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Abstract. It is shown that a real Hankel matrix admits an approximate block diagonalization in
which the successive transformation matrices are upper triangular Toeplitz matrices. The structure
of this factorization was first fully discussed in [1]. This approach is extended to obtain the quo-
tients and the remainders appearing in the Euclidean algorithm applied to two polynafigals
andv(x) of degreen andm, respectively, whithn < n.
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1. Introduction

Let . .
u(z) = Zukxk andv(z) = Z vpx®,
k=0 k=0

be two polynomials iR [z] with dequ(z)) = n, deqv(z)) = m andm < n. The classical
Euclidean algorithm applied to(z) andv(z) gives a sequence of polynomials quotieptgx)
and polynomials remainders (=) , such that

r_y () =u(z), ro(x) =v(x), re_e () =11 () qr(x) — 1 (), k=1,....K, (1.1)

where—ry (x) is the polynomial remainder of the division of , () by r,_; (z) andrg (z) is
the greatest common divisor (GCD) ofzx) andv(z).

The computation of the polynomials quotients and the polynomials remainders has been first
studied in [6]. Bini and Gemignani (see [4, 5]) have computed the coefficients of the polynomials
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in (1.1) via a new approach based on a block LU factorization (see [8, 9]) of the Hankel matrix
H (u,v) , associated ta(x) andv(x). More specifically,

A'H (u,v) A =D, (1.2)

whereA is an upper triangular matrix with entries equal to one &hi$ a block diagonal matrix

with each block being a lower Hankel triangular matrix. Lately, Ben Atti and Diaz-Toca [7] are
calculated the coefficients of the polynomials in (1.1) via a block LU factorization of the Hankel
matrices different from the classical one [3]. Unfortunately, when the input polynomials are per-
turbed, the beautiful relation between the Euclidean algorithm and the block LU factorization of
the Hankel matrices may be lost. That is why a new notion of the approximate block diagonaliza-
tion has been introduced in [1] and its connection with the approximate Euclidean algorithm has
been proposed in the same paper.

It is shown that a» x n real Hankel matrix admits an approximate block diagonalization in
which the successive transformation matrices are upper triangular Toeplitz matrices.

The main contribution of this paper is to reveal the natural relation between the approximate
Euclidean algorithm and the approximate block diagonalization [1] of the Hankel matrix associated
to u(x) andwv(x) and propose a revised algorithm which provide the approximate polynomials
guotients and the approximate polynomials remainders during the processus execution.

The paper is organized as follows: Section 2 gives some theoretical results associated to Hankel
matrices. A revised algorithm for an approximate block diagonalization gf n real Hankel
applied to two polynomials(z) and v(z) of degreen andm, respectively, withm < n and
its connection to the approximate Euclidean algorithm are introduced in Section 3. In Section 4
we illustrate our approach with an example given by an implementation of the procedures using
Matlab. Finally, a summary and future research are given in Section 5 to complete the paper.

2. Hankel matrices

Letu(z) = Y _, wez® andv(z) = " vpa® be two polynomials irR [z] of degreen andm,
respectively, wheren < n. The power series expansidt(z) of the functionv(z)/u(z) at the
infinity R (z) = .-, vz " defines then x n real Hankel matrixH = H (u,v), associated to
u(x) andv(z),

hl h2 Ce hn
o= h.2 h.3 ' hn'—&-l
hn hn+1 Tt h2n—1

In addition, every nonsingular real Hankel matrix can be viewed as a Hankel matrix associated to
two polynomials.

Proposition 1. For any nonsingulan x n Hankel matrixH there exists two coprime polynomials
u(z) and v(z) of degreen andm, respectively, wherex < n, such thatd = H (u,v). The
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polynomialu(xz) andv(z) are related toH by the following equalities:
H (’LLO, Ce ,Un_l)t = —Up (hn+1, Ce ,hgn)t s (Un—la Ce 7U0)t = lT (hl, N hn) (Un, e ,ul)t s

wherehs,, is any number andl” (h4, ..., h,) is the lower triangular Toeplitz matrix defined by the
list [A1, ..., hyl.

Proof. (See [5]).

Remark 2. Suppose that/ has the following structureH = [H (h,, ..., ho,_1): @ lower tri-
angular Hankel matrix defined by the ligt,, . .., ks, 1] . Thus, Propositionl concludes, for any
polynomialv(z),

(Vn_1,...,v9) = P (tn, - ur) = (0,...,0, hpuy)" .

If v(x) = 1thenvy, = 1 andu, = 1/h,. Thus,H represents a Hankel matrix associatedu@)
andv(z)=1:H=H (u,1).

