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1. Introduction
In this paper we continue the work began in [5, 6, 7], and investigate further the connections of the
Evans function and (modified) Fredholm determinants of the Birman-Schwinger type operators. In
particular, we bring into the discussion a new element, the Gohberg-Rouche Theorem [9, Theorem
XI.9.1]. Also, we study in detail three important concrete cases: the Schrödinger operator, the op-
erator obtained by linearizing a system of degenerate reaction diffusion equations about a traveling
wave, and a general high order differential operator.

In Section 2, we deal with abstract perturbations. We first recall well-known results from [9,
Ch. XI] regarding the algebraic multiplicity m(λ0; W (·)) of an isolated eigenvalue λ0 of finite type
for an operator pencil W = W (λ). Next, following [6], we consider a class of factorable non-self-
adjoint perturbations, formally given by B∗A, of a given unperturbed non-self-adjoint operator H0

in a Hilbert space by introducing a densely defined, closed linear operator H which represents an
extension of H0 + B∗A. Furthermore, we discribe the properties of the Birman-Schwinger type
operator pencil K = K(λ) associated with H0 and H by the formula K(λ) = −A(H0 − λ)−1B∗.
Under appropriate assumptions (including that λ0 is an isolated eigenvalue of H of finite algebraic
multiplicity denoted by m(λ0; H)), and using the Gohberg-Rouche Theorem, we show the equality
m(λ0; I − K(·)) = m(λ0; H) (see Theorem 18). In turn, this leads to the fact that m(λ0; H) is
the order of the zero at λ0 for the modified Fredholm determinant, that is, det2(I − K(λ)) =
(λ − λ0)

m(λ0;H)S(λ), S(λ0) 6= 0, (see Theorem 21). We mention [10, 11] where yet another
application of the Gohberg-Rouche Theorem is given.

In Section 3 we discuss three particular classes of problems: the Schrödinger equation, the
degenerate reaction-diffusion system of equations, and a general higher order differential opera-
tor with constant leading coefficient. The main tool in our investigation is the connection of the
(modified) Fredholm determinant of the Birman-Schwinger type integral operator for the linearized
eigenvalue problem of a given partial differential equation, and the Evans function for the equiv-
alent to this eigenvalue problem first order system, see [5, 12, 13]. Our strategy can be described
as follows. Consider the (higher order, space dimension one) differential operator H obtained by
linearizing a partial differential equation along a steady state or traveling wave solution. The oper-
ator H is a perturbation of the operator H0 determined by the asymptotic behavior of the solution.
As in Section 2, we associate to H and H0 a Birman-Schwinger type operator pencil I −K(·). To
pass to the Evans function analysis, we re-write the eigenvalue problem Hu = λu for H as a first
order system of differential equations dy/dx = M(x, λ)y(x), x ∈ R, and consider its Evans func-
tion E = E(λ), see [1, 4, 15, 18, 20]. Also, we consider the corresponding first order differential
operator T (λ) = ∂x −M(x, λ). The operator T (λ) is a perturbation of the first order differential
operator T0(λ) obtained from the eigenvalue problem H0u = λu for H0. We associate to T (λ)
and T0(λ) a Birman-Schwinger type operator pencil I − K(λ). For the three classes of problems
considered in Section 3 we show that the (modified) Fredholm determinants for I − K(λ) and
I − K(λ) are equal (see Lemma 25, (3.48) and (3.65)). Now the abstract results from Section 2
imply that the algebraic multiplicity m(λ0; H) of a discrete eigenvalue λ0 of H coincides with the
multiplicity of the zero at λ0 for the function det2(I −K(·)). We recall that the main result in [5]
is an explicit formula relating det2(I − K(·)) and the Evans function E = E(λ) for the equation
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dy/dx = M(x, λ)y(x). This leads to the equalities

det2(I −K(λ)) = det2(I −K(λ)) = eΘ(λ)E(λ) = (λ− λ0)
m(λ0;H)S(λ), (1.1)

where S(λ0) 6= 0, and Θ(λ) is a function, analytic in λ, explicitly computed in [5].
In particular, (1.1) shows that the algebraic multiplicity m(λ0; H) is equal to the multiplicity of

the zero at λ0 of the Evans function. The latter assertion is well-known and proved in many con-
crete situations, see, e.g., [1, 4, 18, 15, 20] and the literature therein. To conclude this introduction,
we will briefly review the main insight in the classical strategy of the proof of this assertion as it
is quite different from ours. First, one remarks that λ0 is an eigenvalue of H if and only if 0 is an
eigenvalue of T (λ0). However, unlike H , the operator T (λ0) does not have isolated eigenvalues (in
fact, it is easy to see that the spectrum of T (λ0) is invariant with respect to vertical translations, cf.
[3, Prop. 2.36(b)]). Thus, the “algebraic multiplicity ” of 0 as an eigenvalue of T (λ0) is defined via
the lengths of the Jordan chains. Namely, since the higher order differential equation (H−λ0)u = 0
generates the first order differential equation dy/dx = M(x, λ0)y(x), one observes that a Jordan
chain {uj}`

j=1 for λ0, satisfying uj−1 = (H − λ0)uj , u0 = 0, j = 1, . . . , `, generates the chain of
functions {yj}`

j=1, satisfying T (λ0)yj = M•(·, λ0)yj−1, j = 1, . . . , `, y0 = 0. Here, • denotes dif-
ferentiation in λ. Differentiating in λ the first order differential equation dy/dx = M(x, λ0)y(x),
we arrive at the equation dy•/dx = M(x, λ0)y

•(x) +M•(x, λ0)y which, in fact, is very close to
the equation for the Jordan chain. Using this main observation, the equality of the algebraic multi-
plicity of λ0 and the multiplicity as the zero of the Evans function follows using some elementary
but extremely clever computations with the derivative of the latter, see, e.g., [1, 4, 18, 15, 20] and
the literature therein.

In this paper, we use the following notation. LetH andK be separable complex Hilbert spaces,
(·, ·)H and (·, ·)K the scalar products in H and K (linear in the second factor), and IH and IK
the identity operators in H and K, respectively. Next, let T be a closed linear operator from
dom(T ) ⊆ H to ran(T ) ⊆ K, with dom(T ) and ran(T ) denoting the domain and range of T .
The closure of a closable operator S is denoted by S. The kernel (null space) of T is denoted by
ker(T ). The spectrum and resolvent set of a closed linear operator in H will be denoted by σ(·)
and ρ(·). The Banach spaces of bounded and compact linear operators in H are denoted by B(H)
and B∞(H), respectively. Similarly, the Schatten–von Neumann (trace) ideals will subsequently
be denoted by Bp = Bp(H), p ∈ N. Analogous notation B(H,K), B∞(H,K), etc., will be used for
bounded, compact, etc., operators between two Hilbert spacesH andK. In addition, tr(T ) denotes
the trace of a trace class operator T ∈ B1(H) and detp(IH+S) represents the (modified) Fredholm
determinant associated with an operator S ∈ Bp(H), p ∈ N, see [19]. For a closed operator T we
denote by (dom(T ), ‖ · ‖T ) its domain equipped with the graph norm ‖f‖T = (‖f‖2 + ‖Tf‖2)1/2.
We denote by L2(R; dx)n and L2(R; dx)n×n the space of (n × 1) vector valued functions and
(n× n) matrix valued functions, respectively.
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2. Abstract Perturbation Theory
To make the exposition self-contained, we begin by reminding some known facts from [9, Chap.
XI]. Let W : Ω → B(H) be an operator-valued function analytic in an open domain Ω of the
complex plane. Assume that the operator W (λ0) is Fredholm of index zero for some λ0 ∈ Ω.
Then there exits an operator F : H → H of finite rank such that W (λ0) + F is invertible. Since
W (λ) is continuous in λ, the operator E(λ) = W (λ) + F is invertible for λ in some open disc
|λ− λ0| < δ0, and thus

