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Abstract. It is shown that a real Hankel matrix admits an approximate block diagonalization in
which the successive transformation matrices are upper triangular Toeplitz matrices. The structure
of this factorization was first fully discussed in [1]. This approach is extended to obtain the quo-
tients and the remainders appearing in the Euclidean algorithm applied to two polynomialsu(x)
andv(x) of degreen andm, respectively, whithm < n.
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1. Introduction

Let

u(x) =
n∑

k=0

ukx
k andv(x) =

m∑

k=0

vkx
k,

be two polynomials inR [x] with deg(u(x)) = n, deg(v(x)) = m andm < n. The classical
Euclidean algorithm applied tou(x) andv(x) gives a sequence of polynomials quotientsqk (x)
and polynomials remaindersrk (x) , such that

r−1 (x) = u(x), r0 (x) = v(x), rk−2 (x) = rk−1 (x) qk(x)− rk (x) , k = 1, . . . , K, (1.1)

where−rk (x) is the polynomial remainder of the division ofrk−2 (x) by rk−1 (x) andrK (x) is
the greatest common divisor (GCD) ofu(x) andv(x).

The computation of the polynomials quotients and the polynomials remainders has been first
studied in [6]. Bini and Gemignani (see [4, 5]) have computed the coefficients of the polynomials
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in (1.1) via a new approach based on a block LU factorization (see [8, 9]) of the Hankel matrix
H (u, v) , associated tou(x) andv(x). More specifically,

AtH (u, v) A = D, (1.2)

whereA is an upper triangular matrix with entries equal to one andD is a block diagonal matrix
with each block being a lower Hankel triangular matrix. Lately, Ben Atti and Diaz-Toca [7] are
calculated the coefficients of the polynomials in (1.1) via a block LU factorization of the Hankel
matrices different from the classical one [3]. Unfortunately, when the input polynomials are per-
turbed, the beautiful relation between the Euclidean algorithm and the block LU factorization of
the Hankel matrices may be lost. That is why a new notion of the approximate block diagonaliza-
tion has been introduced in [1] and its connection with the approximate Euclidean algorithm has
been proposed in the same paper.

It is shown that an × n real Hankel matrix admits an approximate block diagonalization in
which the successive transformation matrices are upper triangular Toeplitz matrices.

The main contribution of this paper is to reveal the natural relation between the approximate
Euclidean algorithm and the approximate block diagonalization [1] of the Hankel matrix associated
to u(x) and v(x) and propose a revised algorithm which provide the approximate polynomials
quotients and the approximate polynomials remainders during the processus execution.

The paper is organized as follows: Section 2 gives some theoretical results associated to Hankel
matrices. A revised algorithm for an approximate block diagonalization ofn × n real Hankel
applied to two polynomialsu(x) and v(x) of degreen and m, respectively, withm < n and
its connection to the approximate Euclidean algorithm are introduced in Section 3. In Section 4
we illustrate our approach with an example given by an implementation of the procedures using
Matlab. Finally, a summary and future research are given in Section 5 to complete the paper.

2. Hankel matrices

Let u(x) =
∑n

k=0 ukx
k andv(x) =

∑m
k=0 vkx

k be two polynomials inR [x] of degreen andm,
respectively, wherem < n. The power series expansionR (x) of the functionv(x)/u(x) at the
infinity R (x) =

∑∞
k=0 hkx

−k defines then × n real Hankel matrix,H = H (u, v) , associated to
u(x) andv(x),

H =




h1 h2 · · · hn

h2 h3 · · · hn+1
...

...
. . .

...
hn hn+1 · · · h2n−1


 .

In addition, every nonsingular real Hankel matrix can be viewed as a Hankel matrix associated to
two polynomials.

