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Analysis of a Nonautonomous HIV/AIDS Model
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Abstract. In this paper we have considered a nonlinear and nonautonomous stage-structured
HIV/AIDS epidemic model with an imperfect HIV vaccine, varying total population size and dis-
tributed time delay to become infectious due to intracellular delay between initial infection of a
cell by HIV and the release of new virions. Here, we have established some sufficient conditions
on the permanence and extinction of the disease by using inequality analytical technique. We have
obtained the explicit formula of the eventual lower bounds of infected persons. We have introduced
some new threshold values R0 and R∗ and further obtained that the disease will be permanent when
R0 > 1 and the disease will be going to extinct when R∗ < 1. By Lyapunov functional method,
we have also obtained some sufficient conditions for global asymptotic stability of this model. The
aim of the analysis of this model is to trace the parameters of interest for further study, with a
view to informing and assisting policy-maker in targeting prevention and treatment resources for
maximum effectiveness.
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1. Introduction
The spectrum of infectious disease is changing rapidly in conjunction with dramatic social and en-
vironmental changes. Worldwide, explosive population growth with expanding poverty and urban
migration is going on, international travel and commerce are increasing, technology is changing
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rapidly-all of which are affecting the risk of exposure to infectious agents. The human immunod-
eficiency virus (HIV) infection which can lead to acquired immunodeficiency syndrome (AIDS),
has become an important infectious disease in both the developed and developing countries. It
is a fatal disease, which destroys the human’s immune system, leaving the victim vulnerable to a
host of life threatening opportunistic infections, neurological disorders or unusual malignancies. It
causes mortality, morbidity of millions of people and expenditure of enormous amount of money
in health care and disease control. It was first recognized by the U.S. Centers for Disease Control
and Prevention in 1981 and its cause (HIV) was identified in the early 1980s. In 2007, it was esti-
mated that 33.2 million people lived with the disease worldwide, and estimated 2.1 million AIDS
death occur , including 330,000 children [46]. Viral transmission occurs through direct contact of
a mucous membrane or the bloodstream with a bodily fluid containing HIV, such as blood, semen,
vaginal fluid, preseminal fluid, and breast milk [11].

HIV is a retrovirus that infects, among others, the CD4+ T lymphocytes, which are the most
abundant white blood cells of the human immune system. It directly and indirectly destroys
CD4+ T cells. A person may advance through several infective stages before developing full
blown AIDS. In a normal healthy individual’s peripheral blood, CD4+ T counts is between 800
and 1200/mm3. Once HIV has killed so many CD4+ T cells that there are fewer than 200 of these
cells per mm3 of blood, cellular immunity is lost. Acute HIV infection progresses over time to
clinical latent HIV infection and then to early symptomatic HIV infection and later to AIDS, which
is identified either on the basis of the amount of CD4+ T cells remaining in the blood, and/or the
presence of certain infections caused by Mycobacterium avium-intracellular, cytomegalovirus and
Penicillium marneffei [32].

Many countries in Africa, AIDS has been already a major cause of death, it is predicted by
experts that it will soon become so in Asian countries having a larger scale of populations. It
is well known that HIV virus has the long incubation and infectious period. In the absence of
antiretroviral therapy, the median time of progression from HIV infection to AIDS is 9-10 years,
and the median survival time after developing AIDS is only 9.2 months. Moreover, the rate of
clinical disease progression varies widely between individuals, from two weeks up to 20 years.
Many factors affect the rate of progression. These include the factors that influence the body’s
ability to defend against HIV such as the infected person’s general immune function; older people
have weaker immune systems, and therefore have a greater risk of rapid disease progression than
younger people. Poor access to health care and the existence of coexisting infections such as
tuberculosis also may accelerate people to faster disease progression. The infected individual’s
genetic inheritance plays an important role and some people are resistant to certain strains of HIV.
HIV is genetically variable and exists as different strains, which cause different rates of clinical
disease progression. There is currently no vaccine or cure for HIV or AIDS. The only known
methods of prevention are based on avoiding exposure to the virus. There is a growing body of
opinion that it requires an effective vaccine to curtail the global spread of HIV [17]. Several HIV
vaccines are currently undergoing clinical trials [35, 52]. In 2007, HIV Vaccine Trials Network
started the first large-scale HIV vaccine trials in Africa. These studies will last until 2011 and
include up to 3000 participants [35]. In September 2009 it has been reported by several companies
and organizations working on AIDS that two new AIDS antibodies have been discovered. These
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antibodies are said to be very significant to develop a vaccine that will be working against many
mutant strains of the virus [49]. Moreover, in September 2009, the results of a successful clinical
trial in Thailand have been reported. The experiment involved 16,395 patients, 8197 of them were
given a vaccine consisting of HIV types B and E (not C, which is most prevalent in Africa), while
8198 were given a placebo. The participants were examined for HIV every six months for a period
of three years. After three years, those given the vaccine saw HIV infection rates reduced by more
than thirty percent in compare with those who had been given a placebo. It gives the first successful
HIV vaccine trial in history. However, these results could still be attributed to chance and the Thai
study has yet to undergo peer review [5, 49]. The current expectation is that such a vaccine would
be imperfect, i.e. it may be effective in some cases, but not all. It may give protection that wanes
with time. The vaccine may also offer some therapeutic benefits by changing the clinical course of
the disease [41].

From the theoretical point of view, the HIV/AIDS dynamics gives a large number of new prob-
lems to mathematicians, biologists and epidemiologists, because it has a lot of features different
from traditional infectious diseases. Hence, the research of HIV/AIDS dynamics has stimulated
the recent development of mathematical epidemiology. Mathematical models have been used ex-
tensively to study the epidemiology of HIV/AIDS which help to improve our understanding of the
major contributing factors to the pandemic. From the initial models of May and Anderson [1,3,34],
several refinements have been added into modelling frameworks, and specific issues have been ad-
dressed by workers [4,6,7,9,12,19,24,25,26,30,31,37,38,47,48]. According to clinical symptoms
or viral load and CD4+ T counts, 2-6 stages of infection before AIDS can be classified [24,42].
Elbasha and Gumel [16] analyzed an HIV vaccine model that considers both staged progression
and transmission by AIDS patients. Gumel et al. [20] proposed an HIV vaccine model that consid-
ers possible vaccine induced bypass of primary infection and reversal from AIDS to chronic stage
of infection together with staged progression and transmission by AIDS patients.

Time delays of one type or another have been considered into biological models by many re-
searchers [8,14,18,29]. Time delay can arise for various practical reasons in epidemiology. Perel-
son et al. [39] have considered two types of time delays: (i) pharmacological delay that occurs
between the ingestion of drug and its appearance within cells and (ii) intracellular delay between
initial infection of a cell by HIV and the release of new virions. Herz et al. [22] incorporate a
discrete delay to model the intracellular delay in a HIV model and show that the addition of a
delay would substantially shorten the estimate for the half-life of free virus. Culshaw and Ruan
[13] use the time delay between infection of a CD4+ T cell and the emission of viral particles
on a cellular level to investigate the effect of the time delay on the stability of the endemically
infected equilibrium. Time delay is also used to model the gestation lag, the incubation time for a
infectious vector etc. These delay differential equations exhibit much more complicated dynamics
than ordinary differential equations since a time delay could cause a stable equilibrium to become
unstable and cause the population to fluctuate.

