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Abstract. It is well established that resource variability generated by spatial patchiness and turbu-
lence is an important influence on the growth and recruitment of planktonic fish larvae. Empiri-
cal data show fractal-like prey distributions, and simulations indicate that scale-invariant foraging
strategies may be optimal. Here we show how larval growth and recruitment in a turbulent envi-
ronment can be formulated as a hitting time problem for a jump-diffusion process. We present two
theoretical results. Firstly, if jumps are of a fixed size and occur as a Poisson process (embedded
within a drift-diffusion), recruitment is effectively described by a diffusion process alone. Sec-
ondly, in the absence of diffusion, and for “patchy” jumps (of negative binomial size with Pareto
inter-arrivals), the encounter process becomes superdiffusive. To synthesise these results we con-
duct a strategic simulation study where “patchy” jumps are embedded in a drift-diffusion process.
We conclude that increasingly Lévy-like predator foraging strategies can have a significantly pos-
itive effect on recruitment at the population level.
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1. Introduction
Planktonic fish larvae may be broadly described as being small, stupid, and dead. These assertions
can be made more concrete: larvae are small relative to the spatial scales of prey heterogeneity
and to the turbulent fluid flow at these spatial scales [21]; they have only local knowledge of their
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immediate environment, limited by a visual perceptive distance of around one body length [22];
and they are subject to massive mortality, with a newly hatched individual’s probability of survival
to metamorphosis being O(1%) or less [6] driven by typical mortality rates of 10% per day in the
larval stage [9]. These factors are likely to strongly influence the extreme observed variability in
the stock-recruitment relationships which underpin fisheries management.

Because the key natural phenomena are inherently stochastic, deterministic models can be ar-
gued to be inappropriate for quantifying recruitment (defined here as growth to some threshold size
e.g. size at metamorphosis). Rather, stochastic models must be constructed to arrive at recruitment
probabilities [21]. Recent recruitment models have treated this process as a hitting-time problem
for stochastic differential equations [17, 23], showing that environmental stochasticity induced by
turbulence and spatial heterogeneity can be beneficial to recruitment. The differences between the
predictions from deterministic and stochastic models are particularly great when growth rates are
small and mortality rates are large, which is precisely the environment inhabited by fish larvae
[23].

The general approach of [17, 23], which assumes that individual-based variability can be cap-
tured at the population level by a diffusion equation, may not be universally appropriate. In par-
ticular, diffusion-based models cannot necessarily capture sudden jumps caused by rare chance
encounters with particularly favourable patches of prey (there are parallels to the phenomenon of
unpredictable shocks affecting the value of economic markets [1]). The Lévy-Khintchine formula
provides a generic mathematical description for an infinitely divisible continuous time stochastic
process as a combination of diffusion-with-drift interspersed with probabilistic jumps [1].

Important clues as to how the diffusion-based approach of [17, 23] could better account for
planktonic heterogeneity have been provided by recent research on Lévy walks (LWs), with at-
tempts to develop a single framework in which to study plankton patchiness [16] and non-Brownian
motion of predators in heterogeneous stochastic environments [27]. A LW is a random walk with
step lengths taken from an appropriate heavy tailed distribution [10], allowing very large steps
(“jumps”) to occur. The probability density function (pdf) for a LW typically takes the form of a
power law; for example, P (lj) ∼ l−µ

j , with 1 < µ ≤ 3 where lj is the step length and µ is the Lévy
exponent [27]. Brownian motion is recovered as a special case for µ > 3 [2, 24, 29]. Alternative
parameterisations may be more amenable to mathematical progress (see Section 3).