W (λ) = E(λ)− F = E(λ)[I − E(λ)−1F ], |λ− λ0| < δ0. (2.1)

Since F is the operator of finite rank, ker F has a finite dimensional complement H0 in H. Let P
be the projection of H along ker F onto H0. It follows that

I − E(λ)−1F = [I − PE(λ)−1FP ][I − (I − P )E(λ)−1FP ]. (2.2)

We put G(λ) = I − (I − P )E(λ)−1FP and note that G is well-defined and analytic in the disc
|λ− λ0| < δ0. Furthermore, G takes values in the set of invertible operators on H; in fact

G(λ)−1 = I + (I − P )E(λ)−1FP, |λ− λ0| < δ0.

Combining this together, we infer:

W (λ) = E(λ)[I − PE(λ)−1FP ]G(λ), |λ− λ0| < δ0, (2.3)

where E and G are analytic operator-valued functions on |λ − λ0| < δ0 and their values are
invertible operators.

Definition 1. Let Ω be an open set in C, and let T (·) and S(·) be operator-valued functions
defined on Ω. Given λ0 in Ω, we say that T (·) and S(·) are equivalent at λ0 if there exists an open
neighborhood U of λ0 in Ω such that

T (λ) = F (λ)S(λ)E(λ), λ ∈ U , (2.4)

where F (·) and E(·) are invertible operators which depend analytically on λ in U .

We isolate a part of the proof of Theorem XI.8.1 in [9] as the following lemma.

Lemma 2. [9, pp. 200-201] Assume that

W0(λ) = [aij(λ)]ni,j=1, (2.5)

where aij are scalar-valued functions that are analytic at λ0. Then W0(·) is equivalent at λ0 to an
analytic operator-valued function D0 of the form

D0(λ) = π0 + (λ− λ0)
k1π1 + . . . + (λ− λ0)

krπr, k1 ≤ k2 . . . ≤ kr, (2.6)

where π0, π1, . . . , πr are mutually disjoint projections inCn such that rank πj = 1 for j = 1, . . . , r.
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Proof. If all entries aij are identically zero in a neighborhood of λ0, then the theorem is trivially
true. Therefore, assume that for at least one pair (i, j) the function aij does not vanish identically
in a neighborhood of λ0. In that case we may write

aij(λ) = (λ− λ0)
l(i,j)bij(λ), (2.7)

where bij(λ0) 6= 0 and l(i, j) ∈ N ∪ {0}. Choose (i0, j0) in such a way that the number l(i0, j0)
is minimal. By renumbering rows and columns in (2.5) we may assume without loss of generality
that i0 = 1, j0 = 1. Furthermore, by multiplying W0(λ) on the left by the diagonal matrix E(λ) =
diag[b11(λ)−1, 1, . . . , 1], we may suppose that a11 = (λ− λ0)

k1 and aij = (λ− λ0)
k1cij(λ), where

cij is analytic at λ0. Note that the diagonal matrix E(λ) is invertible and E(λ) depends analytically
on λ in a neighborhood of λ0. Thus multiplication by E(λ) produces an equivalent at λ0 matrix-
valued function E(λ)W0(λ).

Next, in the matrix E(λ)W0(λ) we subtract ci1 times the first row from the i-th row, that
is, multiply E(λ)W0(λ) from the left by an elementary matrix which is invertible and depends
analytically on λ in a neighborhood of λ0. In the resulting product, we subtract c1j times the first
column from the j-th column, and we will do this for 1 6 i, j 6 n. It follows that W0 is equivalent
at λ0 to an operator function of the form




(λ− λ0)
k 0 · · · 0

0 α22(λ) · · · α2n(λ)
...

...
...

0 αn2(λ) · · · αnn(λ)


 ,

where αij(λ) = (λ− λ0)
k1βij(λ) with βij analytic at λ0. By applying induction by the dimension

of the submatrix, the lemma is proved.

Remark 3. The procedure, described in the proof of Lemma 2, will either (a) exhaust the dimen-
sion of the remain submatrix, or (b) the remaining submatrix will become identically zero in a
neighborhood of λ0. In case (a), π0 + π1 + . . . + πr = I .

Theorem 4. [9, Theorem XI.8.1] Let W : Ω → B(H) be an analytic operator-valued function,
and assume that for some λ0 ∈ Ω the operator W (λ0) is Fredholm with index zero. Then W is
equivalent at λ0 to an analytic operator-valued function D of the form

D(λ) = P0 + (λ− λ0)
k1P1 + . . . + (λ− λ0)

krPr, (2.8)

where P0, P1, . . . , Pr are mutually disjoint projections such that P1, . . . , Pr have rank one, the
projection I−P0 has finite rank, and k1 ≤ k2 . . . ≤ kr. Moreover, there exist operators E(λ), G(λ)
on H and G0 on H0 so that

W (λ) = E(λ)G1(λ)D(λ)G(λ), (2.9)

where G1(λ) =

[
G0(λ) 0

0 Iker P

]
: ran P ⊕ ker P → ran P ⊕ ker P . In addition, E(·), G1(·), G(·)

are analytic and take invertible values.
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Proof. According to formula (2.3) the operator-valued function W is equivalent at λ0 to an oper-
ator function of the form

[
W0(·) 0

0 Iker P

]
: ran P ⊕ ker P → ran P ⊕ ker P. (2.10)

Here W0(·) is holomorphic on |λ − λ0| < δ0 and W0(λ) acts on the finite dimensional space
H0 = ran P . By Lemma 2 W0 is equivalent at λ0 to an operator-valued function D0 of the form

D0(λ) = π0 + (λ− λ0)
k1π1 + . . . + (λ− λ0)

krπr, (2.11)

where π0, π1, . . . , πr are mutually disjoint projections on ran P and rank πj = 1 for j = 1, . . . , r.
Put Pj = πjP for j = 1, . . . , r, and let

P0 =

[
π0 0
0 Iker P

]
: ran P ⊕ ker P → ran P ⊕ ker P. (2.12)

Then the operator function (2.10) (and hence W ) is equivalent at λ0 to the function

D(λ) = P0 + (λ− λ0)
k1P1 + . . . + (λ− λ0)

krPr, (2.13)

and P0, P1, . . . , Pr have the desired properties.

Corollary 5. The operators (G1(λ)− I), (D(λ)− I), (G(λ)− I), see (2.9), are of finite rank and,
therefore, belong to Bp for every p.

Definition 6. We say that λ0 ∈ Ω is an eigenvalue of finite type of an analytic function W : Ω →
B(H) if W (λ0) if Fredholm, W (λ0)f = 0 for some non-zero f ∈ H, and W (λ) is invertible for
all λ in some punctured disc 0 < |λ− λ0| < ε around λ0.

