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Abstract. The flow trough the Strait of Gibraltar could be analyzed as a problem of two-layer
hydraulic exchange between the Atlantic ocean and the Mediterranean sea. The shallow water
equations in both layers coupled together are an important tool to simulate this phenomenon. In
this paper we perform an upwind schemes for hyperbolic equations based on the Roe approximate
Riemann solver, to study the resulting model. The main goal assigned was to predict the location
of the interface between the two layers. Therefore the computational results obtained are compared
to previous results and experiments.
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1. Introduction
The Strait of Gibraltar is located between the southern coast of Spain and northern coast of

Morocco (35o45
′ to 36o10

′ N. latitude and 5o10
′ to 6o00

′ W. longitude) (see figure 1). It is the single
connection between the Atlantic Ocean and the Mediterranean Sea. Water flow through the strait
consists of an upper layer of Atlantic water flowing eastward over a lower layer of Mediterranean
water flowing westward.
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The Strait has been an area of intense study in order to understand and characterize this ex-
change of water between the Atlantic and Mediterranean. Early studies are described in Defant
(1961), while Lacombe and Richez (1982, [14]) described an investigation carried out in the 1960’s
over several campaigns under the aegis of the NATO subcommittee on Oceanographic Research.
Those data were also used by Armi and Farmer ((1985), [2]) to interpret the hydraulic flow through
the Strait and helped to motivate the Gibraltar Experiment carried out in 1985− 1986 [La Violette
et al (1986) [16]; Kinder and Bryden 1987, Armi and Farmer (1988), [3]]. Armi and Farmer used
data collected as part of that experiment to examine the details of the flow within the Strait, iden-
tifying a number of hydraulic control points at the Tarifa Narrow, the Camarinal Sill, the Spartel
Sill and at a location west of the Spartel Sill. A comprehensive atlas of the hydrology and currents
can be found in [Lacombe and Richez (1984), [15]].

The density difference between the Atlantic and Mediterranean waters, due primarily to their
salinity differences, provides the necessary stratification. So the two well defined water masses are
separated by a relatively sharp interface. As proved by many experiments ([6], [9]) the system can
therefore be approximated by a two-layer model. Many attempts to understand and measure the
basic parameters governing the multi-layered flow in the Strait of Gibraltar have been undertaken
([4], [6],[8], [9], [14]&[19]). On October 24, 1980 Spain and Morocco signed a scientific and techni-
cal co-operation agreement for the study of the feasibility of a fixed link Europe-Africa through the
Strait of Gibraltar. Recently the solution of the rail tunnel under the Strait of Gibraltar is preferred
to the suspended bridge [12, 25]. Regarding this important project, every study and information on
the subject will be benefic and helpful.

Figure 1: 3D view of the Strait of Gibraltar

Bryden and Stommel [10] developed a pure algebraic model for the sill section and they got
a surprisingly good results. Ouazar et Al [22] generalized the Bryden’s model along the Strait
using the one dimensional approximation, neglecting the secondary effects and have developed a
numerical model based on the method of characteristic (MOC) to solve the resulting shallow water
equation.
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Explicit and implicit methods, also finite element method have been used to solve the shallow
water equations. One feature of this set of hyperbolic equations is the formation of discontinuous
solutions, which can be difficult to represent accurately. However, the development of finite volume
method for hyperbolic conservation laws has been a rapidly growing area for the last decade due
to its attractive features and specifically nice shock capturing ([17], [18], [26]). In this paper we use
this technique to study the shallow water equations resulting from the two-layer model. To test the
numerical simulation, some results are compared to the experimental data observed by Kinder in
1985 (CTD measurement [6], [8]), and to the numerical results obtained by Ouazar et Al. [22] and
[20], [21].

2. Mathematical formulation
In most circumstances, the sea surface elevations and current due to tides and storm surge can

be described by the inviscid shallow water equations. The flow is assumed to be vertically well
mixed with a hydrostatic pressure gradient and then taking into account the kinematic boundary
conditions on the free surface. In their primitive form, the depth-integrated governing equations
include a continuity equation and momentum equation in each of the x and y directions [13, 24]:





∂h

∂t
+

∂(hu)

∂x
+

∂(hv)

∂y
= 0,

∂(hu)

∂t
+

∂(uhu)

∂x
+ gh

∂h

∂x
+

∂(vhu)

∂y
= ghS0x + fvh + τx − τbx,

∂(hv)

∂t
+

∂(vhv)

∂x
+ gh

∂h

∂x
+

∂(uhv)

∂y
= ghS0y − fuh + τy − τby,

(2.1)