Results from analytical and simulation models [3, 4, 28], supported by empirical data [27]
suggest that a naive predator following a stochastic foraging strategy in a patchy prey environment
can optimise its mean rate of prey encounters by following a LW. Furthermore, simulation results
[27] suggest that a fitness benefit is conferred by following a Lévy foraging strategy the exponent
of which matches that of the underlying prey distribution. These results are not supported by [5],
who compares LWs with composite random walks (CWs) generated by a forager taking smaller
steps when it perceives itself to be within a prey patch. Benhamou [5] shows firstly that a CW
can outperform a LW in a patchy environment, and secondly that data sampled from CWs may
resemble those from a LW, leading to possible problems in interpretation. Important questions also
arise concerning pattern versus process in our understanding of animal movements: if a forager
exploits a patchy prey environment by changing its movement strategy in response to its perceived
prey field, then its movements will appear to be a stochastic LW foraging strategy when in fact
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they simply reflect the underlying prey distribution [5, 24].
This study seeks to provide a mathematical basis for the treatment of non-diffusive phenomena

in descriptions of planktonic foraging. In Section 2 we address the question of whether a refor-
mulation of the recruitment problem can account for locally rare but beneficial conditions using
a jump-diffusion process. In Section 3 we are motivated by the saltatory (pause-travel) foraging
behaviour of planktonic fish larvae (e.g., cod [25]). We use a deliberately simple analytical model
to ask whether a saltatory strategy in a patchy environment is optimal, and whether there is a math-
ematical basis for the notion that predator and prey exponents should match. Our approach utilises
analytically tractable Pareto distributions for step lengths and inter-arrival times [13]. Furthermore,
the simplicity of the model means that pattern and process are transparently independent. The re-
sulting individual-based model exhibits superdiffusivity; the variance of the process does not scale
linearly with time.

The results in Section 3 support [5] and [21] in showing that Lévy foraging is not a generically
optimal strategy. However, when synthesised within the Lévy process jump-diffusion framework
of Section 2, results of strategic simulations lead us to argue in Section 4 that saltatory LW foraging
may be a beneficial strategy when scaled up to the population level. We show that superdiffusivity
can in principle increase recruitment probability due to the risk sensitivity associated with foraging
in a high mortality environment. However, the ecological details peculiar to each foraging scenario
(and therefore their simulation) are likely to be factors of major importance.

2. Hitting times for jump diffusion processes and applications
to recruitment

Pitchford et al. [23] and Lv and Pitchford [17] show that including Gaussian white noise (repre-
senting individual and environmental variability) in the growth rate of planktonic fish larvae always
increases the probability of maturation (defined here as growth to the recruitment threshold size).
Pitchford et al. [23] describe the gain in mass M(t) of an individual larva at time t as

M(t) = rt + σB(t), M(0) = 0, (2.1)

so that each larva grows as a drift-diffusion process with mean rate r and with variance σ2.
Because it forms a basis for our subsequent analysis, the model of (2.1) deserves careful consid-

eration, especially regarding linearity in time t and the possibility of negative growth. Modifying
the drift term r to account for concave (Von Bertalanffy growth) or convex (geometric) growth,
and allowing different scaling of the noise term σ, does not qualitatively affect the results for
recruitment probabilities [17]. Equation 2.1 admits the possibility of M(t) becoming negative.
However, if M(t) is interpreted as a measure of gain in mass from an initial non-zero state M0,
then M(t) < 0 does not necessarily imply that the overall mass is negative. The probability of
M(t) < −M0 (implying negative mass) for some t < ∞ is exp

(−2rM0

σ2

)
(assuming no absorbing

barrier at Mmat). The possibility that M(t) < 0 is addressed fully in Appendix A.
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In light of the Lévy-Khintchine formula [1] and the patchy nature of plankton distributions
[16], we quantify the effects of adding non-Gaussian (Lévy) noise which could represent prey
patchiness, turbulence, or any other processes causing temporal and spatial heterogeneity. Consider
the simplest case, where the Lévy measure v takes the form v = λδh, with λ > 0 and δh a Dirac
mass centered at h ∈ R\{0} [1]. This gives a new growth equation,

M(t) = r′t + σB(t) + N(t), M(0) = 0, (2.2)

where r′ = r− ∫
(0,1]

xv(dx) is the effective growth rate, σ2 is the variance of the Brownian motion
B(t), and N(t) is a Poisson random variable of intensity λ taking values in {nh, n ∈ N}, with

P (N(t) = nh) = e−λt (λt)n

n!
.

