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Abstract. Two main approaches have been considered for modelling the dynamics of the SIS
model on complex metapopulations, i.e, networks of populations connected by migratory flows
whose configurations are described in terms of the connectivity distribution of nodes (patches) and
the conditional probabilities of connections among classes of nodes sharing the same degree. In
the first approach migration and transmission/recovery process alternate sequentially, and, in the
second one, both processes occur simultaneously. Here we follow the second approach and give
a necessary and sufficient condition for the instability of the disease-free equilibrium in generic
networks under the assumption of limited (or frequency-dependent) transmission. Moreover, for
uncorrelated networks and under the assumption of non-limited (or density-dependent) transmis-
sion, we give a bounding interval for the dominant eigenvalue of the Jacobian matrix of the model
equations around the disease-free equilibrium. Finally, for this latter case, we study numerically
the prevalence of the infection across the metapopulation as a function of the patch connectivity.
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1. Introduction
Multi-patch models for the spread of infectious diseases involving fluxes of individuals (migrants)
among local populations have been considered in several papers (see, for instance, [10, 14, 17,
18, 20]). In most of the cases, when a general spatial arrangement of the patches is considered,
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the graph describing it is assumed to be irreducible, i.e., the set of patches cannot be split in two
groups such that there is no migration from one of the groups to the other one (see, for instance,
[9, 20, 13]). This implies that the matrices (aij) and (bij) containing the non-negative migration
rates aij and bij from patch j to patch i (i 6= j) of susceptible and infected individuals, respectively,
must be irreducible (which guarantees the existence of a strictly dominant eigenvalue). Moreover,
they must satisfy the balance condition given by

∑
i

aij =
∑

i

bij = 0, ∀ j, (1.1)

with aii ≤ 0, bii ≤ 0, and, for i 6= j, aij ≥ 0, bij ≥ 0. Other aspects of the metapopulation archi-
tecture as well as their influence on the epidemic dynamics have not been traditionally considered.

An alternative approach based on the formalism used in the statistical mechanics of complex
networks is presented in [5, 7]. In these works, the architecture of the network of patches (nodes)
where local populations live is mathematically encoded by means of the connectivity (degree) dis-
tribution p(k), defined as the probability that a randomly chosen patch has degree k. As before,
each patch contains both types of individuals occurring in the SIS model: susceptible and infected.
Within each patch, transmission and recovery processes (reaction) occur at rates βk and µ, respec-
tively. Moreover, migratory flows (diffusion) take place among patches at emigration rates DS

and DI for susceptible and infected individuals, respectively. Each diffusing individual randomly
chooses one of the links departing from the patch. Therefore, the approach does not encompass a
detailed description of the spatial network. Instead, it offers a description of the epidemic spread
in terms of densities of susceptible and infected individuals in patches of degree k at time t, here
denoted by ρS,k(t) and ρI,k(t), respectively. Inside each patch, the transmission of the infection
follows the SIS dynamics under the assumption of a homogenous mixing.

In the simplest version of this approach, which will be the one considered in this paper, emigra-
tion rates DS and DI are taken to be the same for all patches in the metapopulation [5, 19]. More
elaborated models assume more generic types of migration where emigration rates are functions
of the degree of the patches at both ends of a connection. Examples of this situation are given by
the so-called traffic-dependent mobility rates where individuals’ movements depend on the traffic
intensity of connections, and by the population-dependent mobility rates, where rates are assumed
to depend on the local population size in each patch (see [7] for details).

2. The model equations

2.1. Discrete-time equations
From the rates of recovery µ and transmission βk, the probabilities of recovery and transmission
during a small enough time interval (t, t + τ) are τµ and τβk, respectively. Similarly, if migration
(diffusion) can occur at any moment during this time interval, the migration probabilities of sus-
ceptible and infected individuals are, respectively, τDS and τDI . According to this assumption
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and neglecting births and deaths (i.e., the total population remains constant at the metapopulation
level), the discrete-time equations for migration and transmission/recovery processes read:

ρS,k(t + τ) =(1− τDS)(ρS,k(t) + τµρI,k(t)− τβkρS,k(t) ρI,k(t))

+ k τDS

∑

k′
(ρS,k′(t) + τµρI,k′(t)− τβk′ρS,k′(t) ρI,k′(t)) P (k′|k)

1

k′
, (2.1)

ρI,k(t + τ) =(1− τDI)(ρI,k(t) + τβkρS,k(t) ρI,k(t)− τµρI,k(t))

+ k τDI

∑

k′
(ρI,k′(t) + τβk′ρS,k′(t) ρI,k′(t)− τµρI,k′(t)) P (k′|k)

1

k′
, (2.2)

where P (k′|k) is the conditional probability that a patch (node) of degree k has a connection (link)
pointing to a patch of degree k′. Since migration rates among patches are constant, emigrants
from a patch with connectivity k′ choose at random a neighbouring location with probability 1/k′.
Note that the probabilities of more than one event happening to the same individual are of order
τ 2 and, for τ small enough, this means that they are negligible when comparing them to one-event
probabilities.