Figure 2: Description of the physical variables

where x, y are the horizontal coordinates, t is the time, u = u(x, y, t) is the depth-averaged
velocity in the x direction. v = v(x, y, t) is the depth-averaged velocity in the y direction. h =
h(x, y, t) is the instantaneous water depth, η is the elevation of the free surface and h = H + η
(see figure 2). g stains for the gravity acceleration, f is the coriolis parameter. S0x and S0y are the
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bottom bed slopes defined as: S0x = −∂Zf

∂x
and S0y = −∂Zf

∂y
, Zf being the bed elevation. τbx, τby

correspond to the bottom friction slopes. τx,y are the wind stresses.
Suppose that we have two layers of water with densities ρ1,2. This may be useful approximation in
stratified seas. The integration process, described above (equations (2.1)), can be then performed
for each layer separately, taking into account exchange of mass and momentum across the interface.
In the special case that there is no mass exchange, assuming:

• The flow is quasi-horizontal, i.e. one can neglect the y component.

• The density is uniform in each layer.

The following equations results:

Atlantic layer (upper layer)




∂h1

∂t
+

∂(h1u1)

∂x
= 0,

∂(h1u1)

∂t
+

∂

∂x

((h1u1)
2

h1

+
gh2

1

2

)
= −gh1

(∂h2

∂x
+

∂Zf

∂x

)
+ τw − τI ,

(2.2)

Mediterranean layer (lower layer)




∂h2

∂t
+

∂(h2u2)

∂x
= 0,

∂(h2u2)

∂t
+

∂

∂x

((h2u2)
2

h2

+
gh2

2

2

)
= −gh2

(ρ1

ρ2

∂h1

∂x
+

∂Zf

∂x

)
+ τI − τb,

(2.3)

in general conservative form the equations (2.2)-(2.3) can be written as the following




∂w1

∂t
(x, t) +

∂F1

∂x
(w1(x, t)) = S1(x,w1(x, t), w2(x, t)),

x ∈ I ⊂ IR, t ∈ [0, T ] .

(2.4)





∂w2

∂t
(x, t) +

∂F2

∂x
(w2(x, t)) = S2(x,w1(x, t), w2(x, t)),

x ∈ I ⊂ IR, t ∈ [0, T ] .

(2.5)

Where wi is the vector of flow variables, Fi is the cartesian components of momentum flux for
each layer.

wi(x, t) =




hi(x, t)

qi(x, t)


 =




hi(x, t)

hi(x, t)ui(x, t)


 , Fi(wi) =




qi

q2
i

hi

+
gh2

i

2


 , i = 1, 2
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S1(x, w1, w2) =




0

−gh1

(
∂h2

∂x
+

∂Zf

∂x

)
+ τw − τI


 , (2.6)

S2(x,w1, w2) =




0

gh2

(
ρ2

ρ1

∂h1

∂x
− ∂Zf

∂x

)
+ τI − τb


 . (2.7)

Equations (2.4) and (2.5) are coupled through their source terms S1(x,w1, w2) and S2(x,w1, w2). Here
hi(x, t), i = 1, 2 denote respectively the depth of the Atlantic layer at point x and at time t, the depth
of the Mediterranean layer, ui(x, t), i = 1, 2 are the averaged horizontal velocities. I denotes the
projection of the channel occupied by the fluid onto the x-direction. I = [0, L], L is the length of
the channel.

2.1. Shear stresses
• At the bottom the friction term is:

τb = cdu2 |u2| .

The values of the bottom drag coefficient cd, usually used to account for bottom stresses in
straits or estuaries range from 10−3 to 5.10−3. A typical value of cd = 3.10−3, representing
the drag along solid boundaries is chosen in this case.

• At the interface the friction term is:

τI = cI |u2 − u1| (u1 − u2) .

The friction term is expressed by means of the inter facial stress coefficient cI . Values of cI

obtained from laboratory experiments range from 4.10−4to 2.6× 10−3, which are consistent
with the value used in the literature [5] for numerical computation. cI was set equal to 10−3.

• At the surface the atmospheric wind stresses have not been taken into account since their
effect is small in comparison with the tidal forcing, τw = 0.

• Since we neglect the y-direction of the velocity the Coriolis effects vanish.

The parameters used for the mean stratification are:

ρ1 = 1027kg/m3, ρ2 = 1029kg/m3, g = 9.81kg/s2 .
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2.2. Bathymetry of the Strait
∂Zf

∂x
represent the bed slope of the channel. The Strait of Gibraltar lies between the Cap Trafalgar-

Cap Spartel section at the western end and the point d’Europe-point Almina section at the eastern
end. The main topographic features of the Strait are as follows (see figure 2):

• Tarifa Narrows: it is a deep, narrow and steep sided trough with a fairly flat bottom at about
800 m . Its width varies between 20 km at Gibraltar and 14 km at point Cires. The distance
from Gibraltar to Tarifa is 25 km .