If λ0 is an eigenvalue of finite type, then ind W (λ0) = 0, and hence, by Theorem 4, the
operator-valued function W is equivalent at λ0 to the operator-valued function of the form

D(λ) = P0 + (λ− λ0)
k1P1 + . . . + (λ− λ0)

krPr, (2.14)

where P0, P1, . . . , Pr are as in Theorem 4 and satisfy the additional condition

P0 + P1 + . . . + Pr = I, (2.15)

which follows from the fact that D(λ) is invertible for λ 6= λ0 and λ sufficiently close to λ0.

Definition 7. The sum k1 +k2 + . . .+kr of the indices in (2.14) is called the algebraic multiplicity
of W at λ0, and is denoted by m(λ0; W (·)).

The following result is called the Gohberg-Rouche Theorem.
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Theorem 8. [9, Theorem XI.9.1] Let W : Ω → B(H) be an analytic operator-valued function and
λ0 be an eigenvalue of finite type of W (·). Then, there is a Cauchy contour Γ enclosing λ0 such
that:

m(λ0; W (·)) = tr
( 1

2πi

∫

Γ

W ′(λ)W (λ)−1dλ
)
. (2.16)

Remark 9. If W (λ) = λI − T , where T is a bounded linear operator on H, and λ0 is an isolated
eigenvalue of W (λ) in the sense of Definition 6, then m(λ0; W (·)) defined in Definition 7 is equal
to the algebraic multiplicity of λ0 as an eigenvalue of T , that is, to the dimension tr P of the range
of the Riesz spectral projection. This follows from Theorem 8 and the identity

tr
( 1

2πi

∫

Γ

W ′(λ)W (λ)−1dλ
)

= tr
( 1

2πi

∫

Γ

(λI − T )−1dλ
)
,

where Γ is a positively oriented circle centered at λ0 such that σ(T ) ∩ Γ = ∅ and λ0 is the only
point in the spectrum of T inside Γ.

We will now recall the setup used in [6], and several facts proved in that paper.

Hypothesis 10. (i) Suppose that H0 : dom(H0) → H, dom(H0) ⊆ H is a densely defined,
closed, linear operator in H with nonempty resolvent set, ρ(H0) 6= ∅, and that A : dom(A) →
K, dom(A) ⊆ H is a densely defined, closed, linear operator from H to K, and B : dom(B) →
K, dom(B) ⊆ H is a densely defined, closed, linear operator from H to K such that

dom(A) ⊇ dom(H0), dom(B) ⊇ dom(H∗
0 ). (2.17)

In the following, we denote

R0(z) = (H0 − zIH)−1 , z ∈ ρ(H0). (2.18)

(ii) For some (and hence for all) z ∈ ρ(H0), the operator −AR0(z)B∗, defined on dom(B∗),
has a bounded extension in K, denoted by K(z),

K(z) = −AR0(z)B∗ ∈ B(K). (2.19)

(iii) 1 ∈ ρ(K(z0)) for some z0 ∈ ρ(H0).

Lemma 11. [6, Lem. 2.2] Let z, z1, z2 ∈ ρ(H0). Then Hypothesis 10 implies the following facts:

AR0(z) ∈ B(H,K), R0(z)B∗ = [B(H∗
0 − z)−1]∗ ∈ B(H,K), (2.20)

R0(z1)B∗ −R0(z2)B∗ = (z1 − z2)R0(z1)R0(z2)B∗ (2.21)

= (z1 − z2)R0(z2)R0(z1)B∗, (2.22)
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K(z) = −A[R0(z)B∗], K(z)∗ = −B[R0(z)∗A∗], (2.23)

ran(R0(z)B∗) ⊆ dom(A), ran(R0(z)∗A∗) ⊆ dom(B), (2.24)

K(z1)−K(z2) = (z2 − z1)AR0(z1)R0(z2)B∗ (2.25)

= (z2 − z1)AR0(z2)R0(z1)B∗. (2.26)

Corollary 12. The operator-valued function K(·) is analytic on ρ(H0) and

K ′(z) = −AR0(z)[BR0(z)∗]∗, z ∈ ρ(H0). (2.27)

Next, following Kato [14], one introduces

R(z) = R0(z)−R0(z)B∗[IK −K(z)]−1AR0(z), z ∈ {ζ ∈ ρ(H0) | 1 ∈ ρ(K(ζ))}. (2.28)

Theorem 13. [6, Theorem 2.3] Assume Hypothesis 10 and suppose that z ∈ {ζ ∈ ρ(H0) | 1 ∈
ρ(K(ζ))}. Then, R(z) given in (2.28) determines a densely defined, closed, linear operator H in
H by

R(z) = (H − zIH)−1. (2.29)

Moreover,

AR(z), BR(z)∗ ∈ B(H,K) (2.30)

R(z) = R0(z)−R(z)B∗AR0(z) (2.31)

= R0(z)−R0(z)B∗AR(z). (2.32)

Proof. Suppose z ∈ {ζ ∈ ρ(H0) | 1 ∈ ρ(K(ζ))}. Since, by (2.28), we have

AR(z) = [IK −K(z)]−1AR0(z), (2.33)
BR(z)∗ = [IK −K(z)∗]−1BR0(z)∗, (2.34)

we conclude that R(z)f = 0 implies AR(z)f = 0, and hence AR0(z)f = 0 by (2.33). The latter
implies R0(z)f = 0 by (2.28) and thus f = 0. Consequently,

ker(R(z)) = {0}. (2.35)

Similarly, (2.34) implies

ker(R(z)∗) = {0} and hence ran R(z) = H. (2.36)

Next, combining (2.28), the resolvent equation for H0, (2.21), (2.22), (2.25) and (2.26) proves the
resolvent equation

R(z1)−R(z2) = (z1 − z2)R(z1)R(z2), z1, z2 ∈ {ζ ∈ ρ(H0) | 1 ∈ ρ(K(ζ))}. (2.37)

Thus, R(z) is indeed the resolvent of a densely defined, closed, linear operator H in H as claimed
in connection with (2.29).

By (2.33) and (2.34), AR(z) ∈ B(H,K) and [BR(z)∗]∗ ∈ B(K,H), proving (2.30). A combi-
nation of (2.28), (2.33) and (2.34) then proves (2.31) and (2.32).
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Hypothesis 14. In addition to Hypothesis 10, we impose the following assumption:

(iv) K(z) ∈ B∞(K) for all z ∈ ρ(H0).

Theorem 15. [6, Theorem 3.2] Assume Hypothesis 14 and let λ0 ∈ ρ(H0). Then

Hf = λ0f, 0 6= f ∈ dom(H) implies K(λ0)g = g (2.38)

where, for fixed z0 ∈ {ζ ∈ ρ(H0) | 1 ∈ ρ(K(ζ))}, z0 6= λ0,

0 6= g =(IK −K(z0))
−1AR0(z0)f (2.39)

=(λ0 − z0)
−1Af. (2.40)

Conversely,
K(λ0)g = g, 0 6= g ∈ K implies Hf = λ0f, (2.41)

where
0 6= f = −R0(λ0)B∗g ∈ dom(H). (2.42)

Moreover,
dim(ker(H − λ0IH)) = dim(ker(IK −K(z0))) < ∞. (2.43)

In particular, let z ∈ ρ(H0), then

z ∈ ρ(H) if and only if 1 ∈ ρ(K(z)). (2.44)

Hypothesis 16. In addition to Hypothesis 14, we assume:

λ0 ∈ ρ(H0) ∩ {λ ∈ C | λ is an isolated eigenvalue of H }. (2.45)

Hypothesis 16 implies that IK − K(·) is an operator-valued function analytic in some neigh-
borhood of λ0. Moreover, λ0 is an eigenvalue of finite type of IK−K(·) as described in Definition
6. Therefore, the algebraic multiplicity m(λ0; IK −K(·)) from Definition 7 is well-defined.