Equation (2.2) describes a fish larva growing with drift r′ and variance σ2, between jump disconti-
nuities of size h, caused by encountering rare but favourable patches of prey which occur at random
times (Tn, n ∈ N), Tn ∼ Exp(λ).

As in [23] we are interested in the probability of a fish larva reaching maturation. We first
determine the distribution of the time to maturation, tmat, where

tmat = inf{t > 0 : M(t) = Mmat}.

Mmat is defined to be the fixed recruitment mass and tmat is known as a hitting time [7]. Using
Theorem 1.1 of [19], the hitting time density for equation (2.2) can be shown to be

ftmat(t) =
Mmat

t

∞∑
n=0

e−λt

√
2πσ2t

(λt)n

n!
exp

[−(Mmat − n|h| − rt)2

2σ2t

]
.

Although alternative possibilities exist ([9, 20]), a size-independent mortality process is appropri-
ate and parsimonious (see [23]) i.e. mortality occurs as a Poisson process with rate µ, so that an
individual fish larva has a probability exp(−µtmat) of surviving to Mmat. Hence the probability of
an individual reaching maturity is

Pmat(r, σ, λ, h) =

∫ ∞

0

ftmat(t) exp(−µt)dt (2.3)

=
Mmat√
2πσ2

∫ ∞

0

e−(µ+λ)t

√
t3

∞∑
n=0

(λt)n

n!
exp

[−(Mmat − n|h| − rt)2

2σ2t

]
dt.

To investigate the effects of the additional Lévy noise in the linear growth model, the recruit-
ment probability is plotted against mortality rate µ for a pure drift-diffusion growth process, a
mixed drift-diffusion-jump growth process, and a pure Poisson jump growth process (Figure 1).
The equation for the recruitment probability for the mixed drift-diffusion-jump growth process is
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given by equation (2.3), and the equation for the pure drift-diffusion process is given by Equation
(8) in [23]. The probability of maturation for a pure Poisson jump growth process, with intensity
λ and jump size h, is

Pmat(λ, h) =

(
λ

λ + µ

)Mmat
h

.

The analytical results in Figure 1 were confirmed using explicit individual-based simulations
of 100,000 individuals generated using an Euler-Maruyama scheme between exponentially dis-
tributed fixed size jumps.
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Figure 1: a) Example growth trajectories for individuals growing with a drift-diffusion process
between exponentially distributed fixed size jumps. Parameters used here were r = 2.5, σ2 = 12.5,
h = 5, λ = 0.5. b) The probability of reaching maturity against mortality rate µ, for a pure drift-
diffusion growth process, a mixed drift-diffusion-jump growth process, and a pure Poisson jump
growth process. The mean at time t for all processes was fixed to be Rt, and the variance S2t. For
the drift-diffusion process the parameters used were (R=5) r=5, σ=5; and (R=2.5) r=2.5 and σ=5.
For the mixed drift-diffusion-jump process the parameters used were, (R=5) r=2.5, σ=

√
12.5, h=5,

λ=0.5; and (R=2.5) r=1.25, σ=
√

12.5, h=10, λ=0.125. For the pure jump process the parameters
used were (R=5) h=5, λ=1; and (R=2.5) h=10, λ=0.25.

The results in Figure 1 indicate that, at the scale of larval fish growth, the addition of Lévy
noise (in the form of constant size jumps) is unlikely to affect the probability of maturation when
the mean and variance of the overall growth process are held fixed. In other words, at the ecolog-
ically relevant scale, the input from the jump process becomes essentially diffusive and standard
stochastic differential equation (SDE) techniques can be applied. The following section shows
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that this is a consequence of the choice of jump process, and that more realistic foraging models
can result in non-diffusive processes at the population level, with concomitant consequences for
recruitment.