However, if emigration from a patch of degree k′ is assumed to occur just at the end of the time
interval, then a fixed fraction Di of i-individuals must be randomly selected, at time t + τ , to be
moved to a neighbouring location chosen at random with probability 1/k′. In this situation, the
probabilities τDi in Eqs. (2.1)-(2.2) must be replaced with Di. Under this modelling assumption,
the probabilities of more than one event (for instance, recover and migrate) occurring to the same
individual are only of first order in τ and, then, they will not be negligible when passing to the
continuous limit equations by taking τ → 0. Such a discrete-time diffusion was assumed in
[5, 7] and, as it was observed in [2], is the reason for the problems arising in the Monte Carlo
simulations of similar reaction-diffusion models when these processes occur sequentially in time
(see also [11]).

The expression of the transmission rate βk in Eqs. (2.1)-(2.2) depends on the assumption about
the number of contacts per unit of time. If we assume a fully mixed population, the contact rate c
is equal to the total population size in patch k, i.e., ρk = ρS,k + ρI,k, and we talk about non-limited
or density-dependent transmission [12]. In this case, the transmission term per unit of time is given
by

β0 c ρS,k ρI,k/ρk = β0 ρS,k ρI,k,

where β0 is the transmission rate across a contact with an infected individual [12]. Comparing with
the previous equations, it follows that βk = β0. On the contrary, when the number of contacts per
unit of time is fixed, c does not depend on the population size, and for c = 1 the transmission term
per unit of time becomes

β0 c ρS,k ρI,k/ρk = β0 ρS,k ρI,k/ρk

and, hence, βk = β0/ρk. In this case, we have a limited or frequency-dependent transmission of
the disease [12].
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2.2. Continuous-time equations
When reaction and diffusion processes take place simultaneously, the equations for the continuous-
time dynamics of the spread in a metapopulation are obtained from Eqs. (2.1)-(2.2) by taking the
limit of (ρj,k(t + τ)− ρj,k(t))/τ when τ → 0, which amounts to the limit equations [19]

d

dt
ρS,k(t) = ρI,k(µ− βkρS,k)−DS ρS,k + k DS

∑

k′
P (k′|k)

1

k′
ρS,k′ , (2.3)

d

dt
ρI,k(t) = ρI,k(βkρS,k − µ)−DI ρI,k + k DI

∑

k′
P (k′|k)

1

k′
ρI,k′ . (2.4)

As in classical reaction-diffusion equations, Eqs. (2.3)-(2.4) express the time variation of suscep-
tible and infected individuals as the sum of two independent contributions: reaction and diffusion.
In particular, the diffusion term includes the outflow of individuals (emigrants) from patches of
degree k and the inflow of individuals (immigrants) from the nearest patches. Here, we would like
to mention that similar equations can be derived from the general formulation introduced in [2] for
modelling reaction-diffusion processes of several types of particles in the so-called (in statistical
mechanics) bosonic systems.

Notice that, since births and deaths are not considered in the model, the total number of in-
dividuals must be conserved at the metapopulation level. Precisely, after multiplying equations
(2.3) and (2.4) by p(k), and summing over all k, we have the following differential equations for
ρS(t) and ρI(t), the average number of susceptible and infected individuals per patch at time t,
respectively:

d

dt
ρS(t) =

∑

k

p(k)ρI,k(µ− βkρS,k)−DS ρS + DS

∑

k

∑

k′
kp(k)P (k′|k)

1

k′
ρS,k′ ,

d

dt
ρI(t) =

∑

k

p(k)ρI,k(βkρS,k − µ)−DI ρI + DI

∑

k

∑

k′
kp(k)P (k′|k)

1

k′
ρI,k′ ,

with ρj(t) =
∑

k p(k) ρj,k(t) (j = S, I). Now, since the number of links emanating from nodes
of degree k to nodes of degree k′ must be equal to the number of links emanating from nodes of
degree k′ to nodes of degree k in non-directed graphs, we have the following relationship between
p(k) and P (k′|k) (see [4])

kP (k′|k)p(k) = k′P (k|k′)p(k′). (2.5)

Using this restriction and the fact that
∑

k P (k|k′) = 1 after changing the order of summations,
the previous equations become

d

dt
ρS(t) =

∑

k

p(k)ρI,k(µ− βkρS,k),

d

dt
ρI(t) =

∑

k

p(k)ρI,k(βkρS,k − µ).
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Therefore, as expected, it follows that d [ρS(t)+ ρI(t)]/dt = 0, i.e., the total density of individuals
ρ(t) = ρS(t)+ρI(t) remains constant and equal to ρ0, the initial average number of individuals per
patch in the metapopulation. Note that the previous computations show that a balance condition
equivalent to condition (1.1) is also fulfilled under the present modelling approach.