Nonautonomous phenomenon often occurs in many realistic epidemic models. The nonau-
tonomous phenomenon occurs mainly due to the seasonal variety, which makes the population to
behave periodically. Since biological and environmental parameters are naturally subject to fluc-
tuation in time, the effects of a periodically varying environment are considered as important se-
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lective forces on systems in a fluctuating environment. To investigate this kind of phenomenon, in
the model, the coefficients should be periodic functions, then the system is called periodic system.
The nonautonomous epidemic models can be regarded as an extension of the periodic epidemic
models. To the best of our knowledge, the research works on the nonautonomous epidemic dy-
namical models are very few [23,40,44,45,50,51]. Therefore, the research on the nonautonomous
epidemic dynamical models is also very important.

Research on epidemic models that incorporates time dependent biological and environmental
parameters, disease related death, varying total population, and time delay is becoming one of the
important areas in the mathematical theory of epidemiology. HIV infected individuals pass through
sequential infectious stages, being highly infectious during primary infection (first few weeks of
infection), having low infectivity in the asymptomatic stage (lasting many years) and becoming
more infectious in the AIDS stage [20]. The whole dynamics of the spread of HIV/AIDS is too
complex that we could not analyze it all at once. By considering the above facts, in this paper
we have considered a nonlinear and nonautonomous stage-structured HIV/AIDS epidemic model
with an imperfect HIV vaccine, varying total population size and distributed time delay to become
infectious due to intracellular delay between initial infection of a cell by HIV and the release of new
virions. The infected persons in the different stages have different ability of transmitting disease. It
is assumed that an imperfect HIV vaccine could offer a therapeutic effect by converting vaccinees
in the highly infectious AIDS stage into the less infectious asymptomatic stage. It is also assumed
that the vaccine could induce a bypass of primary infection, where a proportion of vaccinated
infectious individuals move straight to the asymptomatic (chronic) stage. In the proposed system
all the coefficients are time-dependent, i.e., this system is nonautonomous. Usually, such systems
have not any disease-free equilibrium and endemic equilibrium. There are many methods to deal
with autonomous systems, but they may not be suitable to nonautonomous systems. Therefore,
it is more difficult to study the dynamical behaviours in nonautonomous case. Here, we have
established some sufficient conditions on the permanence and extinction of the disease by using
inequality analytical technique. We have obtained the explicit formula of the eventual lower bounds
of infected persons with the help of inequality analytical technique. We have introduced some new
threshold values R0 and R∗ and further obtained that the disease will be permanent when R0 > 1
and the disease will be going to extinct when R∗ < 1. By Lyapunov functional method, we have
also obtained some sufficient conditions for global asymptotic stability of this system.

2. A nonautonomous HIV/AIDS epidemic model with
distributed time delay

We consider a nonautonomous dynamical model of diseases that spread by HIV with distributed
time delay which satisfies the following assumptions:

The underlying human population being studied is assumed to be small, high-risk subset of a
larger population. It is assumed that the larger population is relatively free of HIV and provides
a variable source of uninfected individuals entering the high-risk population. The model monitors
the temporal dynamics of the high-risk population which is divided into the populations of unvac-
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cinated (S(t)) and vaccinated (J(t)) susceptible individuals, HIV-infected individuals in primary
(I1(t)), secondary (I2(t)) and AIDS (I3(t)) stages of infection. The total high-risk population is
N(t) = S(t) + J(t) + I1(t) + I2(t) + I3(t).

The unvaccinated susceptible population (S(t)) is increased by the recruitment of uninfected
sexually active individuals from the larger embedding population (at a rate Λ(t)) and by waning of
vaccinated immunity (at a per capita rate ν(t)). The population is decreased by infection, which
may be acquired through horizontal transfer from infected individuals in any of the three infected
classes, by vaccination (at a per capita rate ξ(t)) and by natural death (at a per capita rate µ(t)).
The natural death rate also includes the rate at which individuals leave the high-risk population due
to migration or other reasons not directly related to HIV infection.

The population of vaccinated susceptible individuals (J(t)) is generated by the vaccination
of unvaccinated susceptible individuals (at the per capita rate ξ(t)) and diminished by infection,
vaccine waning (at the per capita rate ν(t)) and natural death rate (at the per capita rate µ(t)). It is
further assumed that a proportion (p(t)) of vaccinated infectious individuals move straight to the
secondary infectious stage (by bypassing the primary infectious stage).

The population of individuals in the primary infectious stage (I1(t)) is generated by the infec-
tion of susceptible individuals and decreased by progression to the secondary infectious stage (at
a per capita rate σ1(t)) and natural death (at the per capita rate µ(t)).

The population of individuals in the secondary infectious stage (asymptomatic stage) (I2(t))
is generated by the infection of some vaccinated susceptible individuals (proportion p(t)), the
progression of individuals in the primary infectious stage (at the per capita rate σ1(t)) and through
vaccine-induced conversion of individuals in the AIDS stage to the asymptomatic stage (at the per
capita rate η(t)). The secondary infectious stage is diminished by progression to the AIDS stage
(at a per capita rate σ2(t)) and natural death (at the per capita rate µ(t)).

The population of individuals in the AIDS stage of infection (I3(t)) is generated by the pro-
gression to AIDS class from the secondary infectious stage (at the per capita rate σ2(t)). This
population is diminished by the vaccine-induced therapeutic effect (at the per capita rate η(t)),
natural death (at the per capita rate µ(t)) and disease-induced death (at a per capita rate σ3(t)).

Thus, a nonautonomous dynamical model of diseases that spread by HIV infection with dis-
tributed time delay can be written as:

dS(t)

dt
= Λ(t)− {β1(t)

∫ h

0

I1(t− s)dω(s) + β2(t)

∫ h

0

I2(t− s)dω(s)

+β3(t)

∫ h

0

I3(t− s)dω(s)}S(t)− (ξ(t) + µ(t))S(t) + ν(t)J(t),

dJ(t)

dt
= ξ(t)S(t)− k(t){β1(t)

∫ h

0

I1(t− s)dω(s) + β2(t)

∫ h

0

I2(t− s)dω(s)

+β3(t)

∫ h

0

I3(t− s)dω(s)}J(t)− (ν(t) + µ(t))J(t),
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dI1(t)

dt
= {β1(t)

∫ h

0

I1(t− s)dω(s) + β2(t)

∫ h

0

I2(t− s)dω(s)

+β3(t)

∫ h

0

I3(t− s)dω(s)}[S(t) + (1− p(t))k(t)J(t)]− (σ1(t) + µ(t))I1(t),

dI2(t)

dt
= p(t)k(t){β1(t)

∫ h

0

I1(t− s)dω(s) + β2(t)

∫ h

0

I2(t− s)dω(s)

+β3(t)

∫ h

0

I3(t− s)dω(s)}J(t) + σ1(t)I1(t) + η(t)I3(t)− (σ2(t) + µ(t))I2(t),

dI3(t)

dt
= σ2(t)I2(t)− η(t)I3(t)− (σ3(t) + µ(t))I3(t).