3. An individual-based model for the encounter process of a
saltatory forager

The analytical and numerical results in Section 2 indicate that simply describing individual-based
growth and recruitment as a hitting time problem for a jump-diffusion process does not necessar-
ily scale up to have an impact at the ecological or management levels. However, the assumption
that jumps occur with a fixed magnitude is unrealistic and may be unnecessarily restrictive, be-
cause the resulting model resembles a diffusive process over ecologically relevant time scales. The
individual-based model formulated below provides theoretical evidence that diffusive models may
be inappropriate; for a saltatory forager following a LW in a patchy environment, it is demonstrated
that the growth process is superdiffusive.

Consider a naive predator (e.g., planktonic fish larva) foraging in a patchy environment where
food items (e.g., copepods) are distributed patchily in space according to a Pareto distribution
with parameter r2 [14]. The predator performs a saltatory foraging strategy, moving between
search locations at a fixed constant speed. These movements have lengths governed by a Pareto
distribution with parameter r1, i.e., the step lengths are such that the predator follows a LW for
r1 ≤ 2. We assume that the predator consumes all items of food it finds within each search
location before moving on to its next foraging location, and that this consumption is instantaneous
(i.e. there is a negligible handling time). These assumptions are useful for analytical tractability,
and could be relaxed in numerical simulations.

Although we assume a three dimensional isotropic prey distribution, the foraging process can
be regarded as taking place in one spatial dimension (c.f. [24]). This is not a restrictive assumption
because the movement process is one dimensional from the forager’s point of view and Lévy ex-
ponents are conserved when dimensionality is reduced via projection [27] (Suppl. Mat.). In order
to understand how the spatial distribution of predator foraging locations and prey items may be
interrelated, we parameterise the probability distributions such that the expected number of forag-
ing locations and the mean–field prey density remain fixed, and only the degree of heterogeneity
(of forager movements, prey distribution, or both) varies. This focuses attention on the foraging
strategy employed, rather than any mean-field properties. Note that this does not imply a fixed
prey field. Conditional on a fixed mean-field density, the number of prey items at each location is
independent of all other locations.

We seek to understand the distribution of X(t), the total number of prey items encountered
by a stochastic forager in fixed time t. Let N(t) be the number of foraging locations visited in
time t, and let δ describe the size of each foraging location (typically the perceptive radius of
the forager [21]). Because the forager travels with constant speed, the time τ between foraging
intervals follows a Pareto distribution with parameters r1 and α1. Hence the probability density of
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τ is given by

f(τ) =
r1α

r1
1

(α1 + τ)r1+1
, (τ > 0).

It follows that [13]

N(t) ∼ negative binomial
(

r = r1, p =
α1

α1 + t

)
,

with probability mass function

f(n) =

(
r + n− 1

n

)
pr(1− p)n, (n = 0, 1, . . .).

For foraging location i, let the number of encounters with prey be Yi, i.e, Yi is the number of prey
items contained within a sphere of radius δ. Because the prey are distributed according to a Pareto
distribution with parameters r2 and α2, the distance η between prey items has density function

f(η) =
r2α

r2
2

(α2 + η)r2+1
, (η > 0)

and it follows that

Yi ∼ negative binomial
(

r = r2, p =
α2

α2 + δ

)
.

Hence the probability mass function of Yi is

f(y) =

(
r + y − 1

y

)
pr(1− p)y, (y = 0, 1, . . .).

We make the natural assumption that the Yi are independent and identically distributed. There is an
implicit but practically reasonable assumption here that foraging locations do not overlap [18]. The
fact that the perceptive field of a larva is better described as a narrow “wedge” further strengthens
this argument [12]. The probability generating functions of N and Yi can then be derived as

GN(s) =

(
α1

α1 + [1− s]t

)r1

,

GY (s) =

(
α2

α2 + [1− s]δ

)r2

.