Lemma 17. [9, Section XI.9] Let G1 and G2 be B(H)-valued operator functions which are finitely
meromorphic at λ0. Then G1G2 and G2G1 are finitely meromorphic at λ0 and

tr Ξ(G1G2)(λ) = tr Ξ(G2G1)(λ), λ 6= λ0, (2.46)

where Ξ(G)(λ) stands for the principal part of G at λ0.

We will now apply the Gohberg-Rouche Theorem 8 in the setup of [6] to show equality of the
algebraic multiplicity of the eigenvalue λ0 of finite type of IK − K(·), see Definition 7, and the
“usual” algebraic multiplicity m(λ0; H) of the eigenvalue λ0 of H . We recall that m(λ0; H) is
defined as the dimension of the range of the Riesz spectral projection:

m(λ0; H) = − 1

2πi
tr

( ∫

Γ

dλR(λ)
)
, where R(λ) = (H − λ)−1. (2.47)
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Theorem 18. Assume Hypothesis 16. Then

m(λ0; IK −K(·)) = m(λ0; H). (2.48)

Proof. First of all, using formula (2.16), (2.27), (2.34) and (2.46), we infer:

m(λ0; IK −K(·)) =
1

2πi
tr

( ∫

Γ

dλ(IK −K(λ))′(IK −K(λ))−1
)

=
1

2πi
tr

( ∫

Γ

dλΞ{(IK −K(λ))′(IK −K(λ))−1}
)

=
1

2πi
tr

( ∫

Γ

dλΞ{AR0(z)[BR0(z)∗]∗(IK −K(λ))−1}
)

=
1

2πi
tr

( ∫

Γ

dλΞ{AR0(z)[BR(z)∗]∗}
)

=
1

2πi

( ∫

Γ

dλ tr Ξ{AR0(z)[BR(z)∗]∗}
)

=
1

2πi

( ∫

Γ

dλ tr Ξ{[BR(z)∗]∗AR0(z)}
)
.

(2.49)

On the other hand, using (2.28) and (2.34), we infer:

m(λ0; H) = − 1

2πi
tr

( ∫

Γ

dλ[R(λ)−R0(λ)]
)

= − 1

2πi
tr

( ∫

Γ

dλΞ{R(λ)−R0(λ)}
)

=
1

2πi
tr

( ∫

Γ

dλΞ{[BR0(λ)∗]∗(IK −K(λ))−1AR0(λ)}
)

=
1

2πi
tr

( ∫

Γ

dλΞ{[BR(z)∗]∗AR0(z)}
)

=
1

2πi

( ∫

Γ

dλ tr Ξ{[BR(z)∗]∗AR0(z)}
)
.

(2.50)

Combining (2.49) and (2.50), we obtain the desired identity.

Remark 19. Assume Hypothesis 16. Then, it follows from Theorem 15 that λ0 is an isolated
eigenvalue of H of finite geometric multiplicity. Moreover, from Theorem 18 it follows that λ0 is
also an isolated eigenvalue of H of finite algebraic multiplicity.
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Hypothesis 20. In addition to Hypothesis 16, we assume the following condition:

(v) For some p ∈ N, we have K(z) ∈ Bp(K) for all z ∈ ρ(H0).

Theorem 21. Assume Hypothesis 20. Then, the following holds:

detp(IK −K(λ)) = (λ− λ0)
m(λ0;IK−K(·))S(λ) (2.51)

= (λ− λ0)
m(λ0;H)S(λ), S(λ0) 6= 0. (2.52)

Proof. The first equality follows directly from Theorem 4 and Corollary 5 applied to W (λ) =
IK −K(λ). Hence, from (2.9),

detp(IK −K(λ)) = detp(D(λ))S1(λ) (2.53)

= (λ− λ0)
m(λ0;IK−K(·))S(λ), S(λ0) 6= 0. (2.54)

Equality (2.52) follows from Theorem 18.

3. Applications

3.1. The Schrödinger Equation
Let us consider the Schrödinger equation

−φ′′(x) + V (x)φ(x) = λφ(x) (3.1)

with the potential V ∈ L1(R; dx). We introduce the closed operators in L2(R; dx) defined by

H0f = −f ′′, f ∈ dom(H0), (dom(H0), ‖ · ‖H0) = W 2
2 (R),

Hf = −f ′′ + V f, (3.2)
f ∈ dom(H) = {g ∈ L2(R; dx) | g, g′ ∈ ACloc(R); (−g′′ + V g) ∈ L2(R; dx)}.

Also, we introduce the factorization

V = u(x)v(x), u(x) = sign(V (x))|V (x)|1/2, v(x) = |V (x)|1/2, x ∈ R. (3.3)

Finally, we introduce the integral operator K(λ) in L2(R; dx) with the integral kernel

K(λ, x, x′) = −v(x)M∨(λ, x− x′)u(x′), λ ∈ C\σ(H0), (3.4)

where M(λ, η) = (η2 − λ)−1, and ∨ denotes the inverse Fourier transform with respect to the
variable η ∈ R. The following result is, of course, well-known; we recall its proof to emphasize
its similarity with the proof of Theorems 33 and 41 below.
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Theorem 22. [19, Theorem 4.1.] Suppose V ∈ L1(R; dx) and let λ ∈ C \ R+. Then K(λ) ∈
B2(L

2(R; dx)).

Proof. Using [16, Theorem VI.23], the assertion in the theorem follows from the formula for the
B2-norm of an integral operator:

‖K(λ)‖B2(L2(R;dx) =

∫ ∫

R×R
dxdx′|K(λ, x, x′)|2 =

=

∫ ∫

R×R
dxdx′| − v(x)M∨(λ, x− x′)u(x′)|2 < ∞.

The last inequality follows from u, v ∈ L2(R) because M∨(λ, ·) ∈ L∞(R; dx) by M(λ, ·) ∈
L1(R; dx) and the Riemann-Lebesgue lemma.

Remark 23. Assume V ∈ L1(R; dx) and let λ ∈ C\σ(H0). Since M(λ, ·) ∈ L2(R; dη) ∩
L∞(R; dη), by [17, Theorem IX.29] the operator K(λ) coincides with −Mv(H0 − λ)−1Mu on
the domain of Mu, where Mv,Mu are the operators of multiplication by v, u with maximal do-
mains. Hence, K(λ) = −Mv(H0 − λ)−1Mu ∈ B2(L

2(R; dx)). From now on, we will use the
notation K(λ) also for the operator −Mv(H0 − λ)−1Mu.

The Schrödinger equation (3.1) is equivalent to the first order system

Ψ′(x) =

[
0 1

V (x)− λ 0

]
Ψ(x), Ψ =

[
φ′

φ

]
. (3.5)

Introduce the correspoding first order operator T (λ) and matrices A and B:

T (λ) = ∂x +

[
0 −1
λ 0

]
, (dom(T (λ)), ‖ · ‖T (λ)) = W 1

2 (R)⊕W 1
2 (R), λ ∈ C \ R+,

A(λ) =

[
0 1
−λ 0

]
, B(x) =

[
0 0

V (x) 0

]
. (3.6)

Then, the first order system (3.5) can be rewritten as follows:

Ψ′(x) = (A(λ) + B(x))Ψ(x). (3.7)

Lemma 24. The operator T (λ), with λ ∈ C \ R+, has a bounded inverse given by

T (λ)−1 =

[−∂x (−∂2
xx − λ)

−1 − (−∂2
xx − λ)

−1

λ (−∂2
xx − λ)

−1 −∂x (−∂2
xx − λ)

−1

]
. (3.8)

Proof. Clearly,
(

iηI2×2 +

[
0 −1
λ 0

])−1

= − 1

η2 − λ

[
iη 1
−λ iη

]
, η ∈ R.