2.3. Equations in uncorrelated networks
To obtain analytical results about the epidemic dynamics in metapopulations, it is sometimes con-
venient to assume a particular function for P (k′|k). The usual thing is to restrict ourselves to
uncorrelated networks. In these networks, the degrees of the nodes at the ends of any given link
are independent, that is, there is no degree-degree correlation between the connected nodes. In this
case, it follows that P (k′|k) = k′p(k′)/

∑
k kp(k) which corresponds to the degree distribution of

nodes (patches) that we arrive at by following a randomly chosen link [15].
After substituting the expression of P (k′|k) into equations (2.3)-(2.4), one obtains the follow-

ing equations for the epidemic spread in metapopulations described by uncorrelated networks:

d

dt
ρS,k(t) = ρI,k(µ− βkρS,k)−DS

(
ρS,k − k

〈k〉ρS

)
, (2.6)

d

dt
ρI,k(t) = ρI,k(βkρS,k − µ)−DI

(
ρI,k − k

〈k〉ρI

)
, (2.7)

where 〈k〉 =
∑

k kp(k) is the average network connectivity.
In this form, it becomes clearer that the diffusion term is simply given by the difference between

the outflow of susceptible (infected) individuals in patches of connectivity k, DSρS,k (DIρI,k), and
the total inflow of susceptible (infected) individuals across all their k connections, which is k
times the average flow of individuals across a connection in the network, DSρS/〈k〉 (DIρI/〈k〉).
Note that this average flow across a connection does not depend on the degree k of the considered
patch because we are assuming that the architecture of the metapopulation is described by an
uncorrelated network.

3. Equilibria

3.1. The disease-free equilibrium in generic networks
The equilibria of the model equations (2.3)-(2.4) are the solutions ρ∗S,k, ρ∗I,k to the equations

ρ∗I,k(µ− βkρ
∗
S,k) = DS

(
ρ∗S,k − k

∑

k′
P (k′|k)

1

k′
ρ∗S,k′

)
, (3.1)

ρ∗I,k(βkρ
∗
S,k − µ) = DI

(
ρ∗I,k − k

∑

k′
P (k′|k)

1

k′
ρ∗I,k′

)
. (3.2)
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For the analysis of the infection’s spread, it is particularly relevant the so-called disease-free
equilibrium. By definition, this is obtained by replacing ρ∗I,k = 0 in the previous equations, leading
to an implicit expression for the density of susceptible individuals in patches with degree k that
can be written as

1

k
ρ∗S,k =

∑

k′
P (k′|k)

1

k′
ρ∗S,k′ . (3.3)

Note that, for those degrees k that are not present in the network, P (k′|k) = 0 ∀ k′, and, so,
ρ∗S,k = 0 for these degrees. From now on in the paper, when talking about degrees or connectivities,
we implicitly mean those degrees or connectivities that are actually present in the network (see the
numerical example at the end of this section). Furthermore, the case where all patches have the
same connectivity is excluded from our considerations because, under the present approach, the
model equations reduce to those of a single-patch SIS model.

Remark 1. The expression (3.3) says that, at equilibrium and for every k, the number of indi-
viduals leaving patches of connectivity k per unit of time across one of their connections, ρ∗S,k/k,
equals the average number of individuals arriving at these patches per connection and per unit of
time from the rest of the metapopulation (including patches with the same connectivity).

For networks with a connectivity pattern defined by the set of conditional probabilities P (k′|k)
we have the following result that generalizes the one presented in [19] for uncorrelated networks:

Theorem 2. Consider the connectivity matrix C whose elements are given by

Ckk′ =
k

k′
P (k′|k).

Then, for any conditional probabilities P (k′|k), the disease-free equilibrium is given by

ρ∗S,k = ρ∗k =
k

〈k〉ρ
0, ρ∗I,k = 0, ∀ k. (3.4)

Moreover, if C is irreducible and the transmission is frequency dependent, then the disease-free
equilibrium is the only equilibrium for β0 < µ and it is unstable if and only if β0 > µ.