It follows that E(N) = r1t/α1 and E(Yi) = r2δ/α2.
Because the total number of prey encountered in time t is simply

X = Y1 + Y2 + · · ·+ YN ,

it follows that the generating function of X is

GX(s) = GN{GY (s)} = αr1
1

[
t− t

(
α2

α2 − [1− s]δ

)r2

+ α1

]−r1

.
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Let λ1 = r1/α1 and λ2 = r2/α2. By parameterising in terms of r1, r2, λ1, λ2, we are able to vary
the parameters r1 and r2 whilst E(N) = λ1t and E(Yi) = λ2δ (mean–field properties) remain fixed.
It can then readily be shown that

E(X) = λ1λ2δt,

Var(X) = λ1λ
2
2δ

2t2
(

1

r1

+
1

r2t
+

1

t
+

1

λ2δt

)
.

The implications of these results are discussed in more detail in Section 4, but the most basic
message here is that the expected encounter rate depends only on the mean–field properties of
the predator movement and prey distribution, not on the details of their distribution (i.e., E(X) is
independent of r1 and r2). This precisely mirrors the results of [21] and [22] for cruise predators:
for both cruise and saltatory foragers, heterogeneity in the predator’s movement strategy, or in
the prey distribution, or both, do not affect mean prey encounter rates. Hence a constant speed
predator receives no average benefit by altering its foraging trajectory (although changes in speed
can of course influence encounter rates and movement costs [22]).

The variance in the encounter rate is superdiffusive (Var(X) ∝ tρ, 1 < ρ < 2). Because the
model in this section relates to encounter rate rather than time to maturity, it is not straightforward
to incorporate mortality and formulate a model for recruitment probability as in Section 2. In
Section 4.1, we incorporate the features of the “patchy” jump process that leads to superdiffusion
into an idealised simulation of a jump-diffusion process. The consequences for recruitment are
then discussed.

4. Discussion
The analytical results in Sections 2 and 3 raise important issues regarding both the inclusion of
stochasticity in mathematical models, and the ecological and evolutionary processes underpinning
our ideas of planktonic foraging.

4.1. Superdiffusive models of recruitment
Motivated by Sections 2 and 3, Figure 2 shows the results of simulating a jump-diffusion process
with Pareto interarrival times between jumps (simulating a saltatory predator) and with negative
binomially distributed jump sizes (simulating a patchy prey distribution). Parameter values are
again chosen based on [23] so far as possible, and mortality rate µ is fixed at 0.1. The mean
growth rate of the overall stochastic process is R = r + λ1λ2. Consistent with Section 2, R = 5,
r = 2.5 and Mmat = 200. Results are shown for a range of r1 and r2, to capture the dependence
of recruitment probabilities on both the foraging strategy of the predator and the patchiness of
the prey distribution. A minimum exponent value ri = 2 is imposed because smaller values
correspond to infinite variance and are therefore difficult to justify with empirical data. The results
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are calculated from simulations of 10,000 individuals using an Euler-Maruyama scheme between
Pareto distributed negative binomial jumps.

Figure 2a) depicts five example individual growth trajectories for r1 = 2, r2 = 2, illustrating
the non-diffusive nature of the underlying process. The consequences at the population level are
shown in Figure 2b); recruitment probability is seen to increase with decreasing exponent r1. The
role of the prey distribution, captured by prey exponent r2, appears to be less important (given that
the mean-field prey concentration is constant across all simulations). However, whilst illustrating
the general principle, the simulations in Figure 2 ought to be regarded as strategic. The Pareto for-
mulation in Section 3 allows many small jumps rather than enforcing a minimum jump size. This
may be inappropriate for some predators (although the factors of turbulence and wedge-shaped
perceptive fields may ameliorate this criticism; the assumption that foraging locations are disjoint
is likely to be reasonable [18]). Practical applications of this modelling framework would require
context-specific consideration of underlying processes such as turbulence, swimming speeds and
handling times and are beyond the scope of this study.
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Figure 2: a) Example superdiffusive growth trajectories for individuals growing with a drift-
diffusion process between negative binomially distributed jumps at Pareto distributed inter-arrival
times. Parameters used here were r = 2.5, σ2 = 12.5, r1 = 2, α1 = 2, r2 = 2, p = 2/7. b) The
probability of reaching maturity against predator Pareto exponent, r1, for a range of values of prey
patchiness, r2. Mass at maturation was fixed at 200, and mortality rate at 0.1. The mean at time t
for all processes was fixed to be Rt = (r + λ1λ2)t = 5t (see Sections 2 and 3 for definitions of
variables).

