
Math. Model. Nat. Phenom.
Vol. 6, No. 1, 2011, pp. 188-208

DOI: 10.1051/mmnp/20116110

Patterns and Waves Generated by a Subcritical Instability
in Systems with a Conservation Law under the Action

of a Global Feedback Control
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Abstract. A global feedback control of a system that exhibits a subcritical monotonic instability
at a non-zero wavenumber (short-wave, or Turing instability) in the presence of a zero mode is
investigated using a Ginzburg-Landau equation coupled to an equation for the zero mode. The
method based on a variational principle is applied for the derivation of a low-dimensional evolution
model. In the framework of this model the investigation of the system’s dynamics and the linear
and nonlinear stability analysis are carried out. The obtained results are compared with the results
of direct numerical simulations of the original problem.

Key words: feedback control, pattern formation, variational approach
AMS subject classification: 35B36, 93B52

1. Introduction
Many pattern forming systems have symmetries or conservation laws that make their dynamics
different from the one of “ordinary” pattern-forming systems [3, 4, 15, 16, 5]. Examples of such
systems include Marangoni convection in a liquid layer with deformable interface heated from
below [9, 10], instabilities in multimode lasers [1], nonlinear dynamics of sand banks and sand
waves [13], Asaro-Tiller-Grinfeld instability of an epitaxial solid film in the presence of wetting
interactions with the substrate [6], and many others (see [16]). The characteristic feature of such
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systems is that near the threshold of the short-wave instability, their dynamics is described by a
system of coupled equations: for the unstable mode and for the slow Goldstone mode.

In the present paper, we consider systems subjected to a short-wave monotonic (Turing) insta-
bility and characterized by the conservation of a certain “mass” variable [16, 9, 10, 6]. The generic
system of amplitude equations is as follows:

At = A + Axx − λ|A|2A + AB, (1.1)
Bt = mwBxx + w(|A|2)xx,

where A is a complex amplitude of the unstable short-wave monotonic (Turing) mode and B is the
amplitude of the zero mode associated with the conservation of mass. Here mw > 0, while w can
be of either sign. Note that all the coefficients in (1.1) are real.

In a contradistinction to previous works on that subject, we consider here the case where the
short-wave instability is subcritical, i.e., λ = −1 in (1.1). One could assume that in that case
the weakly nonlinear amplitude equations (1.1) are of no use, because the solutions bifurcating
subcritically are unstable, and a blow-up is unavoidable (recall that the coefficients in (1.1) are
real, therefore the dispersion mechanism of stabilization [20, 1] does not work). However, these
solutions can be stabilized by means of a feedback control. That stabilization can be considered as
a tool for the numerical investigation of the set of bifurcating solutions in the subcritical region of
parameters.

In the present paper, we apply a nonlinear control that affects only the linear growth rate of the
primary instability. In order to avoid the blow-up that can develop in any spatial point, it is natural
to measure and to control the maximum value of a characteristic variable (i.e., front deformation in
the case of a morphological instability) over the whole region. Near the instability threshold, the
deviation of that variable from its undisturbed value will be proportional to maxx |A|. The simplest
way of control, that we consider here, is making the deviation of the growth rate proportional to
that quantity. In that case, we arrive to the following generic system of amplitude equations under
global feedback control:

At = (1− p max
x
|A|)A + Axx + |A|2A + AB, (1.2)

Bt = mwBxx + w|A|2xx,

where p is the parameter characterizing the control strength. This way of control can be achieved
by changing the global parameters of the system. For instance, in the case of a morphological
instability of the solidification front it is implemented by changing the sample velocity and applied
temperature gradient [17], in the case of a Marangoni instability it is sufficient to change the applied
heat flux, etc. It has been shown formerly that this way of control is efficient for arresting a
localized blow-up in a number of pattern-formation problem, including the Sivashinsky equation
[17], the Ginzburg-Landau equation with real [19] and complex [8] coefficients, as well as for
controlling patterns described by the generalized Swift-Hohenberg equation [23].

Recently, in [7] it has been shown that the above-mentioned type of a feedback control can sta-
bilize the system (1.2) and lead to the formation of localized unipulse stationary states, or traveling
solitary waves. It has been found that the unipulse traveling structures result from an instability of

189



Y. Kanevsky et al. Patterns and waves under global control

the stationary unipulse structures when the coupling parameter w exceeds a critical value that is
determined by the zero mode damping coefficient mw.