(2.1)

Here N(t) = S(t)+J(t)+ I1(t)+ I2(t)+ I3(t) denotes the total number of high-risk human pop-
ulation at time t; S(t), J(t), I1(t), I2(t), I3(t) are the densities (or fractions) of the populations of
unvaccinated susceptible individuals, vaccinated susceptible individuals, HIV-infected individuals
in primary stage of infection, HIV-infected individuals in secondary stage of infection and AIDS
stage of infection respectively at time t.

The quantities Λ(t), µ(t), ξ(t), ν(t), β1(t), β2(t), β3(t), k(t), p(t), σ1(t), σ2(t), σ3(t), η(t) are:
Λ(t): The recruitment rate function of unvaccinated susceptible population from the larger

embedding population.
µ(t): The per capita natural death rate function.
ξ(t): The per capita rate function at which unvaccinated susceptible individuals move into

vaccinated class on account of vaccination.
ν(t): The per capita rate function at which individuals of vaccinated susceptible class are

moved into unvaccinated susceptible class due to the wane of the vaccine with time.
β1(t): The transmission rate function of infection when unvaccinated susceptible individuals

contact with infective in the primary infectious stage and the rate of transmission is of the form:

β1(t)S(t)

∫ h

0

I1(t− s)dω(s).

β2(t): The transmission rate function of infection when unvaccinated susceptible individuals
contact with infective in the secondary infectious stage (asymptomatic stage) and the rate of trans-
mission is of the form:

β2(t)S(t)

∫ h

0

I2(t− s)dω(s).

β3(t): The transmission rate function of infection when unvaccinated susceptible individuals
contact with infective in the AIDS stage and the rate of transmission is of the form:

β3(t)S(t)

∫ h

0

I3(t− s)dω(s).
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k(t): 1−k(t) (0 < k(t) < 1) accounts for the efficacy of the vaccine-induced protection against
infection (for a vaccine that offers hundred percent protection, k(t) = 0; thus in reality k(t) > 0)
[20]. The rate of transmission of infection when vaccinated susceptible individuals contact with
infective in the primary infectious stage is of the form:

k(t)β1(t)J(t)

∫ h

0

I1(t− s)dω(s).

Similarly, the rates of transmission of infection when vaccinated susceptible individuals contact
with infective in the secondary infectious stage and AIDS stage are respectively of the forms:

k(t)β2(t)J(t)

∫ h

0

I2(t− s)dω(s), and k(t)β3(t)J(t)

∫ h

0

I3(t− s)dω(s).

Here we assume that the reduced infectivity of infected individuals in the secondary infection
stage (due to their low viral load) and also we assume that the reduced infectivity of infected
individuals in the AIDS stage due to stringent screening measures. Hence β2(t), β3(t) ≤ β1(t). It
is also assumed that there is a time lag due to intracellular delay between initial infection of a cell
by HIV and the release of new virions. The nonnegative constant h is the time delay. The function
ω(s) : [0, h] → [0,∞) is nondecreasing and has bounded variation such that:

∫ h

0

dω(s) = ω(h)− ω(0) = 1.

p(t): The proportion rate function at which vaccinated infectious individuals move straight to
the secondary infectious stage (by bypassing the primary infectious stage) [20]. It is assumed that
0 < p(t) < 1.

σ1(t): The per capita progression rate function to the secondary infectious stage from the
primary infectious class.

σ2(t): The per capita progression rate function to the AIDS stage from the secondary infectious
class.

σ3(t): The per capita additional death rate function in the AIDS class inflicted by disease.
η(t): The vaccine-induced per capita conversion rate function of individuals in the AIDS stage

to the asymptomatic stage (secondary infectious stage).

3. Permanence and extinction
In this section, we first introduce the following assumptions for system (2.1): functions Λ(t), µ(t),
ξ(t), ν(t), β1(t), β2(t), β3(t), k(t)(< 1), p(t)(< 1), σ1(t), σ2(t), σ3(t), η(t) are positive continuous
bounded and have positive lower bounds. It is assumed that β2(t), β3(t) ≤ β1(t) [20].

The initial conditions of (2.1) are given as

S(θ) = ϕ1(θ), J(θ) = ϕ2(θ), I1(θ) = ϕ3(θ), I2(θ) = ϕ4(θ), I3(θ) = ϕ5(θ), −h ≤ θ ≤ 0,
(3.1)
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where ϕ = (ϕ1, ϕ2, ϕ3, ϕ4, ϕ5) ∈ C such that ϕi(θ) ≥ 0 (i = 1, 2, 3, 4, 5), ∀ θ ∈ [−h, 0], and
C denotes the Banach space C([−h, 0],R5) of continuous functions mapping the interval [−h, 0]
into R5 and denote the norm of an element ϕ in C by ‖ϕ‖ = sup−h≤θ≤0{|ϕ1(θ)|, |ϕ2(θ)|, |ϕ3(θ)|,
|ϕ4(θ)|, |ϕ5(θ)|}. For a biological meaning, we further assume that ϕi(0) > 0, i = 1, 2, 3, 4, 5, and
also ‖ϕ‖ ≤ supt≥0

Λ(t)
µ(t)

= (Λ
µ
)u.

Theorem 3.1. [21,27] If the functions Λ(t), µ(t), ξ(t), ν(t), β1(t), β2(t), β3(t), k(t), p(t), σ1(t),
σ2(t), σ3(t), η(t) are continuous and bounded on [0, +∞) then there exists a unique solution of
the system (2.1) with initial conditions (3.1) defined on [0, +∞).

Here we wish to discuss the permanence of the system (2.1) with initial conditions (3.1), which
demonstrates how the disease will be permanent under some conditions. Also, we discuss how the
disease in the community will be going to die out under some conditions.

Let f l = inf
t≥0

f(t), fu = sup
t≥0

f(t), for a continuous and bounded function f(t) defined on [0, +∞).

Definition: The system (2.1) is said to be permanent if there are positive constants vi and
Mi (i = 1, 2, 3, 4, 5) such that:

v1 ≤ lim inf
t→∞

S(t) ≤ lim sup
t→∞

S(t) ≤ M1,

v2 ≤ lim inf
t→∞

J(t) ≤ lim sup
t→∞

J(t) ≤ M2,

v3 ≤ lim inf
t→∞

I1(t) ≤ lim sup
t→∞

I1(t) ≤ M3,

v4 ≤ lim inf
t→∞

I2(t) ≤ lim sup
t→∞

I2(t) ≤ M4,

v5 ≤ lim inf
t→∞

I3(t) ≤ lim sup
t→∞

I3(t) ≤ M5,

hold for any solution (S(t), J(t), I1(t), I2(t), I3(t)) of (2.1) with initial conditions (3.1). Here vi

and Mi (i = 1, 2, 3, 4, 5) are independent of (3.1).

Theorem 3.2. The system (2.1) with initial conditions (3.1) is permanent provided

R0 = { Λ

(β1 + β2 + β3)(
Λ
µ
)u + ξ + µ

}l

ξl(σ1 + µ)l

(ν + µ)u(σ1 + µ)l + ku(βu
1 )2((Λ

µ
)u)2(1 + (1− pl)ku)

plklβl
2

(σ2 + µ)u
> 1.

