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Abstract. Real-world medical decisions rarely involve binary sole condition present or absent-
patterns of patient pathophysiology. Similarly, provider interventions are rarely unitary in nature:
the clinician often undertakes multiple interventions simultaneously. Conventional approaches
towards complex physiologic derangements and their associated management focus on the fre-
quencies of joint appearances, treating the individual derangements of physiology or elements of
intervention as conceptually isolated. This framework is ill suited to capture either the integrated
patterns of derangement displayed by a particular patient or the integrated patterns of provider in-
tervention. Here we illustrate the application of a different approach-that of symbolic dynamics-in
which the integrated pattern of each patients derangement, and the associated provider response,
are captured by defining words based on the elements of the pattern of failure. We will use as an
example provider practices in the context of mechanical ventilation- a common, potentially harm-
ful, and complex life support technology. We also delineate other domains in which symbolic
dynamics approaches might aid in quantitating practice patterns, assessing quality of care, and
identifying best practices.
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1. Introduction
Real-world medical decisions rarely involve binary sole condition present or absent- patterns of
patient pathophysiology. Rather, the health care provider generally confronts a set of derange-
ments, each of which may interact with (and therefore must be considered in the context of) many
of the other abnormalities. For example, a patient undergoing mechanical ventilation might have
a high airspace distending pressure, a low blood pressure, and a high blood carbon dioxide con-
tent. Similarly, a patient with chronic kidney disease might have high serum calcium, high serum
phosphorus, and low serum parathyroid hormone levels as the result of treatment. In both cases,
management decisions that address only one of the derangements could actually cause harm.

Similarly, provider interventions are rarely unitary in nature: the clinician often undertakes
multiple interventions simultaneously. For example, in the aforementioned mechanical venti-
lation example, a provider might decrease the size of the patients breaths, increase the rate at
which breaths are provided, and administer fluid. Conversely, in the patient with kidney disease, a
provider might decrease a medication that raises calcium while increasing a medication that binds
phosphorus in the gut. In each case, interventions that are plausible but address only one aspect of
the patients derangement would be likely to cause some degree of harm.

Conventional approaches towards complex physiologic derangements and their associated man-
agement capture the frequencies of joint appearances, treating the individual derangements of
physiology or elements of intervention as conceptually isolated. This framework is inherently
population-focused rather than patient-specific. Such an approach is ill suited to capture the inte-
grated patterns of derangement displayed by a particular patient (patterns of failure), as well as the
integrated patterns of provider intervention. Here we will illustrate the application of a different
approach- that of symbolic dynamics- in which the integrated pattern of the patients derangement
is captured by defining words based on the elements of the pattern of failure. The interventions
undertaken by the provider are similarly characterized. Combinatorial analyses can then be con-
ducted utilizing the individual or joint appearance frequency of such words. We will use data from
an ongoing study of provider practice patterns during mechanical ventilation to illustrate these
concepts.

2. Encoding Interventions and Outcomes
Symbolic dynamics approaches have been applied to complex dynamic systems ranging from dis-
turbances of cardiac rhythm and integrated neurological function to astrophysics and internal com-
bustion engines ([1, 2, 3, 4, 5, 6, 7]). In our approach, disparate streams of physiologic data (such
as peak and plateau airspace pressures, or calcium and phosphorus levels) are evaluated at sequen-
tial time points. Each data stream is converted into a sequence of symbols. For each physiologic
element, the patient values at each time point are defined as being acceptable, too high, or too low.
For each possible provider intervention, the symbol is defined based on the relationship between
the current value and that of the preceding time point:

Patient Outcome Values
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value acceptable −→ outcome symbol = A
value too high −→ outcome symbol = B
value too low −→ outcome symbol = C

Provider Interventions
no change −→ intervention symbol = W
increase dose −→ intervention symbol = X
decrease dose −→ intervention symbol = Y

More highly nuanced encodings (such as quintiles with very high, high, acceptable, low, very low)
are readily incorporated. These symbols can be concatenated into words that describe the care
process at each point in time.

Phenomenon Point One Point Two Point Three
Patient Physiologic Status BACB AACB AAAB
Provider Response WXY Y XWXY WWXY

The care process is thereby encoded as 2 sequences of words that describe the patients physiologic
status and the associated provider responses.

We are using a non-linear digital simulator of cardiorespiratory physiology during mechani-
cal ventilation to explore expert patterns of practice when confronting different, clinically relevant
(simulated) patient pathophysiologies ([8, 9, 10, 11, 12, 13, 14, 15]). Users are confronted with a
series of 100 standardized, dynamically responsive patients suffering a variety of physiologic de-
rangements, and must attempt to attain pre-specified physiologic goals for each patient by adjusting
ventilator settings germane to volume cycled ventilation. In the simplest combinatorial formula-
tion, there are 24 modes of failure (such as hypoxia combined with hypotension and respiratory
acidosis), and a universe of 1,458 possible qualitative ventilator changes (response patterns). At
each point, the simulator records the value of each outcome of interest and the changes in ventila-
tor settings selected by the user. This allows construction of appearance frequency tables for each
mode of failure and each pattern of provider response. The left panel depicts the failure patterns
encountered by expert practitioners, and the right panel is a frequency histogram of the ensembles
of ventilator changes made by the same set of experts.