4.2. Foraging behaviour
Important messages arise from the encounter process modelled in Section 3. By employing in-
creasingly non-diffusive Lévy-type movements (i.e., decreasing r1), the predator can increase the
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variability in its encounter rate. Decreasing r2 increases the variability in encounter rates at the in-
dividual level. In other words, although mean encounter rates are not affected, prey patchiness and
Lévy foraging increase the variability in the gain an individual forager experiences. This echoes
the results of [21], and it is possible to combine the results presented here with those of [5] and [21]
to make some definite statements regarding stochastic foraging. Where simulations show a fitness
benefit (an increase in mean encounter rate) in Lévy foraging over RW foraging, then the benefit
does not arise solely as a consequence of predator movement and prey patchiness. Rather, where
any benefit exists, it must arise in conjunction with other processes within the simulations. Details
such as predators’ behavioural responses to prey, how prey regeneration is handled, and how prey
patchiness is statistically maintained after a predation event, are likely candidates. Such processes
warrant greater attention to biological and ecological detail in order to build a more comprehensive
picture of “optimal” foraging.

Predator movement and prey heterogeneity alone are not sufficient to favour Lévy foraging.
Benhamou [5] suggests that, where LW are observed in data (and provided these have not been
misidentified [10, 26, 27]), this is likely to be a confusion of pattern and process or a superposition
of different movement strategies operating at different spatial scales. There is, however, another
possibility which may be of particular importance for marine plankton (zooplankton or larval and
juvenile fish) subject to high levels of mortality and turbulence. Pitchford et al. [23] show that
stochasticity, manifested by a large variance in individual prey encounter rate, is beneficial to the
growth and recruitment of organisms which grow slowly and whose survival to the next life history
stage is unlikely (see [17] for nonlinear generalisations of this simple model). Such foragers, whose
knowledge of their turbulent environment is necessarily local in both space and time, have a strong
evolutionary pressure to increase their encounter variance (i.e., to follow a classic “risk sensitive”
foraging strategy). It is not the object of this paper to quantify the evolutionary consequences of
risk sensitivity, but we note that the model of evolutionary stable strategies under uncertain trade-
offs in [8] provides an appropriate framework. The deterministic energy costs of faster swimming
must be balanced against the stochastic benefits of increased mean and variance in encounter rate,
which can be quantified using the mathematics in Section 3 (saltatory predators) or [21] (cruise
predators).

The individual-based foraging model presented here is highly idealised, but this is necessary
to disentangle the “pattern versus process” arguments described in [5]. In particular, the model
implies that the forager will not interact with any prey it meets whilst moving between foraging
locations. Adapting the model to account for such possibilities inevitably leads one to consider
more cruise-like foraging strategies where the theories of [5, 21, 29] are more appropriate. We
note that, compared to a saltatory forager, cruise predation is unlikely to be an effective way to
leave regions of low prey density, i.e., to escape low quality habitats. The ability to leave regions
of low yield in favour of a small chance of finding a higher yield location is likely to be of par-
ticular importance to risk sensitive foragers. Therefore, although some of the complex behaviours
observed in saltatory foraging are missing [25], our model can be claimed to capture and quantify
the fundamental processes.
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4.3. Summary
This study attempts to synthesise observational evidence of the non-diffusive distribution of plank-
tonic predators and their prey in the natural environment with existing stochastic models, thereby
characterising important ecological processes at the population level. We show that, when general-
ising from SDE to jump-diffusion process, the individual-level processes which generate the jump
distribution can give rise to superdiffusivity.

