. Academic Press, Inc, London, 1990.
  10. D. Levy, C.-W. Shu, J. Yan. Local discontinuous Galerkin methods for nonlinear dispersive equations. Journal of Computational Physics, 196 (2004), No. 2, 751–772. [CrossRef] [MathSciNet]
  11. A. Madzvamuse, A.J. Wathen, P.K. Maini. A moving grid finite element method applied to a model biological pattern generator. Journal of Computational Physics, 190 (2003), No. 2, 478–500. [CrossRef] [MathSciNet]
  12. A. Madzvamuse, P.K. Maini, A.J. Wathen. A moving grid finite element method for the simulation of pattern generation by Turing models on growing domains. J. Sci. Comput., 24 (2005), No. 2, 247–262. [CrossRef] [MathSciNet]
  13. A. Madzvamuse. Time-stepping schemes for moving grid finite elements applied to reaction-diffusion systems on fixed and growing domains. Journal of Computational Physics, 214 (2006), No. 1, 239–263. [CrossRef] [MathSciNet]
  14. C.E. Nelson, B.A. Morgan, A.C. Burke, E. Laufer, E. DiMambro, L.C. Murtaugh, E. Gonzales, L. Tessarollo, L.F. Parada, C. Tabin. Analysis of Hox gene expression in the chick limb bud. Development, 122 (1996), No. 5, 1449–1466. [PubMed]
  15. S.A. Newman, G.B. Müller. Origination and innovation in the vertebrate limb skeleton: an epigenetic perspective. J. Exp. Zoolog. B Mol. Dev. Evol. 304 (2005), No. 6, 593–609.
  16. S.A. Newman, R. Bhat. Activator-inhibitor dynamics of vertebrate limb pattern formation. Birth Defects Res C Embryo Today, 81 (2007), No. 4, 305–319. [CrossRef] [PubMed]
  17. S.A. Newman, S. Christley, T. Glimm, H.G.E. Hentschel, B. Kazmierczak, Y.-T. Zhang, J. Zhu, M. Alber. Multiscale models for vertebrate limb development. Curr. Top. Dev. Biol., 81 (2008), 311–340. [CrossRef] [PubMed]
  18. M.A. Ros, G.E. Lyons, S. Mackem, J.F. Fallon. Recombinant limbs as a model to study homeobox gene regulation during limb development. Dev. Biol., 166 (1994), No. 1, 59–72. [CrossRef] [PubMed]
  19. G. Strang. On the construction and comparison of difference schemes. SIAM J. Numer. Anal., 8 (1968), No. 3, 506–517. [NASA ADS] [CrossRef] [MathSciNet]
  20. D. Summerbell. A descriptive study of the rate of elongation and differentiation of the skeleton of the developing chick wing. J. Embryol. Exp. Morphol., 35 (1976), No. 2, 241–260. [PubMed]
  21. T. Svingen, K.F. Tonissen. Hox transcription factors and their elusive mammalian gene targets. Heredity, 97 (2006), No. 2, 88–96. [CrossRef] [PubMed]
  22. C. Tickle. Patterning systems - from one end of the limb to the other. Dev. Cell, 4 (2003), No. 4, 449–458. [CrossRef] [PubMed]
  23. Y. Xu, C.-W. Shu. Local discontinuous Galerkin methods for three classes of nonlinear wave equations. Journal of Computational Mathematics, 22 (2004), No. 2, 250–274.
  24. Y. Xu, C.-W. Shu. Local discontinuous Galerkin methods for nonlinear Schrodinger equations. Journal of Computational Physics, 205 (2005), No. 1, 72–97. [CrossRef] [MathSciNet]
  25. Y. Xu, C.-W. Shu. Local discontinuous Galerkin methods for two classes of two dimensional nonlinear wave equations. Physica D, 208 (2005), No. 1-2, 21–58. [CrossRef] [MathSciNet]
  26. Y. Xu, C.-W. Shu. Local discontinuous Galerkin methods for the Kuramoto-Sivashinsky equations and the Ito-type coupled KdV equations. Computer Methods in Applied Mechanics and Engineering, 195 (2006), No. 25-28, 3430–3447. [CrossRef] [MathSciNet]
  27. J. Yan, C.-W. Shu. A local discontinuous Galerkin method for KdV type equations. SIAM Journal on Numerical Analysis, 40 (2002), No. 2, 769–791. [CrossRef] [MathSciNet]
  28. J. Yan, C.-W. Shu. Local discontinuous Galerkin methods for partial differential equations with higher order derivatives. Journal of Scientific Computing, 17 (2002), No. 1-4, 27–47. [CrossRef] [MathSciNet]
  29. J. Zhu, Y.-T. Zhang, S.A. Newman, M. Alber. Application of discontinuous Galerkin methods for reaction-diffusion systems in developmental biology. Journal of Scientific Computing, 40 (2009), No. 1-3, 391–418. [CrossRef] [MathSciNet]
  30. E. Zwilling. Development of fragmented and of dissociated limb bud mesoderm. Dev. Biol., 9 (1964), No. 1, 20–37. [CrossRef] [PubMed]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.