The frequency with which a single provider or a panel of experts responds to a particular pat-
tern of failure by implementing a specific intervention pattern can be determined. Simple counting
algorithms can be used to define a response matrix in which the matrix elements represent the
frequency with which a given pattern is followed by a particular response (only the percent fre-
quencies of the first 10 response patterns are shown):

This approach fundamentally represents the purely combinatorial translation of patient char-
acteristics and provider responses into a quantitative language. Accordingly, once the primitive
elements of the language (patient characteristics and provider responses of interest) are defined,
the analysis is objective, unbiased, and not dependent on assumptions regarding the statistical dis-
tributions underlying the relevant elements or their associations. The outputs (response matrices)
are highly amenable to application of contemporary pattern recognition techniques, such as calcu-
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Figure 1: Appearance frequency histograms for failure patterns and intervention patterns.

Figure 2: Matrix of expert panel response frequencies for different failure patterns.
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Figure 3: z-scores for differences between providers and as compared to consensus practice pat-
tern.

lation of difference matrices (vide infra) and clustering algorithms.

3. Analysis Symbol Strings
In the style of Tang and Daw, the difference between the response patterns of a particular practi-
tioner and either the consensus pattern (matrix defined on a panel of experts) or the pattern adopted
by a particular practitioner can be computed. Defining f

(k)
ij as the frequency with which a particular

practitioner (k) (or set of practitioners) responds to a pattern of derangement (i) by implementing
a pattern of changes (j), the elements of the difference matrix are given by:

∆r,s =

√√√√
n∑

i=1

n∑
j=1

(
f

(r)
ij − f

(s)
ij

)2

And a difference matrix describing the distances between each pair of users, as well as the dis-
tance between each user and the expert consensus profile (CON), can be constructed. If simple
descriptive statistics are computed on the population of users, these distances can be expressed as
the commonly used z-scores:

zr,s =
∆r,s − µpop

σpop

where µpop is the mean of the differences in the population and σpop is its standard deviation. For
8 individuals in the aforementioned study, the symmetric z-score matrix is show in Figure 3.

The ability to objectively quantitate the patterns of failure in a given patient, and the patterns of
intervention with which providers respond to specific patterns of patient derangement, has potential
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applicability both for assessing provider performance and in the construction of expert decision
support systems.

For example, data such as those we present could be used to assess the cognitive performance
of providers in the domain of mechanical ventilation. At present, there is no good method for
assessing practitioner competence in managing this common, lifesaving, but potentially injurious
cornerstone of modern intensive care medicine. Application of simulation based technology, cou-
pled with symbolic dynamics approaches to provider responses, could allow rigorous comparison
between a given providers intervention patterns and those implemented by experts confronted with
the same standardized problems. Simulation based technology allows the presentation of a large
number of standardized patient problems that are similar to those encountered in clinical practice,
and resembles clinical practice in that the participant is free to choose any ensemble of interven-
tions, and must respond to the consequences of each set of choices. Use of symbolic dynamics
assessment tools allows rigorous quantitation of provider practice patterns and comparison to ex-
pert response patterns.

Similarly, symbolic dynamics approaches can be applied to characterize provider practice pat-
terns in settings where there are extensive and relatively uniform patient data and provider man-
agement changes are clearly documented. These requirements are satisfied in numerous clinical
settings, including the management of calcium, phosphorus, and parathyroid hormone, and the
management of anemia, in the End Stage Renal Disease population. Symbolic dynamics ap-
proaches can be used to quantify variability in provider practice, identify expert or consensus
practice patterns, and quantitate the extent to which a given provider responds to specific patient
failure patterns in a fashion similar to experts.

Finally, the capacity to objectively and systematically quantitate patterns of derangement and
patterns of response can be coupled with data mining techniques to identify potential best practices
at the level of individual patients. In the first approach, the response matrix of an expert panel can
be coupled to a look-up algorithm, so that for a given patient pattern the user is presented with
the frequencies with which a panel of experts implemented each possible response pattern. This
approach effectively and in an unbiased fashion distills expert opinion into objective data.

In a second approach, given an adequate volume of sequential data, those patterns of response
most frequently attaining therapeutic goals can be identified by tracking the effects of particular
intervention patterns in the setting of specific patient derangements. The following terms for each
patient at each point examined are defined:

• S(n) = 1 −→ all outcomes for that patient are satisfactory at time point n

• S(n) = 0 −→ at least one outcome for that patient is unsatisfactory at time point n

Furthermore, we can define the dynamic patterns:

• PatientPattern(n) = the symbolic pattern of patient physiology at time point n

• InterventionPattern(n)= the symbolic pattern of provider interventions at time point n.
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A response matrix of the form (patient derangement) x (response pattern) can be constructed,
where the elements (i, j) reflect the probability with which response pattern (j), in the setting of
derangement (i), leads to satisfactory resolution of the patients derangement, based on the subse-
quent pattern in that patient. In particular, the (i, j) element is the probability that S(n + 1) = 1
and S(n) = 0 for a given PatientPattern(n) and InterventionPattern(n). Those interventions most
likely to correct a given ensemble of derangements, and their population averaged likelihood of
success, can be identified, tabulated, and presented. Notably, because a symbolic dynamics ap-
proach explicitly addresses the complete set of derangements prevailing in each patient and the
associated responses to specific intervention patterns (rather than population averages or medians),
these approaches are de facto consistent with individualized medicine:

Patients with this particular pattern of derangements display satisfactory resolution of
their disorders when treated with the following patterns of intervention . . .

4. Conclusion
In summary, there is growing interest in simulation based approaches to medical education as
well as in data mining using large clinical databases to identify putative best practices. Symbolic
dynamics approaches to characterizing patterns of patient derangement and provider response at
the level of individual patients may prove valuable tools both for gauging provider competence
and performance, as well as for identifying optimal approaches to patient management in a manner
commensurate with individualized medicine.
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