280



Y. Latushkin and A. Sukhtayev Multiplicities and the Evans function

Taking the Fourier transform in η-variable proves the assertion.

Introduce the matrices ũ(x), ṽ(x) and the operator K(λ) as follows:

ũ(x) =

[
0 0

u(x) 0

]
, ṽ(x) =

[
v(x) 0

0 0

]
, (3.9)

K(λ) = −MevT (λ)−1Meu, λ ∈ C \ R+. (3.10)

Here, the operator MevT (λ)−1Meu is originaly defined on the (maximal) domain of the operator Meu
of multiplication by ũ. We will see in (3.12) that K(λ) ∈ B(L2(R; dx)2). Also, B(x) in (3.6) has
the following representation: B(x) = ũ(x)ṽ(x).

Lemma 25. Suppose that V ∈ L1(R; dx) and λ ∈ C \ R+. Then K(λ) ∈ B2(L
2(R; dx)2) and the

following equality holds:

det2

(
IL2(R;dx)2 −K(λ)

)
= det2

(
IL2(R;dx) + K(λ)

)
. (3.11)

Proof. Using (3.8), we arrive at the following identity:

K(λ) =

[−v 0
0 0

]
T (λ)−1

[
0 0
u 0

]
=

[
v(x) (−∂2

xx − λ)
−1

u(x) 0
0 0

]
=

[−K(λ) 0
0 0

]
. (3.12)

The required assertion now follows from Theorem 22 and (3.12).

We now recall that the eigenvalues of H are zeros of the Evans function E associated with the
first order system (3.7), see, e.g., [1, 4, 15, 18, 20]. Our next goal is to describe the relations of
the algebraic multiplicity m(λ0; H) of the eigenvalue λ0 of the operator H defined in (3.2), the
algebraic multiplicity m(λ0; I − K(·)) of the operator-valued function K(·) at λ0 (as defined in
Definition 7), and the multiplicity m(λ0;E(·)) of the zero at λ0 of the Evans function E.

Let us first recall the definition of the Evans function, see, e.g., [18]. Consider a first order
system

d

dξ
u = M(ξ, λ)u, u ∈ Cn, ξ ∈ R, (3.13)

where M is a sum of an L∞(R;Cn×n)- and an L1(R;Cn×n)-function of ξ analytic in λ in some
domain. We say that λ is not in the essential spectrum σess of (3.13) if the operator ∂ξ −M(·, λ) is
Fredholm with zero index. If this is the case then equation (3.13) has exponential dichotomies on
R+ and R− with projections P+(ξ; λ) and P−(ξ; λ), respectively (this means that ran(P+(0; λ)),
respectively, ker(P+(0; λ)) is the set of the initial data of the solutions of (3.13) on R+ that decay,
respectively, grow exponentially at +∞, while ker(P−(0; λ)), respectively, ran(P−(0; λ)) is the
set of the initial data of the solutions of (3.13) on R− that decay, respectively, grow exponentially
at −∞). Moreover, the Morse indices of the dichotomies are equal, that is, dim ker(P+(0; λ)) =
dim ker(P−(0; λ)), see Palmer’s theorem in [18]. Let Ω be a simply-connected subset of C\σess.
Then the Morse index dim ker(P+(0; λ)) = dim ker(P−(0; λ)) is constant for λ ∈ Ω; let us denote
it by k. We choose ordered bases [u1(λ), . . . , uk(λ)] and [uk+1(λ), . . . , un(λ)] of the subspaces
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ker(P−(0; λ)) and ran(P+(0; λ)), respectively. We can choose the basis vectors such that they are
analytic in λ.

Definition 26. The Evans function E is defined by

E(λ) = det[u1(λ), . . . , un(λ)]. (3.14)

We note that the Evans function depends on the choice of the basis vectors uj(λ). As shown
in [5], if the first order system (3.13) has an additional perturbation structure as in (3.7), then the
Evans function can be chosen to agree with the (modified) Fredholm determinant of the operator
I − K(λ). Specifically, the basis vectors uj(λ) can be chosen as the columns of the general-
ized matrix-valued Jost solutions of the first order system (3.7). The definition of the generalized
matrix-valued Jost solution can be found in [5]. The paper [5] contains the following formula:

det2 (IL2(R;dx)2 −K(λ)) = eΘ(λ)E(λ), (3.15)

where Θ(λ) is some number explicitly computed in [5].
In what follows we always assume that the Evans function is selected such that (3.15) holds. If

E(λ0) = 0 then we denote by m(λ0;E(·)) the multiplicity of λ0 as a zero of the function E such
that E(λ) = (λ− λ0)

m(λ0;E(·))S(λ), S(λ0) 6= 0.

Hypothesis 27. We assume that V ∈ L1(R) and

λ0 ∈ {C \ R+} ∩ {λ ∈ C | λ is an isolated eigenvalue of H }. (3.16)

Theorem 28. Assume Hypothesis 27 and let E(·) be the Evans function for the perturbed equation
(3.7). Then

m(λ0;E(·)) = m(λ0; IL2(R;dx) −K(·)) = m(λ0; H). (3.17)

Proof. This follows from formula (3.15), Lemma 25, Theorem 21 and Theorem 18.

3.2. Degenerate Reaction-Diffusion Systems
Let D be a diagonal n×n matrix with the diagonal entries d1, . . . d` > 0 and d`+1 = . . . = dn = 0,
and F : Rn → Rn be a smooth function. We consider the system of reaction diffusion equations

Ut = DUxx + F (U), x ∈ R, U ∈ Rn. (3.18)

In the moving coordinate frame ξ = x− ct, with some c > 0, system (3.18) is given by

Ut = DUξξ + cUξ + F (U), ξ ∈ R, U ∈ Rn. (3.19)

Suppose that Q = Q(ξ) is a traveling wave for (3.18), that is, is a stationary solution of (3.19):

DQξξ(ξ) + cQξ(ξ) + F (Q(ξ)) = 0, ξ ∈ R. (3.20)
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The eigenvalue problem associated with the linearization of (3.19) about Q is given by

DUξξ + cUξ + F ′(Q)U = λU ; (3.21)

here and below F ′ = ∂F denotes the differential of F .
We decompose U(ξ), F ′(Q(ξ)) in the following way:

U = [U1(ξ), U2(ξ)]
> ∈ R` ⊕ Rn−`,

F ′(Q(ξ)) =

[
F ′

11(Q(ξ)) F ′
12(Q(ξ))

F ′
21(Q(ξ)) F ′

22(Q(ξ))

]
: R` ⊕ Rn−` → R` ⊕ Rn−`.