The model of saltatory foraging in Section 3 agrees with previous models of cruise predators
in questioning whether there is a generic advantage, in terms of mean encounter rate, for a naive
predator to move according to a LW. Furthermore, we find no theoretical support for matching
between exponents governing predator and prey distributions in maximising mean prey encounter
rates. However, when interpreted in the context of a risk sensitive foraging strategy in a patchy
environment, Figure 2 shows that saltatory foragers may be at a significant advantage. Accurately
quantifying this advantage requires more careful consideration of the ecological details (minimum
jump size, prey regeneration, predator perceptive field and behaviour, handling time etc.). These
form the subject of ongoing work.
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Appendix A: A double barrier hitting time problem
To address the possibility of negative mass in the model of [23], we can redefine the recruitment
problem as a double barrier hitting time problem. The gain in mass equation

M(t) = rt + σB(t), M(0) = 0,

still holds, however in addition to the absorbing barrier at Mmat, we now place another absorbing
barrier at −M0, where M0 is defined to be the initial mass of a single planktonic fish larva. We
wish to find the hitting time distribution for Mmat given that the growth trajectory M(t) does not
hit the barrier at −M0 earlier. Using the methods of [15], we can derive this distribution:

ft̂mat
(t) = exp

{
Mmatr

σ2
− 1

2

( r

σ

)2

t

} ∞∑
n=−∞

g(t; bn),

where
g(t; x) =

x√
2πt3

e−
x2

2t , bn =
1

σ
(2n[Mmat + M0] + Mmat) ,
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and
t̂mat = inf(t > 0 : M(t) = Mmat| M(s) > −M0, 0 ≤ s ≤ t)

is the redefined hitting time.
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Figure 3: Examples of the effect of an additional absorbing barrier on the probability of recruit-
ment, for the drift-diffusion model of [23]. In all graphs σ=5 and a) M0=2, r=5, b) M0=2, r=2.5,
c) M0=10, r=5, d) M0=10, r=2.5.
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Taking the same simple mortality model as [23], we can arrive at the probability of maturation,

Pmat(r, σ) =

∫ ∞

0

ft̂mat
(t) exp(−µt)dt

=

∫ ∞

0

exp

{
Mmatr

σ2
− 1

2

( r

σ

)2

t− µt

} ∞∑
n=−∞

g(t; bn) dt.

We can now repeat the results of [23], to assess whether the inclusion of an absorbing barrier
at “zero” alters the conclusions. Figure 3 shows the results for the double barrier hitting time
problem, for an initial mass of M0 = 2 (a) and b) and M0 = 10 (c) and d) in comparison to the
single barrier problem.

For an initial larval mass of M0 = 2 the addition of the second absorbing barrier can change
the results of [23], especially in the r = 2.5 case: stochasticity is not necessarily beneficial to
recruitment because it increases the probability of absorption at the lower barrier. For M0 = 10,
the additional barrier does not significantly affect the results for r = 5, and has only a small effect
on the results for r = 2.5.
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Figure 4: The dependence of the probability of recruitment on initial larval mass M0 for the double
barrier hitting time problem. In both graphs µ=0.1, σ=5 and a) r=5, b) r=2.5.

The effect of the lower absorbing barrier is highly dependent on the value of M0, even within
a small range (as shown in Figure 4). The parameters used in this paper are chosen to be broadly
representative of a fish larva reaching recruitment mass after an average of 40 days [23]. Values
for M0 (relative to a fixed Mmat = 200) in the literature can range over at least two orders of
magnitude e.g. M0 = 0.12 for bay anchovy Anchoa mitchilli larvae reaching metamorphosis in 32
days, M0 = 22.3 for European plaice Pleuronectes platessa larvae reaching metamorphosis in 100
days [11] (www.fishbase.org). For species and ecological scenarios where the starvation of larvae
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is known to be an ecologically relevant process, the possibility of absorption at the lower barrier
can be included using the above methods. However, our overall conclusions regarding the role of
superdiffusive growth in the recruitment process are qualitatively unaffected.
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