Proof. From (3.3) it follows that ρ∗S must be an eigenvector of C with associated eigenvalue λ = 1.
Moreover, since

∑
k′ P (k′|k) = 1 for any degree k in the network, it is immediate to see that C has

the vector v with components vk = k as eigenvector with associated eigenvalue λ = 1. Therefore,
ρ∗S,k = αk. Now, imposing that

∑
k p(k)ρ∗S,k = ρ0 if ρ∗I,k = 0 ∀ k, it immediately follows that

α = ρ0/〈k〉.
To see that the disease-free equilibrium is the unique equilibrium for β0 < µ, we only must

multiply both sides of Eq. (3.2) by p(k) and sum over all k. Then, while using the relationship (2.5)
we have already seen that the right-hand side of the resulting equation equals 0 for any ρ∗I,k ≥ 0,
the corresponding left-hand side amounts to

∑

k

p(k)
ρ∗I,k

ρ∗k

(
(β0 − µ)ρ∗k − β0ρ

∗
I,k

)
< 0
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under the assumptions β0 < µ and ρ∗I,k > 0 for some k. So, the only equilibrium solution when
β0 < µ is ρ∗I,k = 0 ∀ k, i.e., the disease-free equilibrium.

Now, linearizing the system (2.3)-(2.4) about the disease-free equilibrium ρ∗DF given by (3.4),
one obtains that the Jacobian matrix is of the form

J(ρ∗DF ) =

(
A C
0 B

)
(3.5)

where A, B, C, and 0 are n × n matrices with 0 being the zero matrix and n the number of
degrees in the metapopulation. Therefore, the characteristic polynomial of J(ρ∗DF ) factorizes as
pJ(λ) = pA(λ) pB(λ) and, hence, the eigenvalues of J(ρ∗DF ) are those of matrix A plus those of
matrix B.

Let fi,k denote the right-hand side of Eqs. (2.3)-(2.4) with i = S, I . Then, in a frequency-
dependent transmission of the disease, βk = β0/ρ

∗
k and the elements of the matrix A are of the

form
Akk′ =

∂fS,k

∂ρS,k′
(ρ∗DF ) = −DS δkk′ + DS Ckk′

where δkk′ is the Kronecker delta. Similarly, the elements of the matrix B in this type transmission
are of the form

Bkk′ =
∂fI,k

∂ρI,k′
(ρ∗DF ) = (β0 − µ−DI) δkk′ + DI Ckk′ .

From these expressions, it follows that the spectra of A and B, σ(A) and σ(B), are shifted from
those of DS C and DI C by−DS and β0−µ−DI , respectively. Moreover, by the Perron-Frobenius
theory (see, for instance, [3], Theorem 1.4, p. 27), we know that λ = 1 is the dominant eigenvalue
of C thanks to the assumed irreducibility of C and the positivity of the eigenvector associated with
λ = 1. This implies that λ = 0 and λ = β0 − µ are, respectively, the eigenvalues of A and
B with the largest real part. Consequently, in frequency-dependent transmission, the disease-free
equilibrium is unstable when β0 > µ. 2

Remark 3. The matrix B defines the linear dynamics of infected individuals around the disease-
free equilibrium. Therefore, a positive dominant eigenvalue of B implies an increase of the number
of infected individuals initially added to a resident population of susceptible individuals at equi-
librium. The dominant eigenvalue of A, which gives the growth rate of susceptible individuals
about the disease-free equilibrium, is always 0 for any value of the rates β0 and µ because of the
conservation of the total number of individuals in the metapopulation.

Remark 4. The elements of the connectivity matrix C, k P (k′|k) 1/k′, are the average number of
individuals that patches of degree k receive from neighbouring patches of degree k′ assuming that
one individual leaves each of these patches by choosing at random one of the k′ connections.

On the other hand, in density-dependent (or non-limited) transmission, βk = β0 and the Jaco-
bian matrix around the disease-free equilibrium ρ∗DF has the same block structure as the one given
by (3.5) but now with

Akk′ =
∂fS,k

∂ρS,k′
(ρ∗DF ) = −DS δkk′ + DS Ckk′ (3.6)
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and
Bkk′ =

∂fI,k

∂ρI,k′
(ρ∗DF ) = (β0ρ

∗
k − µ−DI) δkk′ + DI Ckk′ , (3.7)

where ρ∗k = ρ∗S,k at the disease-free equilibrium. Hence, the elements of B are not longer constant
but depend on the densities ρ∗k of the disease-free equilibrium. In particular, as some elements on
the main diagonal can be negative depending on ρ∗k and C ≥ 0, B is a quasipositive matrix, i.e., its
off-diagonal elements are nonnegative (Bkk′ ≥ 0 if k 6= k′).