Let D` be the diagonal ` × ` matrix with the diagonal entries d1, . . . d`, and denote W1 = d
dξ

U1.
Then the eigenvalue problem (3.21) can be recast as follows:




∂ξ 0`×(n−`) −I`×`

c−1F ′
21(Q(ξ)) c−1(−λ + F ′

22(Q(ξ))) + ∂ξ 0(n−`)×`

D−1
` (−λ + F ′

11(Q(ξ))) D−1
` F ′

12(Q(ξ)) cD−1
` + ∂ξ







U1

U2

W1


 = 0. (3.22)

Hypothesis 29. Suppose that the traveling wave Q is a pulse, that is, the following limit exists:

lim
|ξ|→∞

Q(ξ) = Q(∞) ∈ Rn. (3.23)

Assume Hypothesis 29. Denoting by W k
2 the Sobolev space of k times differentiable functions

with L2-derivatives, we introduce the operators T (λ), H0, H , and the matrices A,B, V as follows:

T (λ) =




∂ξ 0`×(n−`) −I`×`

c−1F ′
21(Q(∞)) c−1(−λ + F ′

22(Q(∞))) + ∂ξ 0(n−`)×`

D−1
` (−λ + F ′

11(Q(∞))) D−1
` F ′

12(Q(∞)) cD−1
` + ∂ξ


 (3.24)

with the domain (dom(T (λ)), ‖ · ‖T (λ)) = W 1
2 (R)n+`,

H0 =

[
D`∂

2
ξξ + c∂ξ 0`×(n−`)

0(n−`)×` c∂ξ

]
+ F ′(Q(∞)), (3.25)

with the domain (dom(H0), ‖ · ‖H0) = W 2
2 (R)` ⊕W 1

2 (R)n−`,

H = H0 + V, with V (ξ) = F ′(Q(ξ))− F ′(Q(∞)) and the domain

dom(H) =
{

f = (g, h)> ∈ L2(R; dξ)` ⊕ L2(R; dξ)n−` | (3.26)

g, g′ ∈ ACloc(R)`, h ∈ ACloc(R)n−`; H0f + V f ∈ L2(R; dξ)n
}

,
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A(λ) =




0 0 I
−c−1F ′

21(Q(∞)) c−1(λ− F ′
22(Q(∞))) 0

D−1
` (λ− F ′

11(Q(∞))) −D−1
` F ′

12(Q(∞)) −cD−1
`


 , (3.27)

B(ξ) =




0 0 0
c−1(−F ′

21(Q(ξ)) + F ′
21(Q(∞))) c−1(−F ′

22(Q(ξ)) + F ′
22(Q(∞))) 0

D−1
` (−F ′

11(Q(ξ)) + F ′
11(Q(∞))) D−1

` (−F ′
12(Q(ξ)) + F ′

12(Q(∞))) 0


 . (3.28)

Then, the eigenvalue problem (3.22) can be recast as

Ψ′(ξ) = (A(λ) + B(ξ))Ψ(ξ), (3.29)

where Ψ(ξ) = [U1(ξ), U2(ξ), W1(ξ)]
>. Passing to the Fourier transform yields the following fact.

Lemma 30. Let H0 be as in (3.25). Then

ρ(H0) = {λ ∈ C | inf
η∈R

| det N(λ, η)| 6= 0}, (3.30)

where we denote:

N(λ, η) =

[−η2D` + icη + F ′
11(Q(∞))− λ F ′

12(Q(∞))
F ′

21(Q(∞)) icη + F ′
22(Q(∞))− λ

]
. (3.31)

For λ ∈ ρ(H0) one can express (H0 − λ)−1 in terms of the multiplication operator:

(H0 − λ)−1 = F−1M(λ, ·)F , (3.32)

where F is the Fourier transform, and we denote

M(λ, η) =

[−η2 + icη + F ′
11(Q(∞))− λ F ′

12(Q(∞))
F ′

21(Q(∞)) icη + F ′
22(Q(∞))− λ

]−1

. (3.33)

Remark 31. Since λ ∈ ρ(H0), by Lemma 30 the determinant of N(λ, η) is separated from
zero uniformly in η ∈ R. Moreover, each element mij of the matrix M(λ, η) is of the form
pij(λ, η)/det(N(λ, η)), where pij(λ, η) and det(N(λ, η)) are polynomials in η, and

deg(pij(λ, η)) + 1 ≤ deg(det(N(λ, η))).

Hence, M(λ, ·) ∈ L2(R; dη)n×n ∩ L∞(R; dη)n×n. So, we conclude that the Fourier transform of
M(λ, ·) is well-defined in L2-sense.

Hypothesis 32. In addition to Hypothesis 29, we assume that F ′(Q(·))−F ′(Q(∞)) ∈ L1(R)n×n.
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Let Ũ(ξ) and |F ′(Q(ξ))−F ′(Q(∞))| denote the n×n matrices in the polar decomposition of
F ′(Q(ξ))− F ′(Q(∞)). We introduce the matrices

u(ξ) = Ũ(ξ)|F ′(Q(ξ))− F ′(Q(∞))|1/2, v(ξ) = |F ′(Q(ξ))− F ′(Q(∞))|1/2. (3.34)

Assume Hypothesis 32. Then u, v ∈ L2(R)n×n. Next, using Remark 31, we introduce the integral
operator K(λ) in L2(R; dξ)n with the integral kernel

K(λ, ξ, ξ′) = −v(ξ)M∨(λ, ξ − ξ′)u(ξ′). (3.35)

Theorem 33. Assume Hypothesis 32 and let λ ∈ C\σ(H0). Then K(λ) ∈ B2(L
2(R; dξ)n).

Proof. First, we claim that M∨(λ, ·) ∈ L∞(R; dξ)n×n. Indeed, by Remark 31 each element mij

of the matrix M(λ, η) is of the form pij(λ, η)/det(N(λ, η)), where pij(λ, η) and det(N(λ, η)) are
polynomials in η. Denoting by ηk the roots of N(λ, ·), we can decompose mij as the follows:

mij(λ, η) =
d∑

k=1

sk∑

l=1

aijkl

(η − ηk)l
, aijkl ∈ C, Im (ηk) 6= 0, (3.36)

where d is the number of different roots of det(N(λ, ·)) and sk is the multiplicity of the root ηk of
det(N(λ, ·)). Note that some of aijkl might be zero. If l > 1 then

aijkl/(· − ηk)
l ∈ L1(R; dη) and (aijkl/(η − ηk)

l)
∨ ∈ L∞(R; dξ)

by the Riemann-Lebesgue lemma. If l = 1 then (aijkl/(η − ηk)
l)
∨ ∈ L∞(R; dξ) since

if Re(λ) < 0 then (
1

iη − λ
)∨(ξ) =

{√
2πeλξ, ξ ≥ 0;

0, ξ < 0;
(3.37)

if Re(λ) > 0 then (
1

iη − λ
)∨(ξ) =

{
0, ξ ≥ 0;√

2πeλξ, ξ < 0.
(3.38)

Combining the cases l > 1 and l = 1, we justify the claim M∨(λ, ·) ∈ L∞(R; dξ)n×n. The
assertion in the theorem now follows from the well-known formula for the B2-norm of an integral
operator, see [2, Theorem 11.3.6]:

‖K(λ)‖2
B2(L2(R;dξ)n) =

∫ ∫

R×R
dξdξ′‖K(λ, ξ, ξ′)‖2

Cn×n =

=

∫ ∫

R×R
dξdξ′‖ − v(ξ)M∨(λ, ξ − ξ′)u(ξ′)‖2

Cn×n < ∞.