(3.2)

Proof. We will give the following Propositions 3.1-3.6 to complete the proof of this theorem.
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From biological consideration, we study the system (2.1) with initial conditions (3.1) in the
closed set

Ω = {(S(t), J(t), I1(t), I2(t), I3(t)) ∈ R5
+,

such that N(t) = S(t) + J(t) + I1(t) + I2(t) + I3(t) ≤ (
Λ

µ
)u}.

About the positive invariance of Ω, we have the following result.

Proposition 3.1. If (S(t), J(t), I1(t), I2(t), I3(t)) is a solution of (2.1) with initial conditions (3.1)
and ‖ϕ‖ ≤ (Λ

µ
)u, then (S(t), J(t), I1(t), I2(t), I3(t)) ∈ Ω, for all t ≥ 0.

Proof. Since the functions Λ(t), µ(t), ξ(t), ν(t), β1(t), β2(t), β3(t), k(t), p(t), σ1(t), σ2(t), σ3(t),
η(t) are continuous and bounded on [0, +∞), the solution (S(t), J(t), I1(t), I2(t), I3(t)) of (2.1)
with initial conditions (3.1) exists and is unique on [0, +∞). Firstly, we show that S(t) > 0 for
all t ∈ [0, +∞). Otherwise, there exists a t1 ∈ (0, +∞) such that S(t1) = 0, Ṡ(t1) ≤ 0 and
S(t) > 0 for all t ∈ [0, t1). We claim that J(t) > 0 for all t ∈ [0, t1). If this statement is not true,
then there exists a t2 ∈ (0, t1) such that J(t2) = 0 and J(t) > 0 on [0, t2). Integrating the second
equation of system (2.1) from 0 to t2, we have:

J(t2) = J(0) exp[−
∫ t2

0

{k(θ)(β1(θ)

∫ h

0

I1(θ − s)dω(s) + β2(θ)

∫ h

0

I2(θ − s)dω(s)

+β3(θ)

∫ h

0

I3(θ − s)dω(s)) + ν(θ) + µ(θ)}dθ] +

∫ t2

0

ξ(u)S(u) exp[

∫ u

t2

{k(θ)(β1(θ)

∫ h

0

I1(θ − s)dω(s) + β2(θ)

∫ h

0

I2(θ − s)dω(s)

+β3(θ)

∫ h

0

I3(θ − s)dω(s)) + ν(θ) + µ(θ)}dθ]du > 0,

which is a contradiction with J(t2) = 0. So J(t) > 0, for all t ∈ [0, t1). Integrating the first
equation of system (2.1) from 0 to t1, we have:

S(t1) = S(0) exp[−
∫ t1

0

{β1(θ)

∫ h

0

I1(θ − s)dω(s) + β2(θ)

∫ h

0

I2(θ − s)dω(s)

+β3(θ)

∫ h

0

I3(θ − s)dω(s) + ξ(θ) + µ(θ)}dθ] +

∫ t1

0

(Λ(u) + ν(u)J(u)) exp[

∫ u

t1

{β1(θ)

∫ h

0

I1(θ − s)dω(s) + β2(θ)

∫ h

0

I2(θ − s)dω(s)
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+β3(θ)

∫ h

0

I3(θ − s)dω(s) + ξ(θ) + µ(θ)}dθ]du > 0,

which is a contradiction with S(t1) = 0. So S(t) > 0, for all t ≥ 0 and hence J(t) > 0, for all
t ≥ 0.

Next we prove that I1(t) > 0 for all t ∈ [0, +∞). Otherwise, there exists a t3 ∈ (0, +∞) such
that I1(t3) = 0, İ1(t3) ≤ 0 and I1(t) > 0 for all t ∈ [0, t3). Hence there must have I2(t) > 0 for
all t ∈ [0, t3). If this statement is not true, then there exists a t4 ∈ (0, t3) such that I2(t4) = 0 and
I2(t) > 0 on [0, t4). We claim that I3(t) > 0 for all t ∈ [0, t4). If this is not true, then there exists
a t5 ∈ (0, t4) such that I3(t5) = 0 and I3(t) > 0 on [0, t5). Integrating the fifth equation of system
(2.1) from 0 to t5, we have:

I3(t5) = I3(0) exp{−
∫ t5

0

(η(s) + σ3(s) + µ(s))ds}

+

∫ t5

0

σ2(u)I2(u) exp{
∫ u

t5

(η(s) + σ3(s) + µ(s))ds}du > 0,

which is a contradiction with I3(t5) = 0. So I3(t) > 0, for all t ∈ [0, t4). Integrating the fourth
equation of system (2.1) from 0 to t4, we have:

I2(t4) = I2(0) exp{−
∫ t4

0

(σ2(s) + µ(s))ds}+

∫ t4

0

∫ h

0

[p(u)k(u)J(u){β1(u)I1(u− s)

+β2(u)I2(u− s) + β3(u)I3(u− s)}+ σ1(u)I1(u)

+η(u)I3(u)] exp{
∫ u

t4

(σ2(s) + µ(s))ds}dω(s)du > 0,

which is a contradiction with I2(t4) = 0. So I2(t) > 0, for all t ∈ [0, t3) and hence I3(t) > 0,
for all t ∈ [0, t3). Integrating the third equation of system (2.1) from 0 to t3, we have:

I1(t3) = I1(0) exp{−
∫ t3

0

(σ1(s) + µ(s))ds}+

∫ t3

0

∫ h

0

[S(u) + (1− p(u))k(u)J(u)]{β1(u)

I1(u− s) + β2(u)I2(u− s) + β3(u)I3(u− s)} exp{
∫ u

t3

(σ(s) + µ(s))ds}dω(s)du > 0,

which is a contradiction with I1(t3) = 0. So I1(t) > 0, for all t ≥ 0 and hence I2(t) > 0,
I3(t) > 0, for all t ≥ 0.

Therefore, S(t) > 0, J(t) > 0, I1(t) > 0, I2(t) > 0, I3(t) > 0, for all t ≥ 0. Thus, for all
t ∈ [0, +∞),

Ṅ(t) ≤ Λ(t)− µ(t)N(t), since, σ3(t) > 0, ∀ t ≥ 0.
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This differential inequality combined with N(0) ≤ (Λ
µ
)u imply that

N(t) = S(t) + J(t) + I1(t) + I2(t) + I3(t) ≤ (
Λ

µ
)u, for all t ≥ 0. (3.3)

Therefore, (S(t), J(t), I1(t), I2(t), I3(t)) is uniformly bounded on [0, +∞).
This completes the proof.

Proposition 3.2. The solution (S(t), J(t), I1(t), I2(t), I3(t)) of (2.1) with initial conditions (3.1)
satisfies

lim inf
t→∞

S(t) ≥ { Λ

(β1 + β2 + β3)(
Λ
µ
)u + ξ + µ

}l ≡ v1 > 0. (3.4)

Proof. By Proposition 3.1, we have

I1(t), I2(t), I3(t) ≤ (
Λ

µ
)u, ∀ t ≥ 0.

Thus, from the first equation of system (2.1), we have

Ṡ(t) ≥ Λ(t)− {β1(t)

∫ h

0

I1(t− s)dω(s) + β2(t)

∫ h

0

I2(t− s)dω(s)

+β3(t)

∫ h

0

I3(t− s)dω(s) + ξ(t) + µ(t)}S(t)

≥ Λ(t)− {(β1(t) + β2(t) + β3(t))(
Λ

µ
)u + ξ(t) + µ(t)}S(t)

⇒ lim inf
t→∞

S(t) ≥ { Λ

(β1 + β2 + β3)(
Λ
µ
)u + ξ + µ

}l.