The simple shape of pulses makes it attractive to use low-dimensional models for the descrip-
tion of their dynamics. There exist several methods of a reduction of an original equation to a finite
set of ordinary differential equations (ODE). One of these methods utilizes the integrals of energy,
momentum and a finite number of higher-order generalized moments, and it has been applied
for the analysis of the dynamics of localized waves of a cubic-quintic complex Ginzburg-Landau
equation (CGLE) [24]. Another method is based on a modified variational technique. In the case
of the complex Ginzburg-Landau equation both methods lead to identical or similar models [11].
Low-dimensional (ODE) models, derived by means of a variational approach, have been widely
used for solving problems of nonlinear optics governed primarily by partial differential equations
[14], including non-conservative problems [2, 22]. Recently, it has been demonstrated that low-
dimensional models can reproduce details of the temporal dynamics of pulses under the action of
an instantaneous [11] and delayed [12] feedback control in an oscillatory system governed by a
subcritical complex Ginzburg-Landau equation. Let us note also that the dynamics of localized
states (fronts) has been described by low-dimensional ODEs in the analysis of control in reaction-
diffusion systems (see, e.g., [21]).

In the present paper, the coupled system (1.2) is used as the object for the application of the
variational approach discussed above. In Sec. 2. we consider stationary localized solutions and
investigate their stability; the transition to traveling-wave solutions is discussed. In Sec. 3. we
derive a finite-dimensional dynamical model which is used for modeling the behavior of the system
and for the linear stability analysis. In Sec. 4. the analytical results obtained in the framework of the
derived ODE-model are compared with the results of a direct numerical simulation of the original
equation; the conclusions are given.

2. Analytical solutions

2.1. Stationary solutions
In the present subsection we consider stationary solutions of the problem (1.2). The structures
obtained in [7] by means of direct numerical simulation of (1.2) are characterized by a constant
value of the phase arg(A). Therefore, we can fix that value equal to zero and arrive to the following
system of equations for real variables A and B:

Axx + (1− p max
x

A)A + A3 + AB = 0, (2.1)

mwBxx + w(A2)xx = 0; −∞ < x < ∞. (2.2)

The variable B(x) is normalized in such a way that its averaged value over the whole domain is
equal to zero,

〈B(x)〉 = 0. (2.3)
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Recall that mw > 0, while w may have either sign.
The solution B(x) of (2.2) bounded as x → ±∞ and satisfying the condition (2.3) is:

B(x) =

(
− w

mw

)
(|A(x)|2 − 〈A2〉),

which leads to the following closed equation for the amplitude A(x):

Axx − αA + βA3 = 0, (2.4)

where
α = −1 + p max

x
|A|+ w

mw

〈A2〉, β = 1− w

mw

. (2.5)

The coefficient α determines the effective linear decay rate of the short-wave amplitude in the
presence of the global control and the zero mode, while β is the Landau coefficient renormalized
due to the action of the zero mode. The constants α and β can have any signs.

Integration of (2.4) gives the relation

A2
x

2
− αA2

2
+

βA4

4
= EA = const. (2.6)

In the case α > 0, β < 0 equation (2.6) has no bounded solutions except A(x) = 0. In other
cases relation (2.6) determines a set of closed orbits in the phase plane (A, Ax) corresponding to
spatially periodic solutions, as well as separatrices that describe pulse-like or front-like solutions,
and fixed points corresponding to constant solutions.

In the case α > 0, β > 0, there are two kinds of periodic solutions. When −α2/4β < EA < 0,
the solutions are sign-preserving. Solutions with positive and negative A are obtained from each
other by a simple change of the sign and are equivalent in all the aspects; later on, we consider
positive solutions. Solving (2.4) gives a family of solutions in terms of Jacobi elliptic functions,

A(x) = AMdn

[
AM

√
β

2
(x− x0); m

]
, (2.7)

where AM is connected with the parameter α by the relation α = (2 − m)βA2
M/2, and m is the

modulus of the elliptic function. With 〈A2〉 = A2
ME(m)/K(m) equation (2.5) gives the following

relation that determines the amplitude AM as a function of m:
[
1

2

(
1− w

mw

)
(2−m) +

w

2mw

E(m)

K(m)

]
A2

M − pAM + 1 = 0.

The period of the solution (2.7) is

L =
2
√

2K(m)

AM

√
1− w/mw

.