The last inequality holds since u, v ∈ L2(R)n×n and M∨(λ, ·) ∈ L∞(R; dξ)n×n.
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Remark 34. Assume Hypothesis 32 and let λ ∈ C\σ(H0). Since M(λ, ·) ∈ L2(R; dη)n×n ∩
L∞(R; dη)n×n, it follows by [17, Theorem IX.29] that f ∈ dom(Mu) yields K(λ)f = −Mv(H0−
λ)−1Muf ; here Mv, Mu are the operators of multiplication by v, u. In other words, the integral
operator K(λ) can be also written as K(λ) = −Mv(H0 − λ)−1Mu ∈ B2(L

2(R; dξ)n). From now
on, we will use the notation K(λ) also for the operator −Mv(H0 − λ)−1Mu.

We introduce the following matrices by taking the Fourier transform in (3.24) and (3.25):

H0η =

[−η2D` + cµ + F ′
11(Q(∞)) F ′

12(Q(∞))
F ′

21(Q(∞)) ciη + F ′
22(Q(∞))

]
, η ∈ R, (3.39)

Tη(λ) =




iη 0 −I
c−1F ′

21(Q(∞)) c−1(−λ + F ′
22(Q(∞))) + iη 0

D−1
` (−λ + F ′

11(Q(∞))) D−1
` F ′

12(Q(∞)) cD−1
` + iη


 .

Assume λ ∈ ρ(H0). Let us denote by Hij, H̃ij , Ĥij the blocks of the block-operators (H0η − λ),
(H0η−λ)−1, (H0−λ)−1, respectively, in the direct sum decomposition L2(R; dξ)n = L2(R; dξ)`⊕
L2(R; dξ)n−` such that

(H0η − λ) = [Hij]
2
i,j=1, (H0η − λ)−1 = [H̃ij]

2
i,j=1, (H0 − λ)−1 = [Ĥij]

2
i,j=1. (3.40)

Lemma 35. The inverse of the operator T (λ) from (3.24) is given by the formula

T (λ)−1 =




(c + ∂ξD`)Ĥ11 cĤ12 D`Ĥ11

(c + ∂ξD`)Ĥ21 cĤ22 D`Ĥ21

−I + ∂ξ(c + ∂ξD`)Ĥ11 c∂ξĤ12 ∂ξD`Ĥ11


 , λ ∈ ρ(H0). (3.41)

Proof. Since λ ∈ ρ(H0), the invertibility of the matrix H0η − λ follows from Lemma 30. A direct
verification shows that the inverse of the matrix Tη(λ) is given by the formula

T−1
η (λ) =




(c + iηD`)H̃11 cH̃12 D`H̃11

(c + iηD`)H̃21 cH̃22 D`H̃21

−I + iη(c + iηD`)H̃11 ciηH̃12 iηD`H̃11


 . (3.42)

Taking the Fourier transform in (3.42) proves the required assertion (3.41).

Next, we consider the matrices u(ξ) and v(ξ) defined in (3.34). Using the block representation
u(ξ) = [ u11 u12

u21 u22 ], v(ξ) = [ v11 v12
v21 v22 ] in the direct sum decomposition Cn = C` ⊕ Cn−`, we introduce

the matrices ũ(ξ), ṽ(ξ) and the operator K(λ) as follows:

ũ(ξ) =




0`×` 0`×(n−`) 0`×`

c−1u21 c−1u22 0(n−`)×`

D−1
` u11 D−1

` u12 0`×`


 , ṽ(ξ) =




v11 v12 0`×`

v21 v22 0(n−`)×`

0`×` 0`×(n−`) 0`×`


 , (3.43)
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K(λ) = −MevT (λ)−1Meu, λ ∈ ρ(H0), (3.44)

where the operator MevT (λ)−1Meu is originally defined on the (maximal) domain of Meu. We will
see in (3.47) that K(λ) ∈ B(L2(R; dξ)n+`). We remark that B(ξ) in (3.28) can be written as
B(ξ) = ũ(ξ)ṽ(ξ).

Hypothesis 36. We assume:

λ0 ∈ ρ(H0) ∩ {λ ∈ C | λ is an isolated eigenvalue of H }. (3.45)

Theorem 37. Assume Hypothesis 36 and let E(·) be the Evans function for the perturbed equation
(3.29). Then

m(λ0;E(·)) = m(λ0; IL2(R)n+` −K(·)) = m(λ0; IL2(R)n −K(·)) = m(λ0; H). (3.46)

Proof. The first equality follows from formula (3.15). The second equality follows from the
identity

K(λ) =

[
K(λ) 0n×`

0`×n 0`×`

]
, λ ∈ ρ(H0), (3.47)

which, in turn, follows from (3.41) and (3.43):

K(λ) = −MevT (λ)−1Meu
= −




[
v11 v12

v21 v22

] [
cĤ12 D`Ĥ11

cĤ22 D`Ĥ21

][
c−1u21 c−1u22

D−1
` u11 D−1

` u12

]
0

0 0




= −




[
v11 v12

v21 v22

] [
Ĥ12u21 + Ĥ11u11 Ĥ12u22 + Ĥ11u12

Ĥ22u21 + Ĥ21u11 Ĥ22u22 + Ĥ21u12

]
0

0 0




= −




[
v11 v12

v21 v22

] [
Ĥ11 Ĥ12

Ĥ21 Ĥ22

][
u11 u12

u21 u22

]
0

0 0


 =

[
K(λ) 0

0 0

]
.

By Theorem 33, from (3.47) we derive K(λ) ∈ B2(L
2(R; dξ)n+`) and

det2

(
IL2(R;dξ)n+` −K(λ)

)
= det2

(
IL2(R;dξ)n −K(λ)

)
, (3.48)

yielding m(λ0; IL2(R;dξ)n+` −K(·)) = m(λ0; IL2(R;dξ)n −K(·)). Finally, the last equality in (3.46)
follows from Theorem 21 and Theorem 18.
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3.3. General n-th Order Linear Differential Equations
Let us consider the eigenvalue problem associated with the general n-th order linear differential
operator:

an∂
n
xU(x) +

n−1∑

l=0

al(x)∂l
xU(x) = λU(x), x ∈ R, (3.49)

where an is a non-zero constant and al(·), l = 0, . . . , n− 1, are given L1
loc(R)-functions. Equation

(3.49) is equivalent to the first order system:

Ψ′(x) =




0 1 · · · · · · 0
0 0 1 · · · 0
...

...
0 1

λ−a0(x)
an

−a1(x)
an

· · · · · · −an−1(x)
an




Ψ(x), Ψ =




U
U ′
...

U (n−2)

U (n−1)




. (3.50)

Hypothesis 38. Assume that the following limits exist:

a∞l := lim
|x|→∞

al(x), l = 0, . . . , n− 1. (3.51)

Assume Hypothesis 38. Denoting by W k
2 the Sobolev space of k times differentiable functions

with L2-derivatives, let us introduce the operators T (λ), H0, H , K(λ), and the matrices A,B as
follows:

T (λ) =




∂x −1 · · · · · · 0
0 ∂x −1 · · · 0
...