This completes the proof.

Proposition 3.3. The solution (S(t), J(t), I1(t), I2(t), I3(t)) of (2.1) with initial conditions (3.1)
satisfies

lim inf
t→∞

J(t) ≥ { ξ

(β1 + β2 + β3)k(Λ
µ
)u + ν + µ

}lv1 ≡ v2 > 0, (3.5)

where v1 > 0 is given in the Proposition 3.2.
Proof. From the second equation of system (2.1) and by Proposition 3.1 and Proposition 3.2, the
result follows.
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Proposition 3.4. Assume that R0 > 1, then for any solution (S(t), J(t), I1(t), I2(t), I3(t)) of (2.1)
with initial conditions (3.1) we have

lim inf
t→∞

I2(t) ≥ αe−(σ2+µ)u(h+ρ) ≡ v3 > 0, (3.6)

where α > 0 and ρ > 0 will be given in the proof.
Proof. Since R0 > 1, and it is obvious that

plklβl
2

(σ2 + µ)u
(
v1ξ

l

G
) → R0 as α → 0, where G = {(ν + µ)u + ku(βu

1 F + βu
2 α + cβu

3 α)},

F =
{βu

1 (Λ
µ
)u + (βu

2 + cβu
3 )α}(1 + (1− pl)ku)(Λ

µ
)u

(σ1 + µ)l
,

c = (
σ2

η + σ3 + µ
)u and v1 = { Λ

(β1 + β2 + β3)(
Λ
µ
)u + ξ + µ

}l,

(3.7)
then there exists two positive constants α and ρ such that

plklβl
2

(σ2 + µ)u
(
v1ξ

l

G
)[1− exp{−Gρ}] > 1. (3.8)

Let us consider the following differential function V (t),

V (t) = I2(t) +

∫ h

0

∫ t

t−s

p(u + s)k(u + s){β1(u + s)I1(u)

+β2(u + s)I2(u) + β3(u + s)I3(u)}J(u + s)dudω(s).

(3.9)

The derivative of V (t) along solution of (2.1) is

V̇ (t) ≥ I2(t)

∫ h

0

p(t + s)k(t + s)β2(t + s)J(t + s)dω(s)− (σ2(t) + µ(t))I2(t)

≥ plklβl
2I2(t)

∫ h

0

J(t + s)dω(s)− (σ2 + µ)uI2(t).

(3.10)

We claim that it is impossible that I2(t) ≤ α, ∀ t ≥ t′ (t′ is any nonnegative constant). Suppose
the contrary, then from the third and fifth equations of (2.1), we have,

∃ t′1 > t′, such that I1(t) ≤ F, I3(t) ≤ cα, ∀ t ≥ t′1, where c and F are given in (3.7).

From the first equation of (2.1), we have,

∃ t′2 > t′, such that S(t) ≥ v1, ∀ t ≥ t′2, where v1 is given in (3.7). Let, t1 = max{t′1, t′2}.
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Therefore, as t ≥ t1 + h,

J̇(t) ≥ v1ξ
l −GJ(t), where v1 and G are given in (3.7). (3.11)

For t > t1 + h, integrating the above inequality from t1 + h to t, we obtain

J(t) ≥ J(t1 + h) exp(

∫ t1+h

t

Gds) +

∫ t

t1+h

v1ξ
l exp(

∫ s

t

Gdθ)ds

≥ (
v1ξ

l

G
)

∫ t

t1+h
G exp(

∫ s

0
Gdθ)ds

exp(
∫ t

0
Gdθ)

.

Hence, J(t) ≥ (
v1ξ

l

G
)[1− exp{−G(t− t1 − h)}].

Therefore, J(t) ≥ (
v1ξ

l

G
)[1− exp{−Gρ}] ≡ J∆, ∀ t ≥ t1 + h + ρ ≡ t2.

(3.12)

From (3.12) and the fourth equation of (2.1), we have,

İ2(t) ≥ p(t)k(t)β2(t)J(t)

∫ h

0

I2(t− s)dω(s)− (σ2(t) + µ(t))I2(t)

≥ plklβl
2J

∆

∫ h

0

I2(t− s)dω(s)− (σ2 + µ)uI2(t).

(3.13)

Let us take i = mint2≤t≤t2+h I2(t). Next we shall prove that I2(t) ≥ i , ∀ t ≥ t2. Suppose that it is
not true, then ∃T ≥ 0, such that I2(t) ≥ i, for all t2 ≤ t ≤ t2 + h + T, I2(t2 + h + T ) = i and
İ2(t2 + h + T ) ≤ 0. On the other hand, by (3.13), as t = t2 + h + T ,

İ2(t) ≥ (σ2 + µ)u[
plklβl

2J
∆

(σ2 + µ)u
− 1]i > 0, since from (3.8), we have

plklβl
2J

∆

(σ2 + µ)u
> 1. (3.14)

This is a contradiction. Hence, I2(t) ≥ i , ∀ t ≥ t2.
Therefore, from (3.10) and (3.12), we have,

V̇ (t) ≥ (σ2 + µ)u[
plklβl

2J
∆

(σ2 + µ)u
− 1]I2(t) ≥ (σ2 + µ)u[

plklβl
2J

∆

(σ2 + µ)u
− 1]i > 0, ∀ t ≥ t2, (3.15)

which implies V (t) → +∞ as t → +∞. From Proposition 3.1, V (t) is bounded. This is a
contradiction. Therefore, the claim is proved. From this claim, we will discuss the following two
possibilities:

(i) I2(t) ≥ α for all large t.
(ii) I2(t) oscillates about α for all large t.
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Finally, we will show that I2(t) ≥ αe−(σ2+µ)u(h+ρ) for sufficiently large t. Evidently, we only
need to consider the case (ii). Let t1 and t2 be sufficiently large times satisfying:

I2(t1) = I2(t2) = α,
I2(t) < α as t ∈ (t1, t2).
If t2 − t1 ≤ h + ρ, since İ2(t) ≥ −(σ2 + µ)uI2(t) and I2(t1) = α which implies I2(t) ≥

αe−(σ2+µ)u(h+ρ), ∀ t ∈ [t1, t2]. If t2 − t1 > h + ρ, then it is obvious that I2(t) ≥ αe−(σ2+µ)u(h+ρ),
for all t in [t1, t1 + h + ρ]. By (3.12), we have J(t) ≥ J∆, ∀ t ∈ [t1 + h + ρ, t2]. Thus, proceeding
exactly as the proof of the above claim, we see that I2(t) ≥ αe−(σ2+µ)u(h+ρ), ∀ t ∈ [t1 + h + ρ, t2].
If it is not true, then there exists a T ∗ ≥ 0 such that I2(t) ≥ αe−(σ2+µ)u(h+ρ), ∀ t ∈ [t1, t1 + h +
ρ + T ∗], I2(t1 + h + ρ + T ∗) = αe−(σ2+µ)u(h+ρ) and İ2(t1 + h + ρ + T ∗) ≤ 0. Using (3.13), as
t = t1 + h + ρ + T ∗, we have

İ2(t) ≥ (σ2 + µ)u[
βl

2J
∆

(σ2 + µ)u
− 1]αe−(σ2+µ)u(h+ρ) > 0,

since from (3.8), we have
plklβl

2J
∆

(σ2 + µ)u
> 1.