Proposition 1. For any nonsingularn× n Hankel matrixH there exists two coprime polynomials
u(x) and v(x) of degreen and m, respectively, wherem < n, such thatH = H (u, v) . The
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polynomialu(x) andv(x) are related toH by the following equalities:

H (u0, . . . , un−1)
t = −un (hn+1, . . . , h2n)t , (vn−1, . . . , v0)

t = lT (h1, . . . , hn) (un, . . . , u1)
t ,

whereh2n is any number andlT (h1, . . . , hn) is the lower triangular Toeplitz matrix defined by the
list [h1, . . . , hn] .

Proof. (See [5]).

Remark 2. Suppose thatH has the following structure:H = lH (hn, ..., h2n−1): a lower tri-
angular Hankel matrix defined by the list[hn, . . . , h2n−1] . Thus, Proposition1 concludes, for any
polynomialv(x),

(vn−1, . . . , v0)
t =




0
...

. ..
hn · · · 0


 (un, . . . , u1)

t = (0, . . . , 0, hnun)t .

If v(x) = 1 thenv0 = 1 andun = 1/hn. Thus,H represents a Hankel matrix associated tou(x)
andv(x) = 1 : H = H (u, 1) .

Moreover we will use the following notations.

• uT (S) ∈ Rn×n denotes the upper Toeplitz triangular matrix associated to a listS such that
the first row is defined byS.

• lH (S) ∈ Rn×n denotes the lower Hankel triangular matrix (with respect to the antidiagonal)
associated to a listS of length(2n− 1) such that the last column is defined byS.

• Let p ∈ N. Let Σp ∈ Rp×p, Σp = [εjk]
p
j,k=1 , where all entries ofΣp are zero except that

εj+k,j = εk for j, k = 1, 2, ..., p.

• GivenP ∈ Rn×m, P̃ = JmP tJn whereJp = lH(1, 0, ..., 0︸ ︷︷ ︸
p−1

), p ∈ N.

• Let a ∈ R. Let µ > 0, V (a, µ) = (a− µ; a + µ) is a neighborhood ofa.

Lemma 3. Letn ∈ N∗. Leth = H (h1, ..., h2n−1) be a square Hankel matrix of ordern. Suppose
thathj = εj with εj ∈ V (0, µ) for j = 1, 2, ..., p− 1 andhp /∈ V (0, µ). Thenh has the form

h = H (ε1, ..., εp−1, hp, ..., h2n−1) =

(
h11 h12

h21 h22

)
, (2.1)

where
h11 = lH (hp, ..., h2p−1) + JpΣp, h22 = H (h2p+1, ..., h2n−1) ,

h12 = H (hp+1, ..., hn+p−1; p; n− p) , h21 = ht
12.
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We can successively construct fromh the following two matrices:

• A square lower Hankel triangular matrixH of order(2n− p) ,

H = lH (hp, ..., h2n−1) =




0 0 H13

0 h11 h12

H31 ht
12 h22


 , (2.2)

whereH31 = H13 = lH(hp, ..., hn−1).

• A square upper triangular Toeplitz matrixT,

T = J2n−rH =uT (hp, ..., h2n−1) =




t11 t12 t13

0 t22 t23

0 0 t33


 , (2.3)

wheretkj = JH3−i+1,j, t11 = t33 andt12 = t̃23.

Lemma 4. LetT be an upper triangular matrix, nonsingular with non-zero diagonal. ThenT−1 =
uT (µ1, ..., µ2n−p) and has the following block decomposition,

T−1 =




(T−1)11 (T−1)12 (T−1)13

0 (T−1)22 (T−1)23

0 0 (T−1)33


 =




t−1
11 P̃ Q
0 t−1

22 P
0 0 t−1

11


 , (2.4)

where
P = T (µ2, ..., µn; p; n− p) , P̃ = Jn−pP

tJr,

t22P + t23t
−1
11 = 0(p,n−p), h11P + Mt−1

11 = 0(p,n−p),

t11P̃ + t̃23t
−1
22 = 0(n−p,p), t11Q + t̃23P + t13t

−1
11 = 0(n−p,n−p).