• Camarinal sill: it is the main bathymetric sill, lying 13 km west of Tarifa, with a maximum
depth of 300 m . It is the section where internal waves are generated.

• Tanger basin: it is a relatively deep reservoir 400 m lying between Spartel and Camarinal
sills. It has an important influence on the outflowing Mediterranean water.

• Spartel sill: it is located 28 km west of Camarinal sill with a maximum depth of 350 m .

Figure 3: Bathymetry of the Strait of Gibraltar

3. Finite volume formulation
Equations (2.4) and (2.5) represent the same kind of equations that can be written as :





∂w

∂t
+

∂F

∂x
(w) = S, x ∈ I ⊂ IR, t ∈ [0, T ] ,

w(x, 0) = w0(x), x ∈ I,

+ Boundary Conditions,

(3.1)

119



M. Chakir et al. Roe scheme for two-layer shallow water equations

where:

w(x, t) =




h(x, t)

h(x, t)u(x, t)


 , F (w) =




q

q2

h
+

gh2

2


 , S =




0

RHS


 . (3.2)

where RHS could be S1 or S2 (see equations (2.6), (2.7)). In the context of finite volume
schemes we are seeking for an approximate constant by cell solution. Let use the following nota-
tions:

Ii =
[
xi− 1

2
, xi+ 1

2

[
, Tn = [tn, tn+1[ , xi = i∆x, i ∈ N, tn+1 = tn + ∆t, n ∈ N, r =

∆t

∆x
,

the basic idea is to discretize the conservation law
∫ x

i+1
2

x
i− 1

2

∫ tn+1

tn

(∂w

∂t
+

∂F (w)

∂x

)
dtdx =

∫ x
i+1

2

x
i− 1

2

∫ tn+1

tn

Sdtdx.

After integration the above equation becomes:
∫ x

i+1
2

x
i− 1

2

(w(x, tn+1)− w(x, tn))dx +

∫ tn+1

tn

(F (w(xi+ 1
2
, t))− F (w(xi− 1

2
, t)))dt =

∫ x
i+1

2

x
i− 1

2

∫ tn+1

tn

Sdtdx.

If we denote

wn
i ≈

1

∆x

∫ x
i+1

2

x
i− 1

2

w(x, tn)dx, IFi+ 1
2
≈ 1

∆t

∫ tn+1

tn

F (w(xi+ 1
2
, t))dt,

since we are seeking for an approximate constant by cell solution we can write∫ x
i+1

2

x
i− 1

2

Sdx ≈ ∆x∆tSn
i , then we get the following scheme:

wn+1
i = wn

i − r
(
IFi+ 1

2
− IFi− 1

2

)
+ ∆tSn

i . (3.3)

Where IFi+ 1
2

is the numerical flux. To determine the numerical flux, we apply the Roe’s approxi-
mate Riemann solver [23], which is a linear wave decomposition. As the system is hyperbolic, the
eigenvalues λ1 = u +

√
gh and λ2 = u−√gh of the Jacobian matrix

A =
∂F

∂w
=

(
0 1

−u2 + gh 2u

)
,

correspond to the two characteristic speeds, and therefore their signs indicate the directions of
propagation of information in the channel. Because of the system is hyperbolic there exists a
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regular matrix R of eigenvectors of A such that A = RΛR−1 where Λ is a diagonal matrix of
eigenvalues λi of A, Λ can be written as Λ = Λ+ + Λ− where Λ± = diag(±max(±λi, 0)). Let’s
define A± = RΛ±R−1 then A = A+ +A− and let’s denote |A| = A+−A−. In order to construct a
scheme taking into account these flow directions, an appropriate decomposition of the flux related
to positive and negative propagation speeds is needed. The scheme has to be written as [18, 23]:

IFi+ 1
2

=
1

2
(F (rw) + F (lw))−

∣∣A
∣∣ (

rw −l w
)
, (3.4)

where A is a constant matrix at every time level and for each pair of left and right states l,rw
satisfying the following conditions:

1 - F (rw)− F (lw) = A(rw,l w)
(

rw −l w
)
,

2 - A(rw,l w) has real eigenvalues and a complete set of eigenvectors,

3 - A(w, w) = A(w),

4 - rw −l w = R(rw,l w)α = R((w))α.

Property 1 ensures the conservation of the scheme, while the consistency with the original
problem is guaranteed by property 2 and the hyperbolicity by property 3. R is the matrix of
eigenvectors, the ith element of α is the strength of the ith characteristic wave. The calculation of
A is transferred to the calculation of u and h, with the above requirements about the matrix A. The
solution is given by:

h =
1

2
(lh +r h),

where the Roe averaged state can readily be obtained as ([18], [23]):

u =

√
lh lu +

√
rh ru√

lh +
√

rh
.