(3.16)

This is a contradiction. Therefore, I2(t) ≥ αe−(σ2+µ)u(h+ρ), ∀ t ∈ [t1, t2]. Hence,

lim inf
t→∞

I2(t) ≥ αe−(σ2+µ)u(h+ρ) ≡ v3 > 0.

This completes the proof of Proposition 3.4.

Proposition 3.5. Assume that R0 > 1, then for any solution (S(t), J(t), I1(t), I2(t), I3(t)) of (2.1)
with initial conditions (3.1) we have

lim inf
t→∞

I3(t) ≥ { σ2

η + σ3 + µ
}lv3 ≡ v4 > 0, (3.17)

where v3 > 0 is given in the Proposition 3.4.
Proof. From the fifth equation of system (2.1) and by Proposition 3.4, the result follows.

Proposition 3.6. Assume that R0 > 1, then for any solution (S(t), J(t), I1(t), I2(t), I3(t)) of (2.1)
with initial conditions (3.1) we have

lim inf
t→∞

I1(t) ≥ {v1 + (1− pu)klv2}(βl
2v3 + βl

3v4)

(σ1 + µ)u
≡ v5 > 0, (3.18)

where v1 > 0, v2 > 0, v3 > 0, v4 > 0 are given in the Propositions 3.2-3.5 respectively.
Proof. From the third equation of system (2.1) and by Propositions 3.2-3.5, the result follows.

Thus, the system (2.1) with initial conditions (3.1) is permanent provided (3.2) holds.
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Next, we shall use the following lemma to discuss the extinction of the disease.

Lemma 3.1. Consider an autonomous delay differential equation

ẋ(t) = a1

∫ h

0

x(t− s)dη(s)− a2x(t), (3.19)

where a1, a2 are two constants. If 0 ≤ a1 < a2, then for any solution x(t) with initial condition
ϕ(θ) ≥ 0, θ ∈ [−h, 0], we have

lim
t→∞

x(t) = 0.

Proof. Let us define the following Lyapunov functional:

V (t) =
x2(t)

2
+

a1

2

∫ h

0

∫ t

t−s

x2(u)dudη(s).

Then the time derivative along system (3.19) is given by

V̇ (t) = a1

∫ h

0

x(t)x(t− s)dη(s) +
a1

2

∫ h

0

{x2(t)− x2(t− s)}dη(s)− a2x
2(t)

= −a1

2

∫ h

0

{x(t)− x(t− s)}2dη(s) + a1x
2(t)− a2x

2(t) ≤ −(a2 − a1)x
2(t).

Therefore, lim
t→∞

x(t) = 0.

Theorem 3.3. If β2(t), β3(t) ≤ β1(t), 0 < k(t), p(t) < 1, and

R∗ = (
βu

1

µl
)(

Λ

µ
)u < 1, (3.20)

then lim
t→∞

{I1(t) + I2(t) + I3(t)} = 0, i.e. the disease in system (2.1) will be going to extinction.

Proof. Let U(t) = I1(t) + I2(t) + I3(t). Adding third, fourth and fifth equations of system (2.1),
assuming β2(t), β3(t) ≤ β1(t), 0 < k(t), p(t) < 1, and by Proposition 3.1, we have

dU(t)

dt
≤ µl[(

βu
1

µl
)(S(t) + J(t))

∫ h

0

U(t− s)dω(s)− U(t)]

≤ µl[(
βu

1

µl
)(

Λ

µ
)u

∫ h

0

U(t− s)dη(s)− U(t)], ∀ t ≥ 0.
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Using the comparison theorem of functional differential equations and Lemma 3.1, we have

lim
t→∞

U(t) = lim
t→∞

{I1(t) + I2(t) + I3(t)} = 0.

From (3.20) we conclude that the spread of the HIV infection should be controlled by way of
effective protections to reduce the value of β1(t) and thereby to decrease R∗. If the rate of migration
or recruitment is restricted into susceptible community, the spread of the disease can also be kept
under control by reducing Λ(t) and thereby decreasing R∗. We have observed that vaccination has
no effect on the extinction of the disease since R∗ does not contain ξ(t), k(t) and p(t).

4. Global asymptotic stability
In this section, we derive sufficient conditions for global asymptotic stability of system (2.1) with
initial conditions (3.1). We now state a definition of global asymptotic stability of solutions of
system (2.1).

Definition[51]. System (2.1) with initial conditions (3.1) is said to be globally asymptotically
stable if

lim
t→∞

| S(t)− S ′(t) |= 0, lim
t→∞

| J(t)− J ′(t) |= 0, lim
t→∞

| I1(t)− I ′1(t) |= 0,

lim
t→∞

| I2(t)− I ′2(t) |= 0, lim
t→∞

| I3(t)− I ′3(t) |= 0,

hold for any two solutions (S(t), J(t), I1(t), I2(t), I3(t)) and (S ′(t), J ′(t), I ′1(t), I
′
2(t), I

′
3(t)) of

(2.1) with different initial conditions satisfying (3.1).
Assume that (S(t), J(t), I1(t), I2(t), I3(t)) is a solution of (2.1). By Proposition (3.1), we have

0 ≤ S(t) ≤ A, 0 ≤ J(t) ≤ A, 0 ≤ I1(t) ≤ A, 0 ≤ I2(t) ≤ A,

0 ≤ I3(t) ≤ A, ∀ t ≥ 0, where A = (
Λ

µ
)u.

Let us define,

B1(t) = c1µ(t)− c2A(β1(t) + β2(t) + β3(t)),

B2(t) = c1µ(t)− c2Ak(t)(β1(t) + β2(t) + β3(t)),

B3(t) = c2µ(t)− (c1 + c2)A

∫ h

0

β1(t + s)(1 + k(t + s))dω(s),

B4(t) = c2µ(t) + (c2 − c3)σ2(t)− (c1 + c2)A

∫ h

0

β2(t + s)(1 + k(t + s))dω(s),

(4.1)
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B5(t) = c3(η(t) + σ3(t) + µ(t))− c2η(t)− (c1 + c2)A

∫ h

0

β3(t + s)(1 + k(t + s))dω(s).