The latter means that, to obtain some information about the (in)stability of this equilibrium, we
cannot proceed as in the previous theorem but need to use the following lemma about the stability
modulus α(M) = max{Re(λ) : λ ∈ σ(M)} of an irreducible quasipositive matrix M :

Lemma 5. [9] Let M be an irreducible, quasipositive matrix. Then,

1. If there exists a vector x > 0 such that Mx > λ x then α(M) > λ,

2. If there exists a vector x > 0 such that Mx < λx then α(M) < λ,

where x < (>) y means xi ≤ (≥) yi and x 6= y. When M is irreducible and nonnegative, then the
same inequalities hold replacing α(M) by the dominant eigenvalue of M .

This lemma is a consequence of the Perron-Frobenius theory applied to the irreducible matrix
M + cI which is nonnegative for large enough c ∈ R, and it allows us to prove the following:

Theorem 6. Consider the connectivity matrix C given in Theorem 2. If C is irreducible and the
transmission is density-dependent, then the stability modulus α(J) of the Jacobian matrix at the
disease-free equilibrium satisfies α(J) = max{0, α(B)} with

β0
kmin

〈k〉 ρ0 − µ < α(B) < β0
kmax

〈k〉 ρ0 − µ,

Proof. Since B is an irreducible, nonnegative matrix, we only need to find positive vectors for
which the previous lemma holds. A natural candidate to begin with is the eigenvector v of C
associated with λ = 1. For this vector (vk = k, kmin ≤ k ≤ kmax) we have

Bv =




kmin β0ρ
∗
kmin

(kmin + 1) β0ρ
∗
kmin+1

...
kmax β0ρ

∗
kmax


− µv >

(
kmin

〈k〉 β0ρ
0 − µ

)
v =: λ v

with ρ∗k given by (3.4). Similarly, we have that Bv <
(

kmax

〈k〉 β0ρ
0 − µ

)
v =: λ v. So, the statement

of theorem follows from the previous lemma taking x = v. 2

Therefore, in contrast to what happens with limited transmission, for any value of β0 and µ, an
infection will spread to the whole metapopulation if the mean number of susceptible individuals
per patch ρ0 exceeds a critical size. In particular, we have the following sufficient condition that
holds for any generic network:
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Corollary 7. In non-limited transmission, the disease-free equilibrium becomes unstable if the
mean number of individuals per patch in the metapopulation is large enough to guarantee that

ρ0 >
〈k〉
kmin

µ

β0

.

This condition simply says that, if the number of individuals inhabiting those patches with the
lowest connectivity, ρ∗min = ρ0kmin/〈k〉, is large enough, then infection reaches all patches. Indeed,
this result is the one we would expect if we recall that, in a non-limited transmission of an infectious
disease, the per capita number of contacts per unit of time in a patch is equal to the total population
in this patch.

This estimation of the so-called epidemic threshold [12] will be significantly improved in the
next subsection under the assumption of a particular network architecture which will allow to
obtain an expression of the connectivity matrix.

3.2. Equilibria in uncorrelated networks
If we want to obtain results about endemic equilibria of the model and, moreover, to be more pre-
cise about the conditions for the (in)stability of the disease-free equilibrium in non-limited trans-
mission, we must make an assumption about the degree-degree correlation in the network [16]. The
simplest choice is given by uncorrelated networks. In this case, the equilibria of Eqs. (2.6)-(2.7)
are the solutions ρ∗S,k, ρ∗I,k of the system

ρ∗I,k(µ− βkρ
∗
S,k) = DS

(
ρ∗S,k −

k

〈k〉ρ
∗
S

)
(3.8)

ρ∗I,k(βkρ
∗
S,k − µ) = DI

(
ρ∗I,k −

k

〈k〉ρ
∗
I

)
(3.9)

where ρ∗j =
∑

k p(k) ρ∗j,k is the average number of individuals of type j (j = S, I) per patch at
equilibrium.

From these equations, it immediately follows that the disease-free equilibrium is given by
Eq. (3.4). Note that, as in generic networks, the local population size is proportional to the con-
nectivity k of the patch. This is an effect of the pure diffusion of individuals among patches that
has been already observed in other metapopulation models (see [7]).

