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Abstract. We consider the zigzag half-nanotubes (tight-binding approximation) in a uniform mag-
netic field which is described by the magnetic Schrödinger operator with a periodic potential plus
a finitely supported perturbation. We describe all eigenvalues and resonances of this operator, and
theirs dependence on the magnetic field. The proof is reduced to the analysis of the periodic Jacobi
operators on the half-line with finitely supported perturbations.
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1. Introduction
After their discovery [5], carbon nanotubes remain in both theoretical and applied research (see
[19]). Structure of nanotubes are formed by rolling up a graphene sheet into a cylinder. Such
nanomodels were introduced by Pauling [15] in 1936 to simulate aromatic molecules. They were
described in more detail by Ruedenberg and Scherr [18] in 1953. Various physical properties of
carbon nanotubes can be found in [19].

Single-wall nanotubes, one atomic layer in thickness in the radial direction, are a very important
variety of carbon nanotube because they exhibit important electric properties that are not shared
by the multi-walled carbon nanotube variants. Single-wall nanotubes are the most likely candidate
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for miniaturizing electronics beyond the micro electromechanical scale that is currently the basis
of modern electronics.

We consider the Schrödinger operator Hb = Hb
0 + V + Q on the zigzag half-nanotube Γ ⊂ R3

(1D tight-binding model of zigzag single-wall half-nanotubes, see [19], [14]) in a uniform magnetic
field B = |B|e0, e0 = (0, 0, 1) ∈ R3. Here Hb

0 is the Hamiltonian of the nanotube in the magnetic
field, V is the periodic potential of the nanotube, Q is the finitely supported perturbation.

There are numerous mathematical results about Schrödinger operators on carbon nanotubes
(zigzag, armchair and chiral) (see for example [10], [11], [6], [12], [16]). All these papers consider
the so called continuous models. But in the physical literature the most commonly used model is
the tight-binding model. In the tight binding model for a solid-state lattice of atoms, it is assumed
that the full Hamiltonian H of the system may be approximated by the Hamiltonian of an isolated
atom centered at each lattice point. The mathematical models, e.g., the Schrödinger operator on
the zigzag and armchair nanotubes and ribbons in a uniform magnetic field B and in an external
periodic electric potential were considered in [8], [8], [16], see also [17]. For applications of our
models see references in [1], [3], [19].

Our model nanotube Γ is a graph (see Fig. 1. and 2) embedded in R3 oriented in the z-direction
e0 with unit edge length. Γ is a set of vertices (atoms) rω connecting by bonds (edges) Γn,j,k and

Γ = ∪ω∈Zrω, rn,0,k = κn+2k +
3n

2
e0, rn,1,k = rn,0,k + e0,

ω = (n, j, k) ∈ Z = Z+ × {0, 1} × ZN , ZN = Z/(NZ), κk = R(cos
πk

N
, sin

πk

N
, 0),

R =

√
3

4 sin π
2N

, Z+ = {j ∈ Z, j > 0}. (1.1)

(0, 0, 0) (0, 0, 1) (0, 0, 2)

(0, 1, 0) (0, 1, 1) (0, 1, 2)

(1, 0, 0) (1, 0, 1) (1, 0, 2)

(1, 1, 0) (1, 1, 1) (1, 1, 2)

(2, 0, 0) (2, 0, 1) (2, 0, 2)

(2, 1, 0) (2, 1, 1) (2, 1, 2)

b3

b1

b2

b2

b1

Fig 1. A piece of a nanotube.

Our carbon model nanotube is the honeycomb lattice of a graphene sheet rolled into a cylinder.
This nanotube Γ has N hexagons around the cylinder embedded in R3. Here n ∈ Z labels the
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position in the axial direction of the tube, j = 0, 1 is a label for the two types of vertices (atoms)
(see Fig. 1.), and k ∈ ZN labels the position around the cylinder. The points r0,1,k, k ∈ ZN are
vertices of the regular N-gon P0 and r1,0,k are the vertices of the regular N-gon P1. P1 arises
from P0 by combination of the rotation around the axis of the cylinder C by the angle π

N
and of

the translation by 1
2
e0. Repeating this procedure we obtain Γ.

Introduce the Hilbert space `2(Γ) of functions f = (fω)ω∈Z on Γ equipped with the norm
‖f‖2

`2(Γ) =
∑

ω∈Z |fω|2. The tight-binding Hamiltonian Hb on the half-nanotube Γ has the form
Hb = Hb

0 + Ṽ on `2(Γ), where Hb
0 is given by (see [11])

(Hb
0f)n,0,k = eib1fn−1,1,k + eib2fn−1,1,k+1 + eib3fn,1,k, f−1,1,k = 0, (1.2)

(Hb
0f)n,1,k = eib1fn+1,0,k−1 + eib2fn+1,0,k + e−ib3fn,0,k, f = (fω)ω∈Z ,

ω = (n, j, k) ∈ Z+ × {0, 1} × ZN , b3 = 0, b1 = −b2 = b =
3|B|
16

cot
π

2N
,

and the operator Ṽ = V + Q is given by

(Ṽ f)ω = Ṽωfω, where Ṽn−1,1,k = ṽ2n, Ṽn,0,k = ṽ2n+1, ṽ = (ṽn)n∈N ∈ `∞, (1.3)
where ṽn = vn + qn for 0 6 n 6 p, qp 6= 0, and ṽn = vn for n > p.

Such models can be realized using optical methods, by gating, or by an acoustic field (see [14]).
For example, if an external potential is given by A0 cos(ξ0z+β0) for some constant A0, ξ0, β0, then
we obtain

v2n = A cos

(
2πξ

(
n− 1

3

)
+ β

)
, v2n+1 = A cos (2πξn + β) , n ∈ N = 1, 2, . . . ,

for some constant A, ξ, β. If ξ is rational, then the sequence vn, is periodic for n ∈ N. If ξ is
irrational, then the sequence vn n ∈ Z+ is almost periodic.

We give the physical sense of the finitely supported potential q = (qn)∞n=0, qp 6= 0 and qn = 0
for all n > p. There are two physical cases: a local defect in the nanotube and an effective
potential. The effective potential is related to the boundary after cutting an infinite nanotube into
two pieces. The effective potential is due to an imperfection in the structure of the half-nanotube
near the cut and corresponds to perturbations q with p small. This motivates our detailed analysis
of the properties of eigenvalues and resonances in the special case p = 1, p = 2, in Section 5..

In the present paper we suppose that the periodic background potential v has period 2 and is
given by v2n+1 = −v2n = v ∈ R, n ∈ N.

We formulate the result proven in [9] in the form convenient for us.
Each operator Hb, b ∈ R, is unitarily equivalent to the operator ⊕N

1 J b
k, where J b

k is the Jacobi
operator, acting on `2(N) and given by

(J b
ky)n = an−1yn−1 + anyn+1 + ṽnyn, (for n > 2), (J b

ky)1 = a1y2 + ṽ1y1 (1.4)

a2n ≡ ak,2n = 2|ck(b)|, a2n+1 ≡ ak,2n+1 = 1, ck(b) = cos(b +
πk

N
), n ∈ N,

ṽn = vn + qn, qj = 0 for j > p, qp 6= 0, (1.5)
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Fig 2. Nanotube in the magnetic field.

and J
b+ π

N
k = J b

k+1, J−b
k = J b

N−k for all (k, b) ∈ ZN × R. Moreover, the operators H±b and Hb+ π
N

are unitarily equivalent for all b ∈ R.
Remarks. 1) Note that the n = 1 case in 1.4 can be thought of as forcing the Dirichlet condition
y(0) = 0. Thus, eigenfunctions must be non-vanishing at n = 1 and eigenvalues must be simple.