Theorem 4.1. If there exist c1 > 0, c2 > 0 and c3 > 0 such that the functions Bi(t), i = 1, 2, 3, 4, 5,
given by (4.1) are nonnegative on [0,∞) and for any interval sequence {[ai, bi]}∞1 , [ai, bi]∩ [aj, bj]

= φ and bi− ai = bj − aj > 0, for all i, j = 1, 2, . . . and i 6= j, one has
∑∞

k=1

∫ bk

ak
Bi(t)dt = ∞,

then system (2.1) with initial conditions (3.1) is globally asymptotically stable.
Proof. Assume that (S(t), J(t), I1(t), I2(t), I3(t)) and (S ′(t), J ′(t), I ′1(t), I

′
2(t), I

′
3(t)) are any two

solutions of system (2.1) with different initial conditions satisfying (3.1).
Define V1(t) =| S(t) − S ′(t) | . Then the right-upper derivative of V1(t) along the solution of

system (2.1) and (3.1) is given by

D+V1(t) = sgn(S(t)− S ′(t))[−(S(t)− S ′(t)){β1(t)

∫ h

0

I1(t− s)dω(s)

+β2(t)

∫ h

0

I2(t− s)dω(s) + β3(t)

∫ h

0

I3(t− s)dω(s)}

+S ′(t){β1(t)

∫ h

0

(I ′1(t− s)− I1(t− s))dω(s)

+β2(t)

∫ h

0

(I ′2(t− s)− I2(t− s))dω(s) + β3(t)

∫ h

0

(I ′3(t− s)− I3(t− s))dω(s)}

−(ξ(t) + µ(t))(S(t)− S ′(t)) + ν(t)(J(t)− J ′(t))]

≤ −(ξ(t) + µ(t)) | S(t)− S ′(t) | +ν(t) | J(t)− J ′(t) |

+β1(t)A

∫ h

0

| I1(t− s)− I ′1(t− s) | dω(s)

+β2(t)A

∫ h

0

| I2(t− s)− I ′2(t− s) | dω(s) + β3(t)A

∫ h

0

| I3(t− s)− I ′3(t− s) | dω(s).

(4.2)
Define V2(t) =| J(t) − J ′(t) | . Then the right-upper derivative of V2(t) along the solution of
system (2.1) and (3.1) is given by

D+V2(t) = sgn(J(t)− J ′(t))[ξ(t)(S(t)− S ′(t))− k(t)(J(t)− J ′(t)){β1(t)

∫ h

0

I1(t− s)dω(s)
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+β2(t)

∫ h

0

I2(t− s)dω(s) + β3(t)

∫ h

0

I3(t− s)dω(s)}

+k(t)J ′(t){β1(t)

∫ h

0

(I ′1(t− s)− I1(t− s))dω(s) + β2(t)

∫ h

0

(I ′2(t− s)− I2(t− s))dω(s)

+β3(t)

∫ h

0

(I ′3(t− s)− I3(t− s))dω(s)} − (ν(t) + µ(t))(J(t)− J ′(t))]

≤ −(ν(t) + µ(t)) | J(t)− J ′(t) | +ξ(t) | S(t)− S ′(t) |

+k(t)β1(t)A

∫ h

0

| I1(t− s)− I ′1(t− s) | dω(s) + k(t)β2(t)A

∫ h

0

| I2(t− s)

−I ′2(t− s) | dω(s) + k(t)β3(t)A

∫ h

0

| I3(t− s)− I ′3(t− s) | dω(s).

(4.3)
Define V3(t) =| I1(t) − I ′1(t) | . Calculating the right-upper derivative of V3(t) along the

solution of system (2.1) and (3.1), we have

D+V3(t) = sgn(I1(t)− I ′1(t))[{(S(t)− S ′(t)) + k(t)(1− p(t))(J(t)− J ′(t))}

{β1(t)

∫ h

0

I1(t− s)dω(s) + β2(t)

∫ h

0

I2(t− s)dω(s) + β3(t)

∫ h

0

I3(t− s)dω(s)}

+{S ′(t) + k(t)(1− p(t))J ′(t)}{β1(t)

∫ h

0

(I1(t− s)− I ′1(t− s))dω(s)

+β2(t)

∫ h

0

(I2(t− s)− I ′2(t− s))dω(s) + β3(t)

∫ h

0

(I3(t− s)− I ′3(t− s))dω(s)}

−(σ1(t) + µ(t))(I1(t)− I ′1(t))]

≤ −(σ1(t) + µ(t)) | I1(t)− I ′1(t) |

+A{| S(t)− S ′(t) | +k(t)(1− p(t)) | J(t)− J ′(t) |}(β1(t) + β2(t) + β3(t))

+A(1 + k(t)(1− p(t))){β1(t)

∫ h

0

| I1(t− s)− I ′1(t− s) | dω(s)

+β2(t)

∫ h

0

| I2(t− s)− I ′2(t− s) | dω(s) + β3(t)

∫ h

0

| I3(t− s)− I ′3(t− s) | dω(s)}.
(4.4)
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Define V4(t) =| I2(t) − I ′2(t) | . Calculating the right-upper derivative of V4(t) along the
solution of system (2.1) and (3.1), we have

D+V4(t) = sgn(I2(t)− I ′2(t))[k(t)p(t)(J(t)− J ′(t)){β1(t)

∫ h

0

I1(t− s)dω(s)

+β2(t)

∫ h

0

I2(t− s)dω(s) + β3(t)

∫ h

0

I3(t− s)dω(s)}

+k(t)p(t)J ′(t){β1(t)

∫ h

0

(I1(t− s)− I ′1(t− s))dω(s)

+β2(t)

∫ h

0

(I2(t− s)− I ′2(t− s))dω(s) + β3(t)

∫ h

0

(I3(t− s)− I ′3(t− s))dω(s)}

+σ1(t)(I1(t)− I ′1(t)) + η(t)(I3(t)− I ′3(t))− (σ2(t) + µ(t))(I2(t)− I ′2(t))]

≤ −(σ2(t) + µ(t)) | I2(t)− I ′2(t) | +σ1(t) | I1(t)− I ′1(t) | +η(t) | I3(t)− I ′3(t) |

+Ak(t)p(t) | J(t)− J ′(t) | (β1(t) + β2(t) + β3(t))

+Ak(t)p(t){β1(t)

∫ h

0

| I1(t− s)− I ′1(t− s) | dω(s)

+β2(t)

∫ h

0

| I2(t− s)− I ′2(t− s) | dω(s) + β3(t)

∫ h

0

| I3(t− s)− I ′3(t− s) | dω(s)}.
(4.5)

Define V5(t) =| I3(t) − I ′3(t) | . Calculating the right-upper derivatives of V5(t) along the
solution of system (2.1) and (3.1), we have

D+V5(t) = sgn(I3(t)− I ′3(t)){σ2(t)(I2(t)− I ′2(t))− (η(t) + σ3(t) + µ(t))(I3(t)− I ′3(t))}

≤ σ2(t) | I2(t)− I ′2(t) | −(η(t) + σ3(t) + µ(t)) | I3(t)− I ′3(t) | .
(4.6)

Define V6(t) as

V6(t) =

∫ h

0

∫ t

t−s

A(1 + k(u + s)){β1(u + s) | I1(u)− I ′1(u) |

+β2(u + s) | I2(u)− I ′2(u) | +β3(u + s) | I3(u)− I ′3(u) |}dudω(s).

The right-upper derivative of V6(t) along the solution of system (2.1) and (3.1) is given below:

D+V6(t) =

∫ h

0

A(1 + k(t + s)){β1(t + s) | I1(t)− I ′1(t) |
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+β2(t + s) | I2(t)− I ′2(t) | +β3(t + s) | I3(t)− I ′3(t) |}dω(s)

−A(1 + k(t))

∫ h

0

{β1(t) | I1(t− s)− I ′1(t− s) |

+β2(t) | I2(t− s)− I ′2(t− s) | +β3(t) | I3(t− s)− I ′3(t− s) |}dω(s).