In uncorrelated networks, the elements of the connectivity matrix C are simply given by

Ckk′ =
k p(k′)
〈k〉 . (3.10)

Since all the rows of C are proportional to the first one, if there are n different degrees in the
metapopulation then the eigenvalues of this matrix are λ = 0, with algebraic multiplicity n − 1,
and λ = 1 which is a simple eigenvalue. In other words, C is a rank-one matrix with λ = 1 as
strictly dominant eigenvalue. Using this fact, one can easily prove the following:
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Theorem 8. In density-dependent transmission and assuming uncorrelated networks, the largest
eigenvalue λmax of the Jacobian matrix of Eqs. (2.6)-(2.7) around the disease-free equilibrium
satisfies λmax = max{0, λkmax} with

β0
kmax

〈k〉 ρ0 − (DI + µ) < λkmax < β0
kmax

〈k〉 ρ0 − µ.

Proof. In density-dependent transmission the Jacobian matrix of the system (2.6)-(2.7) around de
disease-free equilibrium (3.3) is the block matrix given by (3.5) with A and B given by (3.6)
and (3.7), respectively. Hence, the elements of B are not constant but depend on the disease-free
equilibrium. However, since now C has rank one, one can look at the matrix B as a rank-one
perturbation of the diagonal matrix (β0ρ

∗
k−µ−DI) δkk′ and use a well-known interlacing theorem

of eigenvalues for this type of matrix perturbations to obtain the lower bound for λkmax (see, for
instance, Theorem 0 in [1]). Finally, the upper bound follows from Theorem 6 and the fact all the
eigenvalues of the Jacobian are real and, hence, α(J) = λmax. 2

This result improves the one presented in [19, 11] for the largest eigenvalue of the Jacobian
matrix since, for DI ¿ µ, it gives an accurate bounding interval for λkmax and makes the following
sufficient condition for an infection to invade close to be necessary:

Corollary 9. [19] In density-dependent transmission, a sufficient condition for the disease-free
equilibrium to become unstable in uncorrelated networks is given by

ρ0 ≥ 〈k〉
kmax

(DI + µ)

β0

. (3.11)

Remark 10. This condition clearly improves the one in Corollary 7 when networks have large
maximum degrees kmax. Indeed, for very large networks with a bounded average degree 〈k〉 but an
unbounded kmax as their size increases, condition (3.11) implies a practical lack of an epidemic
threshold in the spread of the infection.

On the other hand, when transmission is frequency-dependent (βk = β0/ρk), an endemic equi-
librium of the system is simply obtained by imposing that both sides of equations (3.8)-(3.9) are
equal to zero. This amounts to

ρ∗S,k =
µ

β0

ρ∗k, ρ∗I,k =

(
1− µ

β0

)
ρ∗k, (3.12)

with ρ∗k = kρ0/〈k〉 being the total population size at equilibrium in patches of connectivity k.
According to these expressions, the mean densities of susceptible and infected individuals in the
metapopulation are ρ∗S = µ/β0 ρ0 and ρ∗I = (1 − µ/β0) ρ0, respectively. So, it is clear that the
condition for the existence of an endemic equilibrium in this type of transmission is β0 > µ. From
this fact and from Theorem 2, it follows

Theorem 11. Let us assume frequency-dependent transmission in uncorrelated networks. More-
over, let us take β0 as a bifurcation parameter. Then, for β0 < µ, the disease-free equilibrium is
the unique equilibrium of Eqs. (2.6)-(2.7) and is asymptotically stable. For β0 > µ, the disease-
free equilibrium becomes unstable and appears an endemic equilibrium given by (3.12) which
bifurcates from the disease-free equilibrium at β0 = µ.
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Remark 12. For β0 > µ, the matrix B, which defines the linear dynamics of infected individuals
around the disease-free equilibrium, has all its eigenvalues positive. This implies an increase in
the number of infected individuals in every patch regardless of its connectivity.

In the particular case of equal migration rates, DS = DI = D, from Eqs. (3.8)-(3.9) it imme-
diately follows that ρ∗k = kρ0/〈k〉. Hence, for any given ρI > 0, the density of infected individuals
at equilibrium in patches of connectivity k in terms of ρI is given by

ρ∗I,k =
kρ0

2〈k〉β0

(
β0 − µ−D +

√
(β0 − µ−D)2 + 4

β0

ρ0
DρI

)
.

Multiplying both sides of this expression by p(k) and summing over all k, it follows that any
feasible ρI at equilibrium must satisfy

ρI

(
β0

ρ0
ρI − (β0 − µ)

)
= 0.

Therefore, the only positive mean density of infected individuals at an endemic equilibrium is
given by ρ∗I = (1 − µ/β0) ρ0, i.e., the one corresponding to the equilibrium (3.12), which implies
uniqueness of endemic equilibrium of the model with frequency-dependent transmission and equal
migration rates.