...
0 ∂x −1

a∞0 −λ

an

a∞1
an

· · · · · · ∂x +
a∞n−1

an




, (3.52)

with the domain (dom(T (λ)), ‖ · ‖T (λ)) = W 1
2 (R)n,

H0 = an∂
n
x +

n−1∑

l=0

a∞l ∂l
x, (3.53)

with the domain (dom(H0), ‖ · ‖H0) = W n
2 (R),

H = H0 + V, where V (x) =
n−1∑

l=0

(al(x)− a∞l (x))∂l
x, (3.54)

with the domain (dom(H), ‖ · ‖H) = W n
2 (R), and

K(λ) = (H −H0)(H0 − λ)−1, λ ∈ ρ(H0), (3.55)
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A(λ) =




0 1 · · · · · · 0
0 0 1 · · · 0
...

...
0 1

λ−a∞0
an

−a∞1
an

· · · · · · −a∞n−1

an




, (3.56)

B(x) =




0 0 · · · 0
0 0 · · · 0
...

...
−a0(x)+a∞0

an

−a1(x)+a∞1
an

· · · −an−1(x)+a∞n−1

an


 . (3.57)

Then the eigenvalue problem (3.50) can be recast as

Ψ′(x) = (A(λ) + B(x))Ψ(x). (3.58)

Preparing to use the Fourier transform, we introduce the following matrices obtained by re-
placing ∂x by iη in (3.53) and (3.52):

H0η = an(iη)n +
n−1∑

l=0

a∞l (iη)l, η ∈ R, (3.59)

Tη(λ) =




iη −1 · · · · · · 0
0 iη −1 · · · 0
...

...
0 iη −1

a∞0 −λ

an

a∞1
an

· · · · · · iη +
a∞n−1

an




.

Lemma 39. The inverse of the operator T (λ) is given by the formula

T (λ)−1 =




∗ · · · ∗ an(H0 − λ)−1

∗ · · · ∗ an∂x(H0 − λ)−1

...
...

...
∗ · · · ∗ an∂

(n−1)
x (H0 − λ)−1


 , λ ∈ ρ(H0), (3.60)

where stars denote the elements which are not important in the sequel.

Proof. Since λ ∈ ρ(H0), the matrix H0η − λ is invertible. A direct calculation shows that the
inverse of the matrix Tη(λ) is given by the formula

Tη(λ)−1 =




∗ · · · ∗ an(H0η − λ)−1

∗ · · · ∗ an(iη)(H0η − λ)−1

...
...

...
∗ · · · ∗ an(iη)(n−1)(H0η − λ)−1


 . (3.61)
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Using the Fourier transform in (3.61) proves the required assertion (3.60).

Next, we introduce the operator K(λ) on L2(R; dx)n as follows:

K(λ) = −B(·)T (λ)−1, λ ∈ ρ(H0). (3.62)

We will see in Theorem 41 that K(λ) ∈ B(L2(R; dx)n).

Hypothesis 40. In addition to Hypothesis 38, we assume that al(·)−a∞l ∈ L2(R), l = 0, . . . , n−1.

Theorem 41. Assume Hypothesis 40 and let λ ∈ ρ(H0). Then K(λ) ∈ B2(L
2(R; dx)n).

Proof. The assertion in the theorem now follows from the well-known formula for the B2-norm
of an integral operator, see [2, Theorem 11.3.6]:

‖K(λ)‖2
B2(L2(R;dx)n) =

∫ ∫

R×R
dxdx′‖K(λ, x, x′)‖2

Cn×n

=

∫ ∫

R×R
dxdx′‖ − B(x)(T−1

η )∨(λ, x− x′)‖2
Cn×n

≤
∫

R
dx‖B(x)‖2

Cn×n

∫

R
dx‖(T−1

η )∨(λ, x− x′)‖2
Cn×n = ‖B‖2

L2‖Tη(λ)−1‖2
L2 < ∞.

The last inequality holds since ‖B‖2
L2 < ∞ by Hypothesis 40, and since the L2-norm of each entry

of the matrix Tη(λ)−1 is finite.

Hypothesis 42. We assume:

λ0 ∈ ρ(H0) ∩ {λ ∈ C | λ is an isolated eigenvalue of H }. (3.63)

Theorem 43. Assume Hypothesis 42 and let E(·) be the Evans function for the perturbed equation
(3.58). Then

m(λ0;E(·)) = m(λ0; IL2(R)n −K(·)) = m(λ0; IL2(R) −K(·)) = m(λ0; H). (3.64)

Proof. The first equality follows from formula (3.15). The second equality is based on the identity

K(λ) =

[
0 0
∗ (H −H0)(H0 − λ)−1

]
, (3.65)

which, in turn, follows from (3.57) and (3.60):

K(λ) = −B(x)T (λ)−1
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= −




0 0 · · · 0
0 0 · · · 0
...

...
−a0+a∞0

an

−a1+a∞1
an

· · · −an−1+a∞n−1

an







∗ · · · ∗ an(H0 − λ)−1

∗ · · · ∗ an∂x(H0 − λ)−1

...
...

...
∗ · · · ∗ an∂

(n−1)
x (H0 − λ)−1




=

[
0 0
∗ (H −H0)(H0 − λ)−1

]
.

By Theorem 41, from (3.65) we derive

det2

(
IL2(R;dx)n −K(λ)

)
= det2

(
IL2(R;dx) − (H −H0)(H0 − λ)−1

)
, (3.66)

yielding the second equality in (3.64). Finally, the last equality in (3.64) follows from Theorem 21
and Theorem 18.

Acknowledgements
This work was partially supported by the US National Science Foundation under Grant NSF DMS-
0754705, by the Research Board and Research Council of the University of Missouri. Our special
thanks go to Konstantin A. Makarov for suggesting identity (3.12), which is one of the main ingre-
dients of this work. Also, we thank Fritz Gesztesy for help and many suggestions and discussions.

References
[1] J. Alexander, R. Gardner, C. Jones. A topological invariant arising in the stability analysis of

traveling waves. J. reine angew. Math., 410 (1990), 167–212.

[2] M. S. Birman, M. Z. Solomyak. Spectral theory of self-adjoint operators in Hilbert space.
Reidel, Dordrecht, 1987.

[3] C. Chicone, Y. Latushkin. Evolution semigroups in dynamical systems and differential equa-
tions. Amer. Math. Soc., Providence, RI, 1999.

[4] R. A. Gardner, C. K. R. T. Jones. Traveling waves of a perturbed diffusion equation arising
in a phase field model. Indiana Univ. Math. J., 39 (1989), 1197–1222.

[5] F. Gesztesy, Y. Latushkin, K. A. Makarov. Evans functions, Jost functions, and Fredholm
determinants. Arch. Rat. Mech. Anal., 186 (2007), 361–421.

[6] F. Gesztesy, Y. Latushkin, M. Mitrea, M. Zinchenko. Non-self-adjoint operators, infinite de-
terminants, and some applications. Russ. J. Math. Phys., 12 (2005), 443–471.

[7] F. Gesztesy, Y. Latushkin, K. Zumbrun. Derivatives of (modified) Fredholm determinants and
stability of standing and traveling waves. J. Math. Pures Appl., 90 (2008), 160–200.

291



Y. Latushkin and A. Sukhtayev Multiplicities and the Evans function

[8] F. Gesztesy, K. A. Makarov. (Modified ) Fredholm determinants for operators with matrix-
valued semi-separable integral kernels revisited. Integral Eq. Operator Theory, 47 (2003),
457–497; Erratum. 48 (2004), 425–426.

[9] I. Gohberg, S. Goldberg, M. Kaashoek. Classes of linear operators. Vol. 1. Birkhäuser, 1990.
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