2) The matrix of the operator J b
k is given by

J b
k =




ṽ1 1 0 0 ...
1 ṽ2 2|ck| 0 ...
0 2|ck| ṽ3 1 ...
0 0 1 ṽ4 ...
0 0 0 2|ck| ...
... ... ... ... ...




. (1.6)

If ck = cos(b + πk
N

) = 0, then matrix (1.6) has the form

J b
k|ck=0 = J =




ṽ1 1 0 0 ...
1 ṽ2 0 0 ...
0 0 ṽ3 1 ...
0 0 1 ṽ4 ...
0 0 0 0 ...
... ... ... ... ...




= ⊕n∈NJn, Jn =

(
ṽ2n−1 1

1 ṽ2n

)
, (1.7)

with the eigenvalues

{zn,± = v+
n ± |v−n 2

+ 1| 12 , v±n =
ṽ2n−1 ± ṽ2n

2
, n ∈ N}. (1.8)

Moreover, if qp 6= 0, then
if p is even, then there are at most p eigenvalues zn,±, n = 1, 2, . . . , p

2
,

if p is odd, then there are at most p + 1 eigenvalues zn,±, n = 1, 2, . . . , (p−1)
2

.
Note that for some special choice of perturbations {q1, . . . qp} we can have z±i = z±j for i 6= j.
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As perturbations have finite support, then there are always two flat bands (two eigenvalues with
infinite multiplicities) given by zn,± = ±|v2 + 1| 12 , where n > p

2
+ 1 if p is even or n > (p+1)

2
+ 1

if p is odd. The flat bands are inherited from the pure periodic problem.
3) If |ck| = 1

2
, then J b

k is the Schrödinger operator with an = 1 for all n ∈ N. In particular, if
b = 0, N

3
∈ N, then J0

N
3

is the Schrödinger operator.
4) Exner [2] obtained some duality between Schrödinger operators on graphs and certain Jacobi

matrices, which depend on energy. In our case the Jacobi matrices do not depend on energy.
Unperturbed operator. We start with the unperturbed operator Hb

0 + V, which is unitary
equivalent to ⊕N

1 J b,0
k . The operator J b,0

k is acting in `2(N) with Dirichlet boundary condition, see
(1.4), where ṽn = vn is the two-periodic potential verifying v2n+1 = −v2n = v ∈ R. It is known
that, if ck 6= 0, then the absolutely continuous spectrum of J b,0

k is given by two bands and the
bound states in γ+

k (see Section 2.):

σac(J
b,0
k ) = [zb,+

k,0 , zb,−
k,0 ] \ γb

k,1, γb
k,1 = (zb,−

k,1 , zb,+
k,1 ), (1.9)

zb,∓
k,0 = ±

√
v2 + (2|ck|+ 1)2, zb,±

k,1 = ±
√

v2 + (2|ck| − 1)2, k ∈ ZN ,

σ(J b,0
k ) = σac(J

b,0
k ) ∪ σpp(J

b,0
k ), σpp(J

b,0
k ) =

{ {v} if 1/2 < |ck| 6 1,
∅ if 0 < |ck| 6 1/2,

where γb
k,1 is the middle gap in the spectrum of J b,0

k . We denote γ0 = (−∞, zb,+
k,0 ), γ2 = (zb,−

k,0 , +∞)
the infinite gaps.

We denote Λ = Λb
k the two-sheeted Riemann surface for each J b

k, obtained by joining the
upper and low rims of two copies of the cut plane C \ σac(J

b,0
k ) in the usual (crosswise) way. For

j = 0, 1, 2, we denote the copies of γj on Λ+ (respectively Λ−) by γ+
j (respectively γ−j ), and put

γc
j = γ+

j ∪ γ−j . By abuse of notation we write also γj for γ+
j ∪ γ−j and for its projection on C.

If 0 < |ck| < 1/2, then v ∈ γ−1 is an antibound state for J b
k and if |ck| = 1/2, then v = zb,+

k,1 or
v = zb,−

k,1 is virtual state (see Definition 1 below and Proposition 6).
If ck = 0 for some (k, b) ∈ ZN × R, then (1.8) gives that the spectrum of J b,0

k is pure point:

σ(J b,0
k ) = σpp(J

b,0
k ) = {±

√
v2 + 1},

and each eigenvalue of J b,0
k is a flat band, i.e. has infinite multiplicity.

In [9] it is shown that the spectral band [zb,+
k,0 , zb,−

k,1 ], (respectively [zb,+
k,1 , zb,−

k,0 ]) shrinks to the
flat band −√v2 + 1 (respectively

√
v2 + 1) as ck → 0 and the corresponding asymptotics are

determined.
Let b = π

(
1
2
− 1

N

)
. Then c1 = 0 and ck = cos π

(
1
2
− 1

N
+ k

N

)
and the spectrum of Hb is

given by
σ(Hb) = σac(H

b) ∪ σpp(H
b), σpp(H

b) = {v,±
√

1 + v2},
σac(H

b) = [zb,+
0 , zb,−

0 ] \ γ(Hb), γ(Hb) = (zb,−
1 , zb,+

1 ), (1.10)

where γ(Hb) is the gap in the spectrum of Hb. If b 6= π
(

1
2
− 1

N

)
and all ck 6= 0, k = 1, . . . , N,

then we obtain {±√1 + v2} 6∈ σpp(H
b).
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Note that if ck = 0 for some k ∈ ZN then σpp(H
b) = {±√1 + v2} ⊂ γ(Hb). From [9] we

know that σ(Hb+ π
N ) = σ(Hb) for all b ∈ R. Then we need to consider only the case b ∈ [0, π

N
)

and in this case we get

zb,+
0 =

{
zb,+
0,0 if b 6 π

2N

zb,+
N−1,0 if b > π

2N

,

Moreover, in particular case B = 0, N
3
∈ N, b = 0, we obtain γ(H0) = (−|v|, |v|).

Finitely supported perturbations. We consider the main operator Hb = Hb
0 + V + Q. Recall

that Hb is unitary equivalent to⊕N
1 J b

k, where J b
k = J b,0

k + q is given by (1.4) with qn = 0 for n > p
and the sequence y = (yn)∞n=0 satisfies the Dirichlet boundary condition y0 = 0.

The perturbation q does not change the absolutely continuous spectrum: σac(J
b
k) = σac(J

b,0
k ) =

[λ+
0 , λ−1 ] ∪ [λ+

1 , λ−0 ], where we used the simplified notations λ±0 ≡ zb,±
k,0 and λ±1 ≡ zb,±

k,1 .
In our paper we study the global properties of eigenvalues, virtual states and resonances of

J = J b
k. Let R(λ) = (J − λ)−1 denote the resolvent of J and let 〈·, ·〉 denote the scalar product

in `2(N). Then for any f, g ∈ `2(N) the function 〈Rf, g〉 is defined on Λ+ outside the poles
at the bound states λ0 ∈ γ+

j , j = 0, 1, 2. Recall that the bound states are simple. Moreover,
if f, g ∈ `2

comp(N), where `2
comp(N) denotes the `2 functions on N with finite support, then the

function 〈Rf, g〉 has an analytic extension from Λ+ into the Riemann surface Λ.