Finally, notice that at the endemic equilibrium (3.12) there is a balance between the inflow
and the outflow of individuals in each patch of the metapopulation. This is so because, at this
equilibrium, both sides of Eqs. (3.8)-(3.9) are equal to 0 and, hence, the flow of each type of
individuals through a connection is the same for all the patches regardless their connectivity (see
Remark 1):

1

k
ρ∗S,k =

1

〈k〉 ρ∗S,
1

k
ρ∗I,k =

1

〈k〉 ρ∗I , ∀ k.

In particular, this implies a constant prevalence of the disease (average fraction of infected indi-
viduals in patches of degree k) across the metapopulation, namely, 1−µ/β0. In density-dependent
transmission, however, such a local balance of flows does not occur because it is not possible for
both sides of the equilibrium equations to vanish at the same time. Therefore, the behaviour of the
prevalence of the disease will be completely different.

3.3. Numerical study of the infection prevalence in density-dependent trans-
mission on uncorrelated networks

In density-dependent transmission (βk = β0), the expression of the endemic equilibrium is not
explicit (see [11] for a detailed analysis of this equilibrium as well as conditions for its existence
and uniqueness). So, in order to see the behaviour of the prevalence of the infection in this type of
transmission, we obtained a power-law degree distribution p(k), with exponent γ = 3 and average
degree was 〈k〉 = 6, from a network of size N = 5000 patches, which was used to integrate
Eqs. (2.6)-(2.7) numerically. The generated network was uncorrelated (assortativity coefficient
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r = −0.005, see [16] for a definition), its minimum degree was kmin = 3, its maximum degree
was kmax = 232, and there were n = 63 different degrees.

From the numerical integration of the model equations with β = 1.5, µ = 5, and DS = DI =
1, it follows that prevalence is an increasing function of the patch degree. Note that, since the
migratory rates are equal, the total number of individuals in each patch is proportional to the patch
degree. It is also observed a remarkable variation of the prevalence with the degree of the patch
when the mean number ρ0 of individuals per patch in the whole metapopulation is low. In Figure
1, it is shown how prevalence varies with respect to patch connectivity for different ρ0. For ρ0 = 6,
it ranges from 0.2149 for the smallest connectivities to 0.9843 for the largest ones. Increasing
the average number of individuals, while maintaining constant the parameter values, causes an
increase of the prevalence in all patches in the metapopulation and a significant reduction of its
range of variation. For example, for ρ0 = 106, the prevalence only varies from 0.9374 to 0.9992.
It is interesting to note that, for β0 = 1.5, µ = 5, and the features of the network used in the
simulations, an initial average density ρ0 ≥ 0.1034482 will be enough to guarantee the instability
of the disease-free equilibrium (see Corollary 9). The reason for such a low number of individuals
per patch required for the invasion of the infection is the existence of a patch with a very high
connectivity (kmax = 232) that acts as a source of infectious individuals for the rest of the patches.
Lower maximum degrees imply higher critical densities for the spread of the infection.
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Figure 1: Prevalence of the infection in a metapopulation with a power-law degree distribution for
different mean number of individuals per patch. Solutions are shown for ρ0 equals 6 (lower curve),
16 (middle curve), and 106 (upper curve). Parameter values: DI = DS = 1, β = 1.5, µ = 5,
〈k〉 = 6. The empty dots correspond to connectivities present in the network while connecting
lines are for eye guidance.

A similar behaviour of the solutions is obtained by varying the transmission rate across an
infectious contact β0. In Figure 2 we show the solutions for values of β0 that are lower or equal to
the recovery rate µ. Note that, even for small values of the transmission rate (β0 = 0.1 and µ = 5),
there exists an endemic equilibrium. Nevertheless, the profile of the prevalence for such a small
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value of β0 is sigmoid shaped and, hence, different from the one obtained for larger values of β0.
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Figure 2: Prevalence of the infection in a metapopulation with a power-law degree distribution for
different values of the transmission rate across an infectious contact. Solutions are shown for β0

equals 0.1 (lower curve), 1.5 (middle curve), and 5 (upper curve). Parameter values: DI = DS = 1,
µ = 5, 〈k〉 = 6, ρ0 = 16. The empty dots correspond to connectivities present in the network while
the connecting lines are for eye guidance.

Finally, another interesting point is the role of DI in the prevalence of the infection. Dimin-
ishing the value of DI causes a reduction of the prevalence in patches of low connectivity, while
those patches with higher connectivity have an even greater level of prevalence than the one oc-
curring in the same patches with a higher DI . In Figure 3, we show the prevalence for β0 = 1.5,
µ = 5, ρ0 = 16 and two different values of DI . For DI = 0.1, the prevalence goes from 0.1361
to 0.9977 and, for DI = 2, prevalence goes from 0.6401 to 0.9938. This is the only situation
we have observed in which the infection prevalence changes in a non-uniform manner across the
metapopulation when changing the value of a parameter.