Moreover we will use the following notations.

e uT (S) € R™*" denotes the upper Toeplitz triangular matrix associated to & ksich that
the first row is defined by.

e [H (5) € R™™ denotes the lower Hankel triangular matrix (with respect to the antidiagonal)
associated to a list of length(2n — 1) such that the last column is defined By

o Letp € N. Lety, € R, %, = [g;)7,_, . where all entries oE,, are zero except that
Ejtkyj = Ek for 7 k= 1,2,...,p.

e GivenP € R™*™ P = J, P'J, whereJ, = [H(1,0,...,0), p € N.
1
o

e Leta e R. Lety >0, V(a, ) = (a — p;a + u) is a neighborhood of.

Lemma 3. Letn € N*. Leth = H (hy, ..., ha,_1) be a square Hankel matrix of order Suppose
thath; = ¢; withe; € V(0, ) for j =1,2,...,p — 1 andh, ¢ V(0, u). Thenh has the form

hin h
h = H(‘gb -"7€p—1>hp7 -'-7h2n—1) = ( h;i h;z ) ) (21)

where
hi1 =1H (hy, ..., hop_1) + X, hoo = H (hopi1, ..., hon—1) ,

hip = H (hp+17 ooy Pngp-13 310 —p), ha= hﬁg-
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We can successively construct frdnthe following two matrices:

e A square lower Hankel triangular matriX of order(2n — p),

0 0 H
H - ZH (hp, ceey h2n—l) = 0 hll ]’ng 5 (22)
Hz hiy  ha

WhereH31 =Hi3 = lH(hp, e hn—l)-
e A square upper triangular Toeplitz matfix
tin tiz tis

T = JopyH =uT (hy, ..., hon_1) = 0 oo a3 |, (2.3)
0 0 a3

Wheretkj = JHg_H_Lj, t11 = ts3 andtlg = ?23

Lemma 4. LetT be an upper triangular matrix, nonsingular with non-zero diagonal. Theh =
uT (11, ..., plan—p) @nd has the following block decomposition,

(@ @ T (PG
T = 0 (T ) (T )y | = 0 ty P |, (2.4)
0 0 (T7")3 0 0 &

where B
P:T(#Qvaunapﬂl_p)? P:Jn—thJTa

taaP 4 tastyy = Opn—p), hrP + Mty = 0pnp),
tllﬁ + ftvggt;; = O(n—pp)s t11Q + %vzsp + t13tI11 = On—p,n—p)-

3. Approximate block diagonalization for H (u, v)

In this section, we introduce the correlation between the approximate Euclidean algorithm applied
to two polynomialsu(z) andv(z) and the approximate block diagonalization of a Hankel matrix.
From Remark 2 it follows that Theorem 5 of [1] can be rewritten in terms of Hankel matrix asso-
ciated withu(z) andv(x).

Theorem 5. Let H (u,v) = H (1, .-, €n—m—1, Pn—m, ---, hon_1) @n approximate Hankel matrix
associated to two coprime polynomialsz], u(z) = Y., _,wa® andv(z) = >0 vpa®,
dequ(z)) = n, dequv(z)) = mandm < n, wheree; € V(0,p) for j =1,2,...,n —m — 1 with
Bom & V(0, ). Let

T =ul (hn—m7"'7h2n—1)7 T-'=uT (,lea---a,un—m)a
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t=uT (hn—m7 SaS) h?n—m—l) ) t_l =ul (Mla '--7:U/n) :

Then N
. _ H(q,1) ¢
¢ 1\¢ H t 1 — ) - 31
( ) (U, U) ( (El)t H (U, ’I“) ) ) ( )
where B .
H(g.1)= H(g. ) + (t23) Jue St (3.2)
H(v,r) = H (v,7) + P Jy S0 P, € = (t) JomZn_mP, (3.3)

q(z) andr(z) are the polynomial quotient and remainder of the divisia) /v (x) .

Proof. H (u, v) is defined by the first2n — 1) terms ofzgg = > peohiz™" and so

(UT (B -, hon—1) )~ " is given by the firstn — m) terms of

U(I’) n—m S —k
DI = g T g+ Y Hnemriek = (@) — ot
o(x) Z v (@)

Then,

hlll = lH (Nla teey :un—m) + <t2_21)t Jn—mzn—mt2_21 = H (Q7 1) + (t2_21)t Jn—mzn—mt2_21'
h,22 =—-H (/J“n—m—i-?a "'7Mn+m) + PtJn—mEn—mP =H (Uv T) + PtJn—mZn—mP-

Let us devise the algorithm for the computation of the approximate polynomials quotients and the
approximate polynomials remainders appearing in the approximate Euclidean algorithm applied to
two polynomialsu(x) andv(x) of degreen andm, respectivelym < n.