Definition 1. Let ck(b) 6= 0 for some b ∈ R.
1) A number λ0 ∈ Λ− is a resonance, if the function 〈Rf, g〉 has a pole at λ0 for some f, g ∈
`2
comp(N). The multiplicity of the resonance is the multiplicity of the pole. If Re λ0 = 0, we call λ0

antibound state.
2) A real number λ0 = λ±0 or λ0 = λ±1 is a virtual state if 〈Rf, g〉 has a singularity at λ0 for some
f, g ∈ `2

comp(N).
3) The state λ ∈ Λ is a bound state or a resonance or a virtual state of J.

We denote the set of all states of J by S (J).

In Section 3., 8, we give an equivalent characterization of the states.
In the unperturbed case J0 = J b,0

k we show in Proposition 6 that if 0 < ck 6 1, then S (J0)
consists of one state: a bound state v ∈ γ+

1 , a antibound state v ∈ γ−1 or a virtual state v = λ±1 .
Note that any such state is projected on the Dirichlet eigenvalue v ∈ C, ϕ2(v) = 0.

Let ϑn, ϕn be the fundamental solutions of the equation an−1yn−1 + anyn+1 + vnyn = λyn, sat-
isfying ϑ0 = ϕ1 = 1, ϑ1 = ϕ0 = 0. Let f±n be the Jost solution, f±n = ϑ̃n + m±ϕ̃n, where
ϑ̃n, ϕ̃n denote the solutions to (1.4) satisfying ϑ̃n = ϑn, ϕ̃n = ϕn, for n > p. Here m± are the
Titchmarch-Weyl functions. The functions ϕ, ϑ are polynomials, the Jost solutions f± and func-
tions m± are meromorphic functions on Λ. Note that f−(λ) = f+(λ), λ ∈ Λ, and f±(λ) ∈ `2(N)
for any λ ∈ Λ±. We call f±0 the Jost functions.

We pass to the formulation of main results of the present paper. Recall that all bound and virtual
states of J ≡ J b

k are simple (see Lemma 11). In the next theorem we give the characterization of
the states of J b

k.
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Theorem 2. Let ck(b) 6= 0.
i) The point λ = v ∈ γ+

1 or λ = v ∈ γ−1 is a state of J = J b
k iff the projection of λ on C is a

zero of ϕ̃0. The value λ ∈ Λ whose projection on the complex plane does not coincide with v is a
state of J iff λ ∈ Λ is a zero of the Jost function f+

0 :

S (J) \ {v} = {λ ∈ Λ : f+
0 (λ) = 0)} ⊂

(
∪j=0,1,2γ

±
j

)
∪ Λ−.

ii) The state λ = λ±0,1 is a virtual state of J iff one of the following two conditions is satisfied:
1) λ 6= v and f+

0 (λ) = 0; 2) λ = v and ϕ̃0(λ) = 0.
iii) If λ = v ∈ γ−1 is an antibound state for J then it is necessarily simple.

The distribution of the states is summarized in the following theorem.

Theorem 3. Let ck(b) 6= 0, qp 6= 0. Then the Jacobi operator J ≡ J b
k has 2p states counted with

multiplicities. Moreover, the following facts hold true.
1) The total number of bound states and virtual states is > 2.

2) In the closure of the middle gap γc
1 = γ+

1 ∪ γ−1 there is always an odd number of states with at
least one bound or virtual state.
3) Let λ1 < λ2 be any two bound states of J, λ1,2 ∈ γ+

k , for some k = 0, 1, 2, such that there are
no other eigenvalues on the interval Ω+ = (λ1, λ2) ⊂ γ+

k . Then there exists an odd number > 1 of
antibound states on Ω−, where Ω− ⊂ γ−k ⊂ Λ− is the same interval but on the second sheet.

Remarks. 1) If all ck 6= 0 and qp 6= 0, then the operator ⊕N
1 J b

k has in total N2p states.
2) If p is even and q1 = q3 = . . . = qp−1 = 0, then {v} is always a bound state or antibound state
(see Lemma 13).

In Theorem 4 we consider the limit of the states of each J b
k as ck → 0. Recall that operator

J b
k|ck=0 has two flat bands and a finite number of simple eigenvalues.

Theorem 4. Let zn,±, n ∈ N, be the eigenvalues of the matrix J b
k|ck=0 given in (1.7). Let ck → 0+ .

1) If p is even, then
a) the set of bound states of J b

k converges to the set {zn,±, n = 1, . . . ,
p

2
} ⊂ R,

b) the set of all resonances of J b
k converges to the set of numbers

{zn,±, n = 1, . . . ,
(p− 2)

2
} ∪ {µ0

p−1, µ
0
p}, where only the numbers

µ0
p−1,p = v +

qp−1

2
±

√
q2
p−1

4
− qp−1

qp

, (1.11)

can be complex.
2) If p is odd, then

a) the set of bound states of J b
k converges to the set {zn,±, n = 1, . . . ,

(p + 1)

2
} ⊂ R;

b) the set of resonances of J b
k converge to the set of real numbers {zn,±, n = 1, . . . ,

(p− 1)

2
}.
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In Theorem 5 we consider the asymptotics of the states of the half-nanotube Hamiltonian Hb

(unitary equivalent to ⊕N
1 J b

k) for large perturbation.

Theorem 5. Suppose qj = q0
j t, j = 1, . . . , p, where all q0

j 6= 0 are fixed and t > 1. If λ(t) ∈ Λ is
a state of Hb, then either |λ(t)| → ∞ or λ(t) → (−1)pv as t →∞.

If v → ∞, then (1.9) implies that the absolutely continuous spectrum degenerates into two
points {v}, {−v}.

Suppose p = 2 and q1 = 0 and q2 is small enough, then the Hamiltonian Hb has precisely 2N
non-real complex conjugated resonances. More results about the cases p = 1 and p = 2 are given
in Section 5..

The plan of the paper is as follows. In Section 2. we collect some well known facts about the
two-periodic Jacobi operators and its perturbations in the form convenient for us.
In Section 3. we describe the properties of the perturbed operator.
In Section 4. we consider the properties of the polynomial F = ϕ2f

+
0 f−0 which plays the crucial

role in the proof of the main results, similar to the case [7] . Theorem 3 follows from Lemma 10
and Theorem 2 follows from Lemmata 11 and 12. Theorems 4 and 5 follows from Lemmata 7 and
9. In Section 5. we consider the cases p = 1 and p = 2.

2. Periodic Jacobi operator.
In this section we recall some well known facts about the infinite Jacobi matrix J0




... ... ... ... ... ... ...

... a v 1 0 0 ...

... 0 1 −v a 0 ...

... 0 0 a v 1 ...

... 0 0 0 1 −v ...

... 0 0 0 0 a ...

... ... ... ... ... ... ...