4. Discussion
This paper deals with a system of differential equations of reaction-diffusion type describing an
epidemic spread in metapopulations based on the SIS model. The spatial configuration is given
by the degree distribution p(k) and the conditional probabilities P (k′|k). This formulation was
derived in [19] and its main novelty with respect to previous models using the same approach
was the assumption of simultaneous reaction and diffusion processes. Two limit cases for the
disease transmission have been considered: a fixed number of contacts per unit of time (limited
transmission) and a fully mixed population (non-limited transmission).

When a limited transmission is assumed, we have seen (Theorem 2) that the network archi-
tecture plays no role for the (in)stability of the disease-free equilibrium. Precisely, the epidemic
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Figure 3: Prevalence of the infection in a metapopulation with a power-law degree distribution
for two migration rates DI of infected individuals. Parameter values: DS = 1, β = 1.5, µ = 5,
〈k〉 = 6, ρ0 = 16. Only interpolating lines are drawn for visual distinction.

threshold at the metapolation level is the same as that of the SIS dynamics for a well-mixed pop-
ulations living in a homogeneous environment, namely, β0/µ > 1. In particular, this leads to a
constant prevalence (fraction of infected individuals) of the infection across the metapopulation.

In a non-limited transmission and for generic networks, we have seen (Theorem 6) that the
epidemics will progress at the whole metapopulation if it spreads in those nodes with the lowest
connectivity. This is due to the fact that, in this type of transmission, the contact rate within a patch
is assumed to be equal to the size of its population and, moreover, to migration among patches
because it makes the (local) population size proportional to the patch connectivity. In the extreme
case that all the patches have the same connectivity, i.e., a regular lattice, the bounding interval
in the statement of Theorem 6 collapses (kmin = kmax = 〈k〉) and leads to the condition for the
instability of the disease-free equilibrium of the SIS model for well-mixed populations, namely,
β0ρ

0/µ > 1. Note that, under the present approach, all migratory flows are balanced when the
spatial arrangement of the metapopulation is described by a regular lattice.

For a non-limited transmission in uncorrelated networks, a more precise bounding interval of
the largest eigenvalue of the Jacobian matrix of the system around the disease-free equilibrium
is presented in Theorem 8. From this interval, it follows the sufficient condition (3.11), which
involves the migration rate of infected individuals and is close to be necessary for small values of
this rate. This condition says that, for fixed DI , µ and β, a high enough density of individuals
and/or a large enough maximum connectivity in the metapopulation guarantee the instability of
the disease-free equilibrium and, hence, the epidemic spread. In the limit of infinite networks
with bounded average degree 〈k〉, this condition implies the lack of an epidemic threshold for any
degree distribution with kmax →∞. Additionally, the forecasted prevalence of the infection is not
constant but increases with the patch connectivity (see the figures above). Interestingly, close the
epidemic threshold, there are always patches with low connectivities where epidemics is not able

35



J. Saldaña Spread of infectious diseases in complex metapopulations

to progress unless infected individuals arrive from (crowded) patches with higher connectivities.
The assumption of discrete-time diffusion ([5]) does not change the situation described above

when a limited transmission is assumed. However, the scenario is completely different when trans-
mission is non-limited. The main difference is with respect to the prevalence of the infection in the
metapopulation because, in this case, the percentage of infected individuals is constant across the
metapopulation.

All these models offer a deterministic description of the progress of a disease in a metapopula-
tion and, so, they overlook the fact that extinction probabilities become relevant when a very low
number of individuals invade non-infected patches. In this sense, the natural metric for the initial
spread of a disease in a metapopulation is the number of local populations infected by individuals
from an initially infected population, usually denoted by R∗ (see [8] for an interesting discussion
and simulations). By assuming a statistical description of the metapopulation in terms of degree
distributions, as in the present paper, the expression of an invasion threshold in uncorrelated net-
works is derived in [6] for discrete generations. The derivation of the threshold is based on the
computation of R∗ for this type of networks and uses a branching process approximation for the
time evolution of the total number of infected local populations in the n-th generation. However, in
the SIS model and considering a well-mixed population, a certain fraction of infected individuals
will be always present at equilibrium when the disease-free equilibrium is unstable. The latter im-
plies that an epidemic outbreak in a given population will eventually reach other populations in the
surrounding patches by repeated invasions. This fact somehow justifies neglecting the stochastic
nature of invasion events and the use of a deterministic approach as the one adopted in this paper.
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