Algorithm 6. (Approximate block diagonalization fot? (u,v)) Givenu(z) = > ;_, uxz® and

v(x) = Y, vea® two polynomials inR [z] of degreen and m, respectively, wheren < n,

this algorithm computes the approximate polynomials quotients and the approximate polynomials
remainders appearing in the Euclidean Algorithm with accuracy less than a small positive number
6,0 <ex .

1. Constructd = H (1, ..., €n—m—1, hn—my ---s hon_1) (The firststep ey = -+ = g1 =
0).

Define an upper triangular Toeplitz mattix= v (hy,—m, .-, hon—m—1)-
Computet~" andh’ = (t1)" bt~

Sethi; =h(1:n—m,1:n—m)andhlyy =h'(n—m+1:n,n—m+1:n).
Recover the coefficients of the quotient polynomial from step 3.

Recover the coefficients of the remainder polynomial from (3.3).

N o o b~ w0 D

Recursively apply Algorithm 3.1th = H (h), (1 : m,1) hi, (m,1:m)), obtaining all the
coefficients appearing in the approximate Euclidean algorithm.
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4. Numerical example

The example in this section is taken from [7]. We introduce input polynomials via a perturbation
(addk.107'3 to all entries of exact input polynomials withis taken randomly irf0, 1)) of another

exact input polynomials, whose sequence of polynomials quotients and polynomials remainders is
exactly known. The errors of the sequences of quotients and remainders between the approximate
Euclidean algorithm and our method are, respectively:

Errorg = ”QOur approx — Qapprox EA”l , Errorg = HROur approx Rapprox E4|1 .

Let u(z) = 62 + 242% + 4427 + 1622° + 602° + 2732 + 3223 + 193z* — 70x — 10, and
v(z) = 227 + 62° + 62° + 402" — 2823 + 6522 — 192 — 2.

In the following, we show the parallelism between the approximate block factorizatiéh forv)
and the approximate Euclidean Algorithm (for every steps).

Step 1: Approximate block factorization for H (u,v)

H(qi,1) = H(0,3,3),

H (v,m1) = H(=5.6e-15, 1.2e-14, —1,2.2¢-13, 5, —1, —25, 10.5, 124, —81, —609, 545, 2968.2),
¢1 (z) = 3z% + 3z + 3.9999,

r (z) = —2.00002*—5.99992° + 3.99997%—121+1.9999.

Step 1: Approximate Euclidean algorithm

ro1(z) =719 (z) @1 () — 71 (2),q1 (x) = 2.99992% + 3z + 3.9999,

r1 (z) = —2.00002"—5.99997° + 3.99997?—11.9999T + 2.0000.

Step 2: Approximate block factorization for H (u, v)

H (g2, 1) = H(—5.6e-15,1.2¢-14, —1, —2.2e-13, —5),

H (ry,75) = H(—2.3¢-11, 0.5, —3.2e-10, —1, —5.3e-9, —1.5, 10.5),

q2 () = —0.999923—2.2019e-132°—4.99992+0.9999,

9 () = —1.00002%—3.00007 + 3.9999.

Step 2: Approximate Euclidean algorithm

ro(z) =711 (2) g2 (x) — 2 (), g2 () = —0.999923 + 3.7334e-112? + —4.9999x + 0.9999,
7y () = —0.99991%—2.9999 + 3.9999.

Step 3: Approximate block factorization for H (u,v)

H(gs,1) = H (—9.5-11,2,1.2e-9),

H (ry,73) = H(—2.6¢-8, —14, 42),

g3 (z) = 1.99992% + 1.2842e-9x + 3.9999, 3 (1) = 13.9999.

Step 3: Approximate Euclidean algorithm

r1(z) =19 (x) g3 (x) — 13 (7), g3 () = 1.999922 — 3.5625e-87 + 3.9999, r3 (r) = 13.9999.

We also present the errors between the approximate Euclidean algorithm and our method in the
following table :

Steps Errorg Errorg

1 4.884981308350689 x 107> | 8.546496843564455 x 10713
2 2.360093676041454 x 1079 | 4.352333782264850 x 10~
3 6.247234852658265 x 10797 | 2.142632679280609 x 10~
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5. Conclusion

In this paper, we addressed the task of computing the approximate polynomials quotients and the
approximate polynomials remainders appearing in the approximate Euclidean algorithm applied to
two polynomialsu(x) andv(x) of degreen andm, respectivelym < n with real coefficients via

a new approach based on the block diagonalization of a Hankel nfatfix v) . To allow better
numerical stability, an approximate Schur-based method is reformulated in [2] in terms afan

real Bezout matrixB (u, v) associated to the input polynomials for computing the coefficients of
the polynomials generated by the approximate Euclidean algorithm.
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