, 0 < a 6 2 (2.1)

and the associated equation for J0

an−1yn−1 + anyn+1 + vnyn = λyn, a2n+1 = 1, a2n = a, v2n+1 = v, v2n = −v, (2.2)

(λ, n) ∈ C×Z. Introduce fundamental solutions ϕ = (ϕn(z))n∈Z and ϑ = (ϑn(z))n∈Z for equation
(2.2), under the condition ϑ0 = ϕ1 = 1 and ϑ1 = ϕ0 = 0. We obtain

ϕ0 = 0, ϕ1 = 1, ϕ2 = λ− v, ϕ3 =
λ2 − v2 − 1

a
,

ϑ0 = 1, ϑ1 = 0, ϑ2 = −a, ϑ3 = −λ− v ..... (2.3)

The monodromy matrix M2 satisfies

M2(λ) =

(
ϑ2 ϕ2

ϑ3 ϕ3

)
=

( −a λ− v

−λ− v λ2−v2−1
a

)
. (2.4)
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The Lyapunov function is defined in the standard way:

∆ =
Tr M2

2
=

λ2 − v2 − a2 − 1

2a
= cos 2κ, (2.5)

where κ is the Bloch quasimomentum.
The periodic eigenvalues λ±0 satisfy the equation ∆(λ) = 1 and the anti-periodic eigenvalues

λ±1 satisfy the equation ∆(λ) = −1 and they are given by

λ∓0 = ±
√

v2 + (a + 1)2, λ±1 = ±
√

v2 + (a− 1)2. (2.6)

The absolutely continuous spectrum of J0 has the form

σac(J0) = [λ+
0 , λ−1 ] ∪ [λ+

1 , λ−0 ] = [λ+
0 , λ−0 ] \ γ1, γ1 = (λ−1 , λ+

1 ) (2.7)

where γ1 is a gap. Note that γ1 = (λ−1 , λ+
1 ) 6= ∅, if |v| + |a − 1| > 0. We denote also

γ0 = (−∞, λ+
0 ) and γ2 = (λ−0 , +∞).

We recall from the Introduction that the two-sheeted Riemann surface Λ is obtained by joining
the upper and low rims of two copies Λ± of the cut plane C \ σac(J0) in the usual (crosswise)
way. For j = 0, 1, 2, γ+

j (respectively γ−j ) denote the copies of γj on Λ+ (respectively Λ−), and
γc

j = γ+
j ∪ γ−j . By abuse of notation we write also γj for γ+

j ∪ γ−j and for its projection on C.

The eigenvalues of M2 are given by ξ2
± = ∆±√∆2 − 1. On γ+

0 , we choose

for λ ∈ γ+
0 = (−∞, λ+

0 ) ⊂ Λ+, ξ2
+ = ∆−

√
∆2 − 1, ξ2

− = ∆ +
√

∆2 − 1. (2.8)

For others λ ∈ Λ, the functions ξ±(λ) are defined by an analytic continuation.
If λ = ±v ∈ γ+

1 (these numbers will play a special role later) then ∆(±v) = −a2−1
2a

and

ξ2
+(±v) =

−a2 − 1

2a
+

∣∣∣∣
a2 − 1

2a

∣∣∣∣ =

{ −a if 0 < a < 1,
−1/a if a > 1,

(2.9)

and opposite for ξ2
−(±v).

Then for λ ∈ γ0 ∪ γ1 ∪ γ2 we have |ξ2
+| < 1 and |ξ2

−| > 1. The eigenvectors of M2 are chosen
in the form (1,m±) and then the Titchmarsh-Weyl functions are

m±(λ) =
ξ2
± − ϑ2

ϕ2

=
ξ2
± + a

λ− v
. (2.10)

For λ ∈ γ+
1 we have also

m± =
φ±√∆2 − 1

ϕ2

=
∆ + a±

√
∆2(λ)− 1

λ− v
=

φ± i sin 2κ
λ− v

(2.11)

φ =
ϕ3 − ϑ2

2
=

λ2 − v2 + a2 − 1

2a
= ∆ + a. (2.12)
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On each γ+
k , k = 0, 1, 2, the quasimomentum κ(λ) has constant positive imaginary part and

we put κ = ih, h = hk > 0. Then ∆ = cosh(2h) and

i sin 2κ = −(−1)k
√

∆2(λ)− 1 = −(−1)k sinh 2h. (2.13)

Now the Floquet solutions ψ±n = ϑn + m±ϕn are

ψ±0 = 1, ψ±1 = m±, ψ±2 = e±2iκ = ξ2
±, ψ±2n = ξ2n

± , ψ±2n+1 = ξ2n
± m±, (2.14)

where ξ2
± = e±2iκ are the Floquet multipliers. Recall that ψ±n ∈ `2(N) for any λ ∈ Λ±.

Note the following simple identities which will be used in the paper:

φ2 + 1−∆2 = 1− ϕ3ϑ2 = −ϑ3ϕ2. (2.15)

Let {φn, ψn} = an(φnψn+1 − φn+1ψn} denote the Wronskian.
In the next theorem we describe the states of the restriction of J0 to N defined in (1.4) with

ṽn = vn.

Proposition 6 (Unperturbed case). The half-periodic Jacobi operator J0 given by equation (1.4)
with ṽn = vn, has absolutely continuous spectrum (2.7): σac (J0) = [λ+

0 , λ−1 ]∪ [λ+
1 , λ−0 ] and a state

at λ = v ∈ γ+
1 ∪ γ−1 , whose projection v ∈ C satisfies ϕ2(v) = 0. There are three possibilities:

if a > 1 then J0 has simple bound state at λ = v ∈ γ+
1 ;

if 0 < a < 1 then J0 has simple antibound state at λ = v ∈ γ−1 ;
if a = 1 then λ = v is a simple virtual state, v = λ+

1 or v = λ−1 if v > 0 respectively v < 0.

Proof: The kernel of the resolvent of J0 is given by

R0(n,m) = − ϕnψ+
m

{ϕ, ψ+} , n < m,

where {ϕ, ψ+} = −a. According to Lemma 8 (see Section 3.), the bound states (resonances) are
the poles of R0(n) = ψ+

n (λ) = ϑn(λ) + m+(λ)ϕn(λ) on Λ+ (respectively on Λ−). Hence, the
only state is the pole of m+ on Λ±, whose projection on C is the zero of ϕ2(λ), i.e. λ = v ∈ γ1.

We have

m+ =
ξ2
+ + a

λ− v
, a = 2|ck|, ck = cos

(
b +

πk

N

)
.

If 0 < a < 1, then by (2.9)) λ = v ∈ γ+
1 is a simple zero for the numerator while at λ = v ∈ γ−1

the numerator is non-zero. Thus λ = v is an antibound state. Similar we get that if 1 < a < 2,
then λ = v is a bound state.

If a = 1 then ∆ = (λ2 − v2 − 2)/2 and

∆2 − 1 = −(λ− v)(λ + v) +
(λ− v)2(λ + v)2

4
.

Suppose v > 0, then v = λ+
1 . Let λ− v = −ε, ε > 0, and let ε → 0. Then

∆ = −1− vε +O(ε2),
√

∆2 − 1 =
√

ε
√

2v +O(ε),
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and

m+(v − ε) =
∆ + a +

√
∆2 − 1

λ− v
=

√
ε
√

2v +O(ε)

ε
=

√
2v√
ε

+O(1). (2.16)

Thus if a = 1, the function (Rn(λ))2 has a pole at λ = v and λ = v is a virtual state.

3. Jost functions
We introduce the Jost solutions as solutions f±n , of the equation

an−1yn−1 + anyn+1 + ṽnyn = λyn, n ∈ N, λ ∈ Λ, (3.1)

satisfying
f±n = ψ±n , for n > p, (3.2)

where ψ±n are the Floquet solutions (2.14) for the unperturbed problem, and ṽj = vj + qj with
qn = 0 for n > p. We recall that, as in (2.2), we have v2n+1 = −v2n = v ∈ R, a2n+1 = 1, a2n =
a = 2|ck| 6= 0, ck = cos(b + πk

N
). We have f±n (λ) = f∓n (λ), λ ∈ Λ.

The equation (3.1) has unique solutions ϑ̃n, ϕ̃n such that

ϑ̃n(λ) = ϑn(λ), ϕ̃n(λ) = ϕn(λ) for n > p, λ ∈ C.