3. Approximate block diagonalization for H (u, v)

In this section, we introduce the correlation between the approximate Euclidean algorithm applied
to two polynomialsu(x) andv(x) and the approximate block diagonalization of a Hankel matrix.
From Remark 2 it follows that Theorem 5 of [1] can be rewritten in terms of Hankel matrix asso-
ciated withu(x) andv(x).

Theorem 5. Let H (u, v) = H (ε1, ..., εn−m−1, hn−m, ..., h2n−1) an approximate Hankel matrix
associated to two coprime polynomials inR [x] , u(x) =

∑n
k=0 ukx

k and v(x) =
∑m

k=0 vkx
k,

deg(u(x)) = n, deg(v(x)) = m andm < n, whereεj ∈ V (0, µ) for j = 1, 2, ..., n −m − 1 with
hn−m /∈ V (0, µ). Let

T = uT (hn−m, ..., h2n−1) , T−1 = uT (µ1, ..., µn−m) ,
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t = uT (hn−m, ..., h2n−m−1) , t−1 = uT (µ1, ..., µn) .

Then
(
t−1

)t
H (u, v) t−1 =

(
H̃ (q, 1) ε′

(ε′)t H̃ (v, r)

)
, (3.1)

where
H̃ (q, 1) = H (q, 1) +

(
t−1
22

)t
Jn−mΣn−mt−1

22 , (3.2)

H̃ (v, r) = H (v, r) + P tJn−mΣn−mP, ε′ =
(
t−1
22

)t
Jn−mΣn−mP, (3.3)

q(x) andr(x) are the polynomial quotient and remainder of the divisionu (x) /v (x) .

Proof. H (u, v) is defined by the first(2n− 1) terms ofv(x)
u(x)

=
∑∞

k=0 hkx
−k and so

(uT (hn−m, ..., h2n−1) )−1 is given by the first(n−m) terms of

u(x)

v(x)
= µ1x

n−m + · · ·+ µn−m+1 +
∞∑

k=1

µn−m+1+kx
−k = q(x)− r (x)

v (x)
.

Then,

h′11 = lH (µ1, ..., µn−m) +
(
t−1
22

)t
Jn−mΣn−mt−1

22 = H (q, 1) +
(
t−1
22

)t
Jn−mΣn−mt−1

22 .

h′22 = −H (µn−m+2, ..., µn+m) + P tJn−mΣn−mP = H (v, r) + P tJn−mΣn−mP .

Let us devise the algorithm for the computation of the approximate polynomials quotients and the
approximate polynomials remainders appearing in the approximate Euclidean algorithm applied to
two polynomialsu(x) andv(x) of degreen andm, respectively,m < n.

Algorithm 6. (Approximate block diagonalization forH (u, v)) Givenu(x) =
∑n

k=0 ukx
k and

v(x) =
∑m

k=0 vkx
k two polynomials inR [x] of degreen and m, respectively, wherem < n,

this algorithm computes the approximate polynomials quotients and the approximate polynomials
remainders appearing in the Euclidean Algorithm with accuracy less than a small positive number
ε, 0 < ε ¿ 1.

1. ConstructH = H (ε1, ..., εn−m−1, hn−m, ..., h2n−1) (The first step :ε1 = · · · = εn−m−1 =
0).

2. Define an upper triangular Toeplitz matrixt = uT (hn−m, ..., h2n−m−1).

3. Computet−1 andh′ = (t−1)
t
ht−1.

4. Seth′11 = h′(1 : n−m, 1 : n−m) andh′22 = h′(n−m + 1 : n, n−m + 1 : n).

5. Recover the coefficients of the quotient polynomial from step 3.

6. Recover the coefficients of the remainder polynomial from (3.3).

7. Recursively apply Algorithm 3.1 toh = H (h′22 (1 : m, 1) h′22 (m, 1 : m)) , obtaining all the
coefficients appearing in the approximate Euclidean algorithm.
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4. Numerical example

The example in this section is taken from [7]. We introduce input polynomials via a perturbation
(addk.10−13 to all entries of exact input polynomials withk is taken randomly in(0, 1)) of another
exact input polynomials, whose sequence of polynomials quotients and polynomials remainders is
exactly known. The errors of the sequences of quotients and remainders between the approximate
Euclidean algorithm and our method are, respectively:

ErrorQ = ‖QOur approx−Qapprox EA‖1
, ErrorR = ‖ROur approx−Rapprox EA‖1

.

