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Split of an Optimization Variable in Game Theory
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Abstract. In the present paper, a general multiobjective optimization problem is stated as a Nash
game. In the nonrestrictive case of two objectives, we address the problem of the splitting of the
design variable between the two players. The so-called territory splitting problem is solved by
means of an allocative approach. We propose two algorithms in order to find fair allocation tables.
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1. Introduction

Let us consider the multiobjective program defined by

(M) min
x

{
f1(x)
f2(x)

}
, (1.1)

when the cost functions are concurrent, the problem (M) must be reformulated to make sense.
To this end, a classical approach used to tackle multiobjective optimization is to define a scalar
anzats, generally a convex combination of the multiple criteria. This approach introduces however
an arbitrary choice of weights. In the convex case, taking all possible optima obtained for all
possible weights yields the Pareto front, which is of high importance to understand the tradeoff
between competitive criteria. Unfortunately, the determination of the Pareto front is generally
very expensive. So, it could be of interest to reframe the multiobjective optimization problem as
a Nash game [2, 3]: we split the original design variable into two strategies, formally we denote
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x = (U, V ). Then we look for a Nash equilibrium, defined as the couple solution to

(P )

{
min

U
f1(U, V ),

min
V

f2(U, V ).
(1.2)

The main difficulty of the theoretic-game approach is the determination of the best, non arbitrary,
partition of the variablex into the artificial variablesU andV . This question, the main concern of
our paper, is a nontrivial and difficult problem. To our knowledge, there are very few contributions
to the study of this territory splitting problem. In [4] Désid́eri proposes an algorithm of territory
splitting using the eigenvectors of the Hessian matrix of one criteriaf1, which somehow plays the
role of a preferred objective. In the following we propose two algorithms in order to find a Nash
equilibrium using a splitting of the strategy spaces when no cost is preferred among others.

2. Splitting algorithms

Pure allocation tables are any elementsP andQ from {0, 1}n that satisfyPi + Qi = 1 for 1 ≤
i ≤ n. Mixed allocations are obtained by convexification of the set of pure ones. We also drop
the mutual exclusivity constraint, to allow both players to share the same variable. To split the
optimization variable, we construct a sequence of two tables of allocationP (m) andQ(m) in [0, 1]n,
and we use an auxiliary functionf defined by (2.2) fromf1 andf2. In order to construct the se-
quencesP (m) andQ(m), and to determine the Nash equilibriumxNE, we propose the two following
algorithms.

2.1. Algorithm 1 (AG1), heuristic allocation tables

Algorithm 1. Step 1: Setm = 0. Starting from any initial guessx(0), y(0) in Rn, andρ > 0 is a
constat descent step, computeP (0) andQ(0) by:





min
x∈Rn

f1(x), x(k+1) = x(k) − ρ∇f1(x
(k)), k ≥ 0,

P
(0)
j =

Σk|x(k+1)
j − x

(k)
j |

Σk‖x(k+1) − x(k)‖ ,

min
y∈Rn

f2(y), y(k+1) = y(k) − ρ∇f2(y
(k)), k ≥ 0,

Q
(0)
j =

Σk|y(k+1)
j − y

(k)
j |

Σk‖y(k+1) − y(k)‖ ,

(2.1)

then initially set.
x

(0)
NE = P (0).x∗ + Q(0).y∗,

wherex∗ is the solution tomin
x

f1(x) andy∗ the solution tomin
x

f2(x), the dot denotes the Hadamard

product. We now define the functionf by

f(x) = f1(x) + f2(y), (2.2)
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wherex = P (m).x + Q(m).x
(m)
NE and y = P (m).x

(m)
NE + Q(m).x.

Step 2: Computex(m)
opt the solution tomin

x
f(x) and updateP (m+1) andQ(m+1) as follows





min
x

f(x), x(k+1) = x(k) − ρ∇f(x(k)), k ≥ 0,

P
(m+1)
j =

Σk|(∇f1(P
(m).x(k+1) + Q(m).x

(m)
NE))j|

Σk‖∇f1(P
(m).x(k+1) + Q(m).x

(m)
NE)‖ ,

Q
(m+1)
j =

Σk|(∇f2(Q
(m).x(k+1) + P (m).x

(m)
NE))j|

Σk‖∇f2(Q
(m).x(k+1) + P (m).x

(m)
NE)‖ ,

(2.3)

x
(m+1)
NE = P (m).x

(m)
opt + Q(m).x

(m)
NE,

while ||x(m+1)
NE − x

(m)
NE|| > test, setm = m + 1, redo step 2.

2.2. Algorithm 2 (AG2), optimized allocation tables

Algorithm 2. 1. initial step1 as in (AG1),

2. givenP (m) andQ(m), computex(m)
opt the solution tomin

x
f(x),

3. solve the minimization problemmin
P

f(P.x
(m)
opt + Q(m).x

(m)
NE) to getP (m+1),

4. solve the minimization problemmin
Q

f(P (m).x
(m)
NE + Q.x

(m)
opt ) to getQ(m+1),

5. setx(m+1)
NE = P (m+1).x

(m)
opt + Q(m+1).x

(m)
NE,

6. while ||x(m+1)
NE − x

(m)
NE|| > test, set m = m + 1, redo 2.

We pay a particular attention to check if the Nash equilibria computed by the proposed algorithms
belong to the Pareto front, also known as the set of non–dominated strategies (the meaning is
obvious from the definition of the front) [1]. We set,fλ = λf1 + (1− λ)f2, λ ∈ [0, 1]. For eachλ
we compute the optima, the set of which forms the Pareto front (at least in the convex case). Below
we present some numerical results obtained by algorithms 1 and 2.

3. Numerical results

We consider a simple illustrating case wheref1(x) = ||Ax − b||2 for the first player, andf2(x) =
||Cx − d||2 for the second one, whereA andC are twon × n matrices, andb andd are vectors,
that isn × 1 matrices. We observe that the two algorithms converge. In example 1, see figure 1
and figure 2, we obtain the convergence to a Nash equilibrium which lies on the Pareto front, and
corresponds to the optimum offλ for a valueλ = 1/2. In example 2, see figure 3 and figure 4, the
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best computed Nash equilibrium is close to the Pareto front but not on it. Moreover, it corresponds
to a strategy that is more advantageous for the costf2.
Example 1.A = C = Id, b = [1,−2, 2, 9, 1, 2, 9], d = [5, 1, 3,−8,−6, 0, 4]

Figure 1: Pareto front and Nash equilibriums (AG1). Pareto front and the last Nash equilibrium
found by (AG1)

Figure 2: Pareto front and Nash equilibriums (AG2). Pareto front and the last Nash equilibrium
found by (AG2)

Example 2.A = tridiag[1,−2, 1], C = A; b = rand(n, 1), d = 10 ∗ b, n = 50
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Figure 3: Pareto front and Nash equilibriums (AG1). Pareto front and the last Nash equilibrium
found by (AG1)

Figure 4: Pareto front and Nash equilibriums (AG2). Pareto front and the last Nash equilibrium
found by (AG2)

4. Conclusion

Both algorithms yield successive iterations that lie close to if not on the Pareto front. Ongoing
work is in progress to address weak points such as the computational cost that must be lowered or
the heuristic determination of the allocation tables that must be at least statistically driven.
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