The functions ϑ̃n(·), ϕ̃n(·) are polynomials. The functions f±n have the form

f±n = ϑ̃n + m±ϕ̃n, m± =
φ± i sin 2κ

ϕ2

=
∆ + a±

√
∆2(λ)− 1

λ− v
. (3.3)

Here φ is defined in (2.12), ϕ2 = λ − v and ∆ is the Lyapunov function. The functions f±0 are
called Jost functions. The Jost functions are analytic at all λ ∈ Λ whose projection on the complex
plane C is different from v, and has branch points λ±0,1.

The asymptotics of the Jost functions are given in the following Lemma.

Lemma 7. Let p, n ∈ N and p > n. Suppose qp 6= 0.
1) If p is even (ap = a, vp = −v), then

for λ ∈ γ+
0,2 in the limit |λ| → ∞, we have

f+
0 = 1− λ−1

p∑

k=1

qk +O(λ−2), f−0 =
λ2p−1

ap

[−qp +O(λ−1)
]
;

for λ ∈ γ+
1 as a → 0+, we have

f+
0 = (2δ)−p/2

p−1∏

k=1

[
(λ− ṽk)(λ− ṽk+1)− 1

]
+ δ−p/2O(a2),

f−0 =
(2δ)p/2

ap

[
(λ− ṽp−1)

{
(λ− ṽp)− 2δ

λ− v

}
− 1

] p−3∏

k=1

[
(λ− ṽk)(λ− ṽk+1)− 1

]
(3.4)

+ δp/2O(a2),
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where δ = (λ2 − v2 − 1)/2;

if qk = tq0
k with all q0

k 6= 0 and t →∞, then we have f+
0 = tp

ξp
+

ap/2

p∏

k=1

q0
k +O(tp−1).

2) If p is odd (ap = 1, vp = v), then

for λ ∈ γ+
0,2 in the limit |λ| → ∞, we have

f+
0 = 1− λ−1

p∑

k=1

qk +O(λ−2), f−0 =
λ2p−1

ap+1

[−qp +O(λ−1)
]
; (3.5)

for λ ∈ γ+
1 , as a → 0+, we have

f+
0 = (2δ)−(p+1)/2 [(λ− ṽp)(λ + v)− 1]

p−2∏

k=1

[(λ− ṽk)(λ− ṽk+1)− 1] + δ−(p+1)/2O(a2),

f−0 =
(2δ)(p+1)/2

ap+1
· −qp

λ− v

p−2∏

k=1

[(λ− ṽk)(λ− ṽk+1)− 1] + δ(p+1)/2O(a2),

if qk = tq0
k with q0

k 6= 0 and t →∞, then f+
0 = tp

ξp
+

a(p+1)/2

1 + aξ2
−

λ− v

p∏

k=1

q0
k +O(tp−1).

The proof is technical and uses the standard arguments. The asymptotics of f+
0 on γ+

0,2 as
λ →∞ are well known (see for example Teschl [20]).

It is well known that the spectrum of J = J b
k, introduced in (1.4), consists of absolutely contin-

uous part σac (J) = σac (J0) and a finite number of simple bound states in each gap γ+
k , k = 0, 1, 2.

The states of J correspond to the poles of a meromorphic function: resolvent or its square.
The kernel of the resolvent of J is

R(n,m) = 〈en, (J − λ)−1em〉 = − Φnf+
m

{Φ, f+} , n < m,

where en = (δn,j)j∈N, JΦn = λΦn, Φ0 = 0, Φ1 = 1, and the Wronskian {Φ, f+} = −a0f
+
0 .

Each function Φn(λ), n ∈ N, is polynomial in λ. The function R(n,m) is meromorphic on Λ
for each n,m ∈ Z. The singularities of R(n,m) are given by the singularities of

Rn(λ) =
f+

n (λ)

f+
0 (λ)

=
ϑ̃n(λ) + m+(λ)ϕ̃n(λ)

f+
0 (λ)

.

The following Lemma follows from Definition 1.

Lemma 8. 1) A real number λ0 ∈ γ+
j , j = 0, 1, 2, is a bound state, if the function Rn(λ) has

a pole at λ0 for almost all n ∈ N (eventually except a finite number of n’s) (it is known that the
bound states are simple).
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2) A number λ0 ∈ Λ−, is a resonance, if the function Rn(λ) has a pole at λ0 for almost all n ∈ N
(eventually except a finite number of n’s). The multiplicity of the resonance is the multiplicity of
the pole. If Re λ0 = 0, we call λ0 antibound state.
3) A real number λ0 = λ±0 or λ0 = λ±1 is a virtual state if (Rn(λ))2 or Rn(λ) has a pole at λ0 for
almost all n ∈ N (eventually except a finite number of n’s).
4) The state λ ∈ Λ is a bound state, resonance or virtual state.

We recall that the set of all states of J is denoted by S (J).
Each function f+

n (λ), n ∈ N, is analytic at all λ ∈ Λ whose projection on the complex plane C
is different from v. The Jost function f+

0 (λ) has finite number of real zeros on each γ±k and finite
number of complex conjugated zeros on Λ−.

Remark that if λ0 ∈ γk, for some k = 0, 1, 2 (then λ0 6= λ±0,1), and if f+
0 (λ0) 6= 0 and

ϕ2(λ0) 6= 0, then the resolvent is analytic at λ0.
As ϑ̃n(λ), ϕ̃n(λ) are polynomials then the singularities are zeros of f+

0 (λ) and eventually sin-
gularities of m+ at λ = v (as in the unperturbed case).

To describe the states of the general operator J stated in Theorem 3, it is convenient to introduce
a special polynomial whose zeros give all states of J.

4. Function F and proofs of main results
We introduce function F (λ) = ϕ2f

+
0 f−0 .

Lemma 9. Suppose qp 6= 0.
i) The function F (λ) = ϕ2f

+
0 f−0 (λ) is polynomial of degree 2p and satisfies

F = ϕ2ϑ̃
2
0 + 2φϑ̃0ϕ̃0 − ϑ3ϕ̃

2
0 = (λ− v)ϑ̃2

0 +
1

a
(λ2 − v2 + a2 − 1)ϑ̃0ϕ̃0 + (λ + v)ϕ̃2

0. (4.1)

ii) For λ ∈ C, in the limit |λ| → ∞, we have asymptotics

F =
λ2p

(ap . . . a0)2

[−a2qp +O(|λ|−1)
]
, if p is even, (4.2)

F =
λ2p

(ap . . . a0)2

[−qp +O(|λ|−1)
]
, if p is odd, (4.3)

where O(|λ|−1) is uniformly bounded in a. In particular, if λ ∈ R and |λ| → ∞, we have
sign(F ) = − sign(qp).

iii) In the limit a → 0, the function F behaves as follows:
if p is even, then

F =
1

ap
[(λ− ṽp−1)(λ− ṽp)− 1] [(λ− ṽp−1)(1− qp(λ− v))− (λ− v)] (4.4)

·
p−3∏

k=1

[(λ− ṽk)(λ− ṽk+1)− 1]2 +O(a2−p), (4.5)

187



A.Iantchenko and E. Korotyaev Zigzag half-nanotube in magnetic field

if p is odd

F =
−qp

ap+1
[(λ− ṽp)(λ + v)− 1]

p−2∏

k=1

[(λ− ṽk)(λ− ṽk+1)− 1]2 +O(a1−p).