Let u(x) = 6x9 + 24x8 + 44x7 + 162x6 + 60x5 + 273x4 + 32x3 + 193x2 − 70x − 10, and
v(x) = 2x7 + 6x6 + 6x5 + 40x4 − 28x3 + 65x2 − 19x− 2.
In the following, we show the parallelism between the approximate block factorization forH (u, v)
and the approximate Euclidean Algorithm (for every steps).
Step 1: Approximate block factorization for H (u, v)
H (q1, 1) = H(0,3,3),
H (v, r1) = H(−5.6e-15, 1.2e-14, −1, 2.2e-13, 5, −1, −25, 10.5, 124, −81, −609, 545, 2968.2),
q1 (x) = 3x2 + 3x + 3.9999,
r1 (x) = −2.0000x4−5.9999x3 + 3.9999x2−12x+1.9999.
Step 1: Approximate Euclidean algorithm
r−1 (x) = r0 (x) q1 (x)− r1 (x) , q1 (x) = 2.9999x2 + 3x + 3.9999,
r1 (x) = −2.0000x4−5.9999x3 + 3.9999x2−11.9999x + 2.0000.
Step 2: Approximate block factorization for H (u, v)
H (q2, 1) = H(−5.6e-15, 1.2e-14,−1,−2.2e-13,−5),
H (r1, r2) = H(−2.3e-11, 0.5, −3.2e-10, −1, −5.3e-9, −1.5, 10.5),
q2 (x) = −0.9999x3−2.2019e-13x2−4.9999x+0.9999,
r2 (x) = −1.0000x2−3.0000x + 3.9999.
Step 2: Approximate Euclidean algorithm
r0 (x) = r1 (x) q2 (x)− r2 (x) , q2 (x) = −0.9999x3 + 3.7334e-11x2 +−4.9999x + 0.9999,
r2 (x) = −0.9999x2−2.9999x + 3.9999.
Step 3: Approximate block factorization for H (u, v)
H (q3, 1) = H (−9.5-11,2,1.2e-9),
H (r2, r3) = H(−2.6e-8, −14, 42),
q3 (x) = 1.9999x2 + 1.2842e-9x + 3.9999, r3 (x) = 13.9999.
Step 3: Approximate Euclidean algorithm
r1 (x) = r2 (x) q3 (x)− r3 (x) , q3 (x) = 1.9999x2 − 3.5625e-8x + 3.9999, r3 (x) = 13.9999.

We also present the errors between the approximate Euclidean algorithm and our method in the
following table :

Steps ErrorQ ErrorR

1 4.884981308350689× 10−15 8.546496843564455× 10−13

2 2.360093676041454× 10−09 4.352333782264850× 10−08

3 6.247234852658265× 10−07 2.142632679280609× 10−06
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5. Conclusion

In this paper, we addressed the task of computing the approximate polynomials quotients and the
approximate polynomials remainders appearing in the approximate Euclidean algorithm applied to
two polynomialsu(x) andv(x) of degreen andm, respectively,m < n with real coefficients via
a new approach based on the block diagonalization of a Hankel matrixH (u, v) . To allow better
numerical stability, an approximate Schur-based method is reformulated in [2] in terms of ann×n
real B́ezout matrixB (u, v) associated to the input polynomials for computing the coefficients of
the polynomials generated by the approximate Euclidean algorithm.
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