3.1. Stability of the scheme

The ratio ∆t
∆x

maxp

∣∣∣∣
−
λ
±
p

∣∣∣∣ (where
−
λ
±
p =

1

2
(λp ± |λp|) are the eigenvalues of A ) called more frequently

the Courant number. It measures the fraction of a grid cell that information propagates through in
one time step. For hyperbolic equations we typically use explicit methods and grids for which the
Courant number is somewhat smaller than 1. Then the numerical scheme (3.3-3.4) must satisfy the
following CFL (Courant, Friedrichs and Lewy) condition to be stable [17], [18], [23]:

r max
p

∣∣∣∣
−
λ
±
p

∣∣∣∣ ≤ 1.
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3.2. Boundary conditions, initial conditions and source terms
The major difficulties associated with the simulation of a two-layer flow trough the Strait of Gibral-
tar are:

• Initial conditions :

It will be assumed that the initial state corresponds to a steady state, but what is the meaning
of the steady state in our situation?

The real answer is that some pseudo-steady state could only be imagined as the steady state
would correspond to the time of the breach opening between the Atlantic Ocean and Mediter-
ranean Sea some centuries ago. This pseudo-steady state can be either determined by assum-
ing time-independent prescribed boundary conditions.

• Open boundary conditions :

The principal difficulty in modelling a limited region of an ocean basin associated with the
correct specification of conditions along the open boundaries where the computational do-
main is artificially truncated. In our case the boundary condition on the free surface was
taken in the formulation of the model. For the open boundary we have considered the con-
dition of inflow driven by the tidal wave inside the Atlantic ocean. Inside the Mediterranean
sea, the depth of the layers are set constant.

• Source terms :

The source terms of (2.4)-(2.5) are stiff , implementing them directly causes an instability as
it was shown by Ambrosi [1] for a simple explicit discretization of source term integrated in
the finite volume scheme for 1D Shallow Water model. An alternative approach is to employ
a time-splitting in which one alternative between solving a system of conservation laws, with
no source terms, and a system of ordinary differential equations modelling the source terms.
In the simplest case this splitting takes the form ( [11], [26]):

wn+1 = L∆t
s L∆t

f wn ,

where L∆t
f represent the numerical solution operator for the conservation law:

∂w

∂t
+

∂F (w)

∂x
= 0 ,

over the time ∆t, and L∆t
s the numerical solution operator for the ODE:

∂w

∂t
= S(w) .
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4. Numerical results
We have performed a numerical scheme based on the finite volume method to simulate the two-

layer shallow water equations. The application considered concerns the Strait the of Gibraltar. The
computational results obtained are compared to experiments realized by Kinder (CTD experiments
1985), and to the numerical results provided by Ouazar et Al. [22]. We recall that in [22], the
authors used the method of characteristics (MOC), they neglected the secondary effects and have
taken into account the geometry of the channel. In the present work we have considered only a
large channel, we have included the shear stresses at the bottom and at the interface. The interface
has been determined along 68 Km of length from cap Spartel section to Gibraltar section. The
figure 4 shows the location of the interface at time t = 6 hours along the bed slop of the the Strait.
The mesh size is chosen by considering bottom irregularities for the minimum spatial step ∆x and
by satisfying the CFL criteria for the time step ∆t, we take then ∆x = 3.3 km and ∆t = 70 s.

Figure 4: Interface location at time t = 6 hours.

Figure 5 shows a comparison between the numerical simulation of the interface and the ex-
periments. The numerical simulation is in close agreement with Kinder’s measurement along the
longitudinal profile studied. However, some largest discrepancies west of the Cires section are
observed. This can be explained by the fact that the bathymetry is not really known in this zone
because of the presence of steep slopes and a moving bed creating some hydrodynamic instabili-
ties.

Figure 6 represents the maximum and the minimum envelope curves corresponding to minimal
and maximal depths for each node.

In Figure 7, the minimal interface depth is plotted at t = 6 hours, the numerical simulation
of the interface using method of characteristic and Kinder’s measurements. The numerical simu-
lation results obtained seems to be in close agreement with Kinder’s measurements as well with
numerical simulation using MOC method [22] along the longitudinal profile studied.
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Figure 5: Comparison of numerical simulation and experiments.

Figure 6: Maximum and minimum depths compared to Kinder’s results.
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Figure 7: Minimum depth compared to the Kinder’s measurements and to the method of charac-
teristic (MOC).

5. Concluding remarks
Under certain plausible assumptions, the hydrodynamic equations governing a two-layered flow

in the Strait of Gibraltar have been integrated numerically using the finite volume method based
on Roe scheme approximation. Comparisons with published field results show a surprising close
agreement for the location of the mean interface and its variability. The results being very encour-
aging, the authors are extending the simplified model by introducing 2D computational technique
and taking into account the geometry of the channel and all the effects.
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