Here O(aj) is uniformly bounded in λ ∈ C.
iv) Put qj = tq0

j for all q0
j 6= 0 fixed and t →∞. Then,

F (λ) = t2p (λ− v)

ap

[
p∏

k=1

(q0
p)

2 +O(t2p−1)

]
, if p is even

F (λ) = t2p (λ + v)

ap+1

[
p∏

k=1

(q0
p)

2 +O(t2p−1)

]
, if p is odd,

uniformly bounded in λ ∈ C.

Proof: We have

f+
0 f−0 = (ϑ̃0 + m+ϕ̃0)(ϑ̃0 + m−ϕ̃0) = ϑ̃2

0 + (m+ + m−)ϑ̃0ϕ̃0 + m+m−ϕ̃2
0

= ϑ̃2
0 +

2φ

ϕ2

ϑ̃0ϕ̃0 +
φ2 + 1−∆2

ϕ2
2

ϕ̃2
0 = ϑ̃2

0 +
2φ

ϕ2

ϑ̃0ϕ̃0 +
−ϑ3ϕ2

ϕ2
2

ϕ̃2
0

= ϑ̃2
0 +

2φ

ϕ2

ϑ̃0ϕ̃0 − ϑ3

ϕ2

ϕ̃2
0,

where we have used (2.11) and (2.15). The degree 2p will come from ϕ2 = λ− v and asymptotics
(4.2), (4.3).

Now as F is polynomial, in order to prove the asymptotics |λ| → ∞ on C it is enough to
consider λ → +∞ on γ+

2 , a → 0 or qj → ∞ for λ ∈ γ+
1 . The proof thus follows from the

asymptotics of the Jost functions given in Lemma 7.
From iii), Lemma 9, we get the leading orders of the zeros of F as a → 0 which correspond to

the leading orders of the states. Using Lemma 7 we know if the limiting state is a bound state or a
resonance. Recall the eigenvalues of the matrix (1.7) given by zn,± = v+

n ± |v−n 2
+ 1| 12 (see (1.8)).

If qp 6= 0 and
if p is even, then there are at most p eigenvalues zn,±, n = 1, 2, . . . , p

2
, where

v+
n =

ṽ2n−1 + ṽ2n

2
=

q2n−1 + q2n

2
, v−n =

ṽ2n−1 − ṽ2n

2
= v +

q2n−1 − q2n

2
,

if p is odd, then there are at most p + 1 eigenvalues zn,±, n = 1, 2, . . . , (p−1)
2

, where

v+
n =

ṽ2n−1 + ṽ2n

2
=

q2n−1 + q2n

2
, v−n =

ṽ2n−1 − ṽ2n

2
= v +

q2n−1 − q2n

2
,

v+
(p+1)/2 =

ṽp − v

2
=

qp

2
, v−(p+1)/2 =

ṽp + v

2
= v +

qp

2
.
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Recall that, as perturbations have finite support, then there are also two flat bands (two eigenvalues
with infinite multiplicities) given by zn,± = ±|v2+1| 12 , where n > p

2
+1 if p is even or n > (p+1)

2
+1

if p is odd. Similar, using Lemma 7, we get the leading orders of the resonances. In the even case
the resonances can converge to complex number - zeros of the factor (λ−ṽp−1)

{
(λ− ṽp)− 2δ

λ−v

}−
1 in (3.4) or equivalently zeros of the polynomial (λ− ṽp−1)(1− qp(λ− v))− (λ− v) (see (4.4)).

This implies Theorem 4.
Theorem 5 follows from 7 and iv) in Lemma 9.

In the next Lemma we state the crucial properties of the function F.

Lemma 10. i) Suppose that λ1 ∈ γ+
k , for k = 0, 1 or 2, and either

a) f+
0 (λ1) = 0, i.e. λ1 is an eigenvalue of J with the eigenfunction yn = f+

n (λ1), or
b) λ1 = v. Let λ1 also denote the projection of λ1 ∈ λ+

k on C.
Then (−1)kḞ (λ1) < 0 and function F has simple zeros at all bound states of J. Moreover if

λ1 = v, then ϕ̃0(v) = 0, f+
0 (λ) is analytic at λ = v ∈ γ+

1 and f+
0 6= 0.

ii) We have F (λ) =

ϕ2

(
ϑ̃0 +

φ

ϕ2

ϕ̃0

)2

+
1−∆2

ϕ2

ϕ̃2
0 = ϕ2

(
ϑ̃0 +

φ

ϕ2

ϕ̃0

)2

+
−(λ2 − λ2

0)(λ
2 − λ2

1)

4a2ϕ2

ϕ̃2
0, (4.6)

where λ0 = λ∓0 and λ1 = λ±1 are the endpoints of σac(J
0) = [λ+

0 , λ−1 ] ∪ [λ+
1 , λ−0 ].

We have F (λ) < 0, for λ ∈ (λ+
0 , λ−1 ), and F (λ) > 0, for λ ∈ (λ+

1 , λ−0 ).

Remarks. 1) Lemma 10 (with proper modifications) is also true for general Jacobi operators
on the half-line and is proven in paper [4]. The methods remind the approach of [7] to the periodic
Schrödinger operator plus compactly supported potentials on the half-line.

2) It follows that F (λ), which is real on the real axis, is decreasing function at any eigenvalue
λ1 ∈ γ+

0,2, and increasing function at any eigenvalue λ1 ∈ γ+
1 .

It follows that all bound states of J are simple and that for any two eigenvalues λ1,2 ∈ γ+
k

such that the interval Ω+ = (λ1, λ2) ⊂ γ+
k does not contain any other bound states there is an

odd number of antibound states λ0 in the same interval Ω− ⊂ γ−k ⊂ Λ− on the second sheet, and
(−1)kḞ (λ0) > 0.

3) From ii) it follows that there is always at least one eigenvalue in the middle gap γ1 or a
virtual state at λ±1 . Moreover, using that from Lemma 9 it follows that function F has the same
sign when λ → ±∞, we get that
if sign(F )(±∞) < 0, then there are at least two eigenvalues: one in γ1 another in γ2 (which can
become virtual states); if sign(F )(±∞) > 0 and 0 < a < 1, then there are at least two eigenvalues:
one in γ0, another in γ1 (which can become virtual states).

Now the proof of Theorem 2 follows from the following two Lemmata which are proved in [4]
in the general case.
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Fig 3. Function F and the states for p = 7, the bound states are encircled.

Lemma 11 (Virtual states). Let λ0 denote any of λ±0,1 and let λ = λ0 + ε for ε > 0 small enough.
i) If λ, λ0 6= v and f+

0 (λ0) = 0, then λ0 is a simple zero of F, λ0 is a virtual state of J, and

f+
0 (λ) = ϕ̃0(λ0)c

√
ε +O(ε), Rn(λ) =

f+
n (λ)

ϕ̃0(λ0)c
√

ε
(1 +O(

√
ε)), cϕ̃0(λ0) 6= 0. (4.7)

ii) If λ0 = v (which happens if a = 1) and ϕ̃0(λ0) 6= 0, then F (λ0) 6= 0 and each Rn(.), n ∈ N,
does not have singularity at λ0 and λ0 is not a virtual state of J.
iii) If λ0 = v and ϕ̃0(λ0) = 0, then λ0 is a virtual state of J, f±0 (λ0) 6= 0, λ0 is simple zero of F,
and each (Rn(.))2, n ∈ N, has pole at λ0.

Lemma 12. The projection π : Λ 7→ C of the set of states of J on Λ coincides with the set of zeros
of F on the complex plane C :

πS (J) = Zeros (F ).