(4.7)

Let V (t) = c1(V1(t)+V2(t))+c2(V3(t)+V4(t))+c3V5(t)+(c1+c2)V6(t), then by using (4.2)-(4.7),
we have

D+V (t) ≤ −B1(t) | S(t)− S ′(t) | −B2(t) | J(t)− J ′(t) |

−B3(t) | I1(t)− I ′1(t) | −B4(t) | I2(t)− I ′2(t) | −B5(t) | I3(t)− I ′3(t) |, ∀ t ≥ h,
(4.8)

where Bi(t), (i = 1, 2, 3, 4, 5) are defined in (4.1).
Integrating (4.8) from h to t, we have

∫ t

h

{B1(t) | S(t)− S ′(t) | +B2(t) | J(t)− J ′(t) | +B3(t) | I1(t)− I ′1(t) |

+B4(t) | I2(t)− I ′2(t) | +B5(t) | I3(t)− I ′3(t) |}dt ≤ V (h)− V (t)

⇒
∫ t

h

{B1(t) | S(t)− S ′(t) | +B2(t) | J(t)− J ′(t) | +B3(t) | I1(t)− I ′1(t) |

+B4(t) | I2(t)− I ′2(t) | +B5(t) | I3(t)− I ′3(t) |}dt < ∞.

(4.9)

By assumptions about Bi(t), i = 1, 2, 3, 4, 5, and the boundedness of (S(t), J(t), I1(t), I2(t), I3(t))
and (S ′(t), J ′(t), I ′1(t), I

′
2(t), I

′
3(t)) on [0,∞), we obtain from system (2.1) that | S(t) − S ′(t) |,

| J(t) − J ′(t) |,| I1(t) − I ′1(t) |, | I2(t) − I ′2(t) | and | I3(t) − I ′3(t) | are bounded and uniformly
continuous on [0,∞). It follows from (4.9) that,

lim
t→∞

| S(t)− S ′(t) |= 0, lim
t→∞

| J(t)− J ′(t) |= 0, lim
t→∞

| I1(t)− I ′1(t) |= 0,

lim
t→∞

| I2(t)− I ′2(t) |= 0, lim
t→∞

| I3(t)− I ′3(t) |= 0.

This shows that system (2.1) with initial conditions (3.1) is globally asymptotically stable. This
completes the proof.

Corollary 4.1. If there exist c1 > 0, c2 > 0 and c3 > 0 such that lim inft→∞ Bi(t) > 0, for i =
1, 2, 3, 4, 5; where Bi(t) are given by (4.1) then system (2.1) with initial conditions (3.1) is globally
asymptotically stable.

From the results of the Theorem 4.1 and Corollary 4.1, we observe that the vaccination and time
delay both has an effect on the global asymptotic stability of the proposed model since B2(t)
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contains k(t) and Bi(t), i = 3, 4, 5; contain h and k(t), where 1 − k(t) (0 < k(t) < 1) accounts
for the efficacy of the vaccine-induced protection against infection. Therefore, we conclude that
the vaccination programme may rule out any complicated behaviour (eg. limit cycles) under the
restrictions specified on Bi(t) in Theorem 4.1 and Corollary 4.1.

From our everyday experience we know that the biological and environmental parameters are
subject to fluctuation in time, the effects of a periodically varying environment have an important
selective forces on systems in a fluctuating environment. To investigate this kind of phenomenon,
in the model, the coefficients should be periodic functions of time. Let us state a theorem related
to this.

Theorem 4.2. [43] If system (2.1) is ψ−periodic and there are positive constants vi and Mi (i =
1, 2, 3, 4, 5) such that:

v1 ≤ lim inf
t→∞

S(t) ≤ lim sup
t→∞

S(t) ≤ M1,

v2 ≤ lim inf
t→∞

J(t) ≤ lim sup
t→∞

J(t) ≤ M2,

v3 ≤ lim inf
t→∞

I1(t) ≤ lim sup
t→∞

I1(t) ≤ M3,

v4 ≤ lim inf
t→∞

I2(t) ≤ lim sup
t→∞

I2(t) ≤ M4,

v5 ≤ lim inf
t→∞

I3(t) ≤ lim sup
t→∞

I3(t) ≤ M5,

hold for any solution (S(t), J(t), I1(t), I2(t), I3(t)) of (2.1) with initial conditions (3.1), then sys-
tem (2.1) has a unique positive periodic solution with period ψ.

Using Theorem 4.2, we have the following corollary.

Corollary 4.2. If system (2.1) is ψ−periodic and conditions in Theorems 3.2 and 4.1 are valid,
then there exists a unique positive ψ−periodic solution which is globally asymptotically stable.

5. Conclusions
Research on epidemic models that incorporates time dependent biological and environmental pa-
rameters, disease related death, varying total population, and time delay is becoming one of the
important areas in the mathematical theory of epidemiology. To the best of our knowledge, the re-
search works on the nonautonomous epidemic dynamical models are very few [23,40,44,45,50,51].
In this paper we have considered a nonlinear and nonautonomous stage-structured HIV/AIDS epi-
demic model with an imperfect HIV vaccine, varying total population size and distributed time
delay to become infectious due to intracellular delay between initial infection of a cell by HIV and
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the release of new virions. The infected persons in the different stages have different ability of
transmitting disease. It is assumed that an imperfect HIV vaccine could offer a therapeutic effect
by converting vaccinees in the highly infectious AIDS stage into the less infectious asymptomatic
stage. It is also assumed that the vaccine could induce a bypass of primary infection, where a
proportion of vaccinated infectious individuals move straight to the asymptomatic (chronic) stage.
The most basic and important questions to ask for the systems in the theory of mathematical epi-
demiology are the persistence, extinctions, the existence of periodic solutions, global stability, etc.
[2,10,15,28,33,36]. In this article, we have established some sufficient conditions on the perma-
nence and extinction of the disease by using inequality analytical technique. We have obtained the
explicit formula of the eventual lower bounds of infected persons. We have introduced some new
threshold values R0, R

∗ given by (3.2) and (3.20) respectively and further obtained that the disease
will be permanent when R0 > 1 and the disease will be going to extinct when R∗ < 1. By Lya-
punov functional method, we have also obtained some sufficient conditions for global asymptotic
stability of this model. Our mathematical analysis suggests that the spread of the HIV infection
should be controlled by way of promoting the condom use or other effective protections to decrease
R∗ (since this process reduces the value of β1(t)) and thereby to keep overall infective population
under control. Since due to migration susceptible population increases continuously and therefore
infection becomes more endemic and always persists in the population. Our analysis also suggests
that if the rate of migration or recruitment is restricted into susceptible community, the spread of
the disease can also be kept under control by reducing Λ(t) and thereby decreasing R∗. We have
observed that vaccination has no effect on the extinction of the disease (since R∗ does not contain
ξ(t), k(t) and p(t)) but it has an effect on the permanence and global asymptotic stability of this
model. We have also observed that the time delay has no effect on the permanence of the system
(since R0 does not contain time delay h) but it has an effect on the global asymptotic stability of
this model. The aim of the analysis of this model is to identify the parameters of interest for further
study, with a view to informing and assisting policy-maker in targeting prevention and treatment
resources for maximum effectiveness.
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