Moreover, the multiplicities of bound states and resonances are equal to the multiplicities of zeros
of F. All bound states are simple.
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Suppose λ0 = λ±0 or λ0 = λ±1 and ϕ̃0(λ0) 6= 0. Then λ0 is a virtual state iff F (λ) has zero at
λ0. It will be automatically simple.

In the next Lemma we consider a special case when we have a simple criterium when λ = v is
a state.

Lemma 13. Suppose that p is even and for any n ∈ N, ṽ2n+1 = v2n+1 = v.
Then ϕ̃0(v) = 0 and F (v) = 0. Thus λ = v is a state.

Proof: From the well known explicit formula ϕ2n = (λ − v) sin n2κ/ sin 2κ it follows that
ϕ2n(v) = 0 for any n ∈ N. From the equation Jy = λy we have the iteration formula:

ϕ̃2n =
(λ− ṽ2n+1)ϕ̃2n+1 − ϕ̃2n+2

a
. (4.8)

But ϕ̃k = ϕk for k > p + 1 and ṽ2n+1 = v. Thus, starting with 2n = p and iterating (4.8), we get
ϕ̃2n(v) = 0, ϕ̃2n−2(v) = 0, . . . , ϕ̃0(v) = 0 : all functions ϕ̃k with even indexes are zeros at λ = v.
Then from (4.1) it follows that F (v) = 0.

5. Examples p = 1 and p = 2.

In this Section we consider the special cases p = 1 and p = 2 when the properties of the states can
be analyzed in more details. Using that

f+
p =

(λ− ṽp+1)f
+
p+1 − ap+1f

+
p+2

ap

=
ξp+1
+

ap

((λ + v)− am+) =
ξp+1
+

ap

1 + aξ2
−

λ− v
,

f+
p−1 =

(λ− ṽp)f
+
p − apf

+
p+1

ap−1

=
ξp+1

apap−1

(
(λ− ṽp)

1 + aξ2
−

λ− v
− a2

p

)
,

and ϕ2 = λ− v, ξ2
+ξ2

− = 1, ξ2
+ + ξ2

− = 2∆ = (λ2 − v2 − a2 − 1)/a⇒ 2a∆ + 1 + a2 = λ2 − v2,
we get for p = 1, a0 = a, a1 = 1, v1 = v + q1,

F (λ) = ϕ2f
+
0 f−0 = a−2

(−q1λ
2 + λ

[
q2
1 + a2

]
+

(
q2
1v + q1(v

2 + 1− a)− va2
))

,

If v = v1 (the unperturbed case) then F = a2(λ − v) and λ = v is the only state, see Lemma 6.
The discriminant of the quadratic equation is

D = (a2 − (v2
1 − v2))2 + 4(v1 − v)2 = (q2

1 + 2vq1 − a2)2 + 4q2
1 > 0 if v1 6= v.

Thus we get that the states are real. By Lemma 10 on F, part ii), both states are bound states: no
resonances for p = 1. One can check directly that if perturbation is non-trivial (v 6= v1) then there
are no virtual states if p = 1 : if λ0 = λ±0 is virtual state then ξ2

− = ∆(λ0) = ±1, and

f+
0 (λ0) =

±1

a

(
(λ− v1)

1± a

λ− v
− 1

)
= 0 ⇔ (λ0 − v1)(1± a) = λ0 − v, λ0 6= v,

which never happens. Thus we have
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Proposition 14. For p = 1, v 6= v1, J has two real bound states:

λ± =
[q2

1 + a2]±
√

(q2
1 + 2vq1 − a2)2 + 4q2

1

2q1

=
q1

2
+

a2

2q1

±
√(

q1

2
+ v − a2

2q1

)2

+ 1.

In the limit a → 0, we get straightforward λ1,2 = 1
2
(q1±

√
(2v + q1)2 + 4)+O(a2). As v →∞,

we have λ1,2 ∼ ±v → ±∞. As v → 0, we have λ1,2 → (2q1)
−1([q2

1 + a2]±
√

(q2
1 − a2)2 + 4q2

1).
Next we get:
if q1 → 0, then λ+ ∼ a2/q1 →∞, and λ− → v;
if q1 →∞, we have λ+ ∼ q1 →∞, and λ− → −v.

Now we consider in detail the properties of the states in the simplest non-trivial case p = 2,
which allows the complex resonances. Let D(p3) denote the generalized discriminant of a special
cubic polynomial which will be explained below and given by the following cumbersome formula:

D(p3) =(vq2 + q2
2)

2q2
2(2vq2 − v2 − a2 − 1)2 − 4(vq2 + q2

2)
3{(vq2 − v2 − 1)(vq2 − a2)− v2a2}−

− 4q4
2(2vq2 − v2 − a2 − 1)3+

+ 18q2(vq2 + q2
2)q2(2vq2 − v2 − a2 − 1){(vq2 − v2 − 1)(vq2 − a2)− v2a2}−

− 27q2
2{(vq2 − v2 − 1)(vq2 − a2)− v2a2}2. (5.1)

Proposition 15. i) Suppose p = 2 and q2 6= 0. Then J has always two bound states and two
resonances (or virtual states). In the limit a → 0+, the bound states converge to

λ0
1,2 = ±

√(
v +

q1 − q2

2

)2

+ 1 +
q1 + q2

2
(5.2)

and the resonances converge to

λ0
3,4 = v +

q1

2
±

√
q1(q2q1 − 4)

4q2

. (5.3)

Suppose that ṽ1 = v. Then λ = v is always a state.
Moreover, let D(p3) denote the generalized discriminant given by Formula (5.1). Then, all four

states of J are real iff D(p3) > 0. If D(p3) < 0, then there are always two complex conjugated
resonances.

ii) Suppose p = 2, ṽ1 = v. We have the following asymptotic properties of the states:
1) for q2 small enough, J has precisely two non-real complex conjugated resonances;
2) in the limit q2 →∞, the states of J either go to infinity or converge to the real state λ = v;
3) in the limit v →∞, the states are of order |v|. Moreover, let µ1,2,3 denote the zeros of µ3−µ2−
µ + q2 = 0, which are real if

q2 ∈
[

11−√112 + 5 · 27

27
,
11 +

√
112 + 5 · 27

27

]
(5.4)

192



A.Iantchenko and E. Korotyaev Zigzag half-nanotube in magnetic field

and contain one complex conjugate pair otherwise. Then λ1,2,3/v → µ1,2,3 in the limit v →∞; 4)
for v small enough we do not have non-numerical results;
5) in the limit a → 0+, the two resonances converge to λ = v.

Some of this results can be generalized to any p (see Theorem 5). The fact that λ = v is always
a state in the special case p = 2, ṽ1 = v, can be generalized to any even p (see Lemma 13). We
proceed now to the proofs.
Proof: From the properties of function F we know that J has always at least two bound states (or
eventually virtual states).

For p = 2 we have

f+
0 (λ) =

ξ2
+

a2

(
(λ− v1)((λ− v2)a− a2m+)− a

)
, f−0 (λ) = f+

0 (λ).

We get F = ϕ2f
+
0 f−0 =

=
1

a2

[
(λ− v) {(λ− v1)(λ− v2)− 1}2 − {(λ− v1)(λ− v2)− 1} (λ− v1)(λ

2 − v2 + a2 − 1)+

+ (λ− v1)
2a2(λ + v)

]
, (5.5)

where we used that m+ + m− = 2Φ/ϕ2 and m+m− = −ϑ3/ϕ2, where ϕ2 = λ − v, Φ =
(λ2 − v2 + a2 − 1)/2a, ϑ3 = −λ− v.

Suppose v1 = v and λ 6= v. From (5.5) we get
a2F (λ)

λ− v
=

= −(λ2 − v2 − a2 − 1)(λ− v)q2 + (λ− v)2q2
2 + a2 = (5.6)

= −q2λ
3 + λ2(vq2 + q2

2)− λq2(2vq2 − v2 − a2 − 1) + (vq2 − v2 − 1)(vq2 − a2)− v2a2 (5.7)

As F (λ) = λ−v
a2 p3(λ) we have: sign F = − sign q2 in the limit λ → ±∞. As F is strictly

negative under the first band and strictly positive over the second band, we have:
if q2 < 0 then there is one bound state in γ+

0 ; if q2 > 0 then there is one bound state in γ+
2 ;

state λ = v ∈ γ1;
the other 2 states are either real, then they belong to the same gap, or complex conjugate.

The right hand side of (5.7) is the cubic polynomial with real coefficients in λ and can have 3
real zeros or one real zero and two complex conjugated zeros. Denote the respective coefficients
in (5.7) by k0, k1, k2, k3, then we have

a2F (λ)

λ− v
= p3(λ) = k0λ

3 + k1λ
2 + k2λ + k3,

k0 = −q2, k1 = vq2 + q2
2, k2 = −q2(2vq2 − v2 − a2 − 1), k3 = (vq2 − v2 − 1)(vq2 − a2)− v2a2.

Remark 3.104 on page 127 from [21], states that if the generalized discriminant of p3

D(p3) = k2
1k

2
2 − 4k3

1k3 − 4k0k
3
2 + 18k0k1k2k3 − 27k2

0k
2
3 (5.8)
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is strictly positive then all the zeros of (5.7) are real and disctinct. If D(p3) < 0, then there are two
complex conjugated zeros. The discriminant D(p3) is given in (5.1).

Thus we have proven the first part i) of Proposition 15 except asymptotics (5.2) and (5.3 which
we postpone to the end of this section.

Suppose q2 → 0. Then

k0 = −q2, k1 = vq2 +O(q2
2), k2 = q2(v

2 + a2 + 1) +O(q2
2), k3 = a2 +O(q2).

Then D = −27k2
0k

2
3 + O(q3

2) = −27q2
2a

4 + O(q3
2) which implies that there are two non-real

resonances.
Suppose q2 →∞. Then directly from the equation

−q2λ
3 + q2

2λ
2 − 2vq2

2λ + v2q2
2 = O(q2) ⇔ λ2 − 2vλ + v2 = (λ− v)2 = O(λ3q−1

2 ), q2 →∞,

we get that the states which remain bounded as q2 →∞ converge to v.
Suppose v →∞. Then the equation is −q2λ

3 + vq2λ
2 + q2v

2λ− v3q2
2 = O(v2). Put λ = vµ,

then −q2v
3(µ3 − µ2 − µ + q2) = O(v2) ⇔ µ3 − µ2 − µ + q2 = O((vq2)

−1), v → ∞. The
equation µ3−µ2−µ + q2 = 0 has the generalized discriminant D = 1 + 4q2 + 4 + 16q2− 27q2

2 =
−27q2

2 + 22q2 + 5, whose zeros are

x± =
11±√112 + 5 · 27

27
.

Denote µ1,2,3 the zeros of the equation µ3−µ2−µ+ q2 = 0. We proved that, as v →∞, the states
λ1,2,3 = O(v), moreover λ1,2,3/v converge to the zeros of the equation µ3−µ2−µ+q2 = 0, which
are real if q2 ∈ [x−, x+]. If q2 < x− or q2 > x+ then the two zeros are complex conjugated. Thus
we have proven the part ii) of Proposition 15. In the case v → 0, the equation does not simplify.

Asymptotics (5.2) and (5.3) as a → 0. As a special case of the asymptotics in Lemma 7, we
get, for λ ∈ γ+

1 ,

f+
0 =

1

a2

( a

2δ
+O(a3)

) (
(λ− v1)

[
(λ− v2)a +O(a3)

]− a
)

=

=
1

a2

(
(λ− v1)(λ− v2)− 1

2δ
a2 +O(a4)

)
=

(λ− v1)(λ− v2)− 1

λ2 − v2 − 1
+O(a2).

Thus the bound states in γ+
1 which are solutions of f+

0 (λ) = 0 in the limit a → 0 are asymptotically
solutions of the equation

(λ− v1)(λ− v2)− 1

λ2 − v2 − 1
= 0 ⇔ λ2 − (v1 + v2)λ + v1v2 − 1 = 0

if λ2 6= v2 + 1 (which happens if λ is a virtual state). We get two solutions (ṽ1 = v + q1,
ṽ2 = −v + q2)

z1,± =
ṽ1 + ṽ2 ±

√
(ṽ1 − ṽ2)2 + 4

2
= ±

√(
v +

q1 − q2

2

)2

+ 1± q1 + q2

2

194



A.Iantchenko and E. Korotyaev Zigzag half-nanotube in magnetic field

which are the leading terms in the expansion of the bound states in γ+
1 as a → 0 (see Theorem 4).

Similarly we get the resonances in γ−1 and states in γ±0,2 in the limit a → 0. The resonances in
γ−1 are formally also zeros of f−0 (λ) in γ+

1 which, if v1 6= v, in the leading order a−2 are solutions
of the equation (v2 + v)λ2− (v2v + v2 + v1(v2 + v))λ+ v1(v2v + v2 +1)− v = 0 with zeros given
in (1.11):

µ0
1,2 =

q2(2v + q1)±
√

q2q1(q2q1 − 4)

2q2

= v +
q1

2
±

√
q1(q2q1 − 4)

4q2

which can be real antibound states or complex conjugated resonances. If v1 = v then the leading
order as a → 0 of the antibound state is λ = v.

Suppose now that λ0 is a real double root: F (λ0) = 0, Ḟ (λ0) = 0. Suppose λ0 6= v. Using the
identity

a2Ḟ (λ) = a2 F (λ)

λ− v
+ (λ− v)

∂

∂λ

(
a2 F (λ)

λ− v

)
,

we have at λ = λ0 :

a2Ḟ (λ0) = (λ0 − v)
∂

∂λ

(
a2 F (λ)

λ− v

)

|λ=λ0

= 0.

In the special case p = 2, v1 = v, we get using (5.7):

∂

∂λ

(
a2 F (λ)

λ− v

)

|λ=λ0

= −3q2λ
2
0 + 2q2(v + q2)λ0 − q2(2vq2 − v2 − a2 − 1) = 0.

It follows that if F (λ0) = Ḟ (λ0) = 0 and λ0 6= v then λ0 is a zero of the quadratic equation
3λ2 − 2(v + q2)λ + (2vq2 − v2 − a2 − 1) = 0 :

λ0 =
(v + q2)±

√
(v + q2)2 − 3(2vq2 − v2 − a2 − 1)

3
=

(v + q2)±
√

(2v − q2)2 + 3(a2 + 1)

3
.

The state has multiplicity 2 and necessarily are the antibound states as all bound states are simple.
Thus we get

Proposition 16 (Double antibound state). Suppose p = 2, v1 = v. Operator J has precisely one
antibound state at λ0 of multiplicity 2 iff the discriminant given in (5.1) is zero. Moreover, the
double antibound state different from λ = v is given by either of the two following formulæ:

(v + q2)±
√

(2v − q2)2 + 3(a2 + 1)

3
.

The state λ = v is always simple if a 6= 0.
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