191



Y. Kanevsky et al. Patterns and waves under global control

In the limit m → 1 (EA → 0) a periodic solution tends to a solitary-wave solution such that
both A(x) and B(x) tend to zero at infinity. In this case

B(x) = − w

mw

A2,

and the function A(x) satisfies the equation

Axx + (1− p max
x

A)A +

(
1− w

mw

)
A3 = 0. (2.8)

Two nonzero localized solutions of (2.8), (A±(x), B±(x)) exist in the following interval of the
coupling parameter w:

wmin = mw(2− p2)/2 ≤ w < mw,

and are given by

A±(x) = a±sech[κ±(x− x0)], B±(x) = − w

mw

a2
±sech2[κ±(x− x0)], (2.9)

where

a± =
p±

√
p2 − 2(1− w/mw)

1− w/mw

, κ± =
1√
2

√
1− w

mw

a±. (2.10)

For α > 0, β > 0, EA > 0 equation (2.6) has a family of solutions

A(x) = Accn

[
Ac

√
β

2m
(x− x0); m

]
, (2.11)

where
A2

c =
α

β

2m

2m− 1
, (2.12)

1/2 < m < 1. These periodic solutions are not sign-preserving: they have the property A(x +
L/2) = −A(x), where L is the period. Note that α, which is determined by (2.5), is a function of
Ac and m, therefore relation (2.12) is actually an equation for Ac(m).

In the case α < 0, β > 0, the periodic solutions, which exist for EA > 0, are determined by
exactly the same formulas (2.11), (2.12), but with 0 < m < 1/2.

Finally, in the case α < 0, β < 0 (i.e., w > mw), the periodic solutions, which exist for
0 < EA < −α2/4β, are determined by the following formula:

A(x) = Assn

[
As

√
−β

2m
(x− x0); m

]
, (2.13)

where
A2

s =
α

β

2m

1 + m
, 0 < m < 1.
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In the limit m → 1 we obtain the solution

A(x) =

√
α

β
tanh

√
−α

2
(x− x0) (2.14)

that corresponds to a “black hole” in a homogeneous short-wave pattern. For the amplitude a2 =
α/β, the self-consistency equation

1− pa +

(
1− w

mw

)
a2 = 0

determines the single branch of solutions

a =

√
p2 + 4(w/mw − 1)− p

2(w/mw − 1)

for any value of p. Note that α = −a2 and

B = − w

mw

a2sech2 a√
2
(x− x0).

2.2. Instability of sign-changing solutions
The analysis carried out in the previous subsection reveals the existence of two qualitatively differ-
ent types of stationary solutions: sign-preserving solutions (2.7), (2.9), and sign-changing solutions
(2.11), (2.13). The latter type of solutions contains points where A is exactly equal to zero, i.e., the
amplitude |A| vanishes and the phase arg(A) has a jump equal to π. In the present subsection, we
show that all sign-changing stationary solutions are subject to a monotonic instability with respect
to phase-changing disturbances that smoothen the phase jump. Recall that for a pure Ginzburg-
Landau equation with real coefficients, a similar instability of solutions of the type (2.14) was first
found by Newell and Whitehead [18].

Linearization of Eq. (1.2) around a real stationary solution (A(x), B(x)) leads to two separate
systems of equations for real disturbances (Ãr, B̃) and imaginary disturbances (iÃi, 0). For our
goal, it is sufficient to consider imaginary disturbances governed by the following equation:

Ãi
t = Ãi

xx − αÃi + βA2Ãi.

Taking Ãi(x, t) = u(x) exp(σt), we obtain the eigenvalue problem

uxx + (βA2 − α− σ)u = 0, |u(±∞)| < ∞. (2.15)

Obviously, problem (2.15) always has a solution u = A, σ = 0, corresponding to a homogeneous
phase change of the A-component of the stationary solution. If (2.15) has an eigenvalue σ > 0,
then the solution (A,B) is unstable.
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For the base solution (2.11) (β > 0), we define z =
√

β/(2m)Acx and obtain the following
problem:

uzz + 2m

(
1− α + σ

βA2
c

− sn2z

)
u = 0, |u(±∞)| < ∞. (2.16)

It can be checked directly that u = dnz is the eigenfunction of (2.16) with the eigenvalue

σ = −α +
βA2

c

2
.

Substituting (2.12), we find that

σ =
α(1−m)

2m− 1
.

Taking into account that 1/2 < m < 1 for α > 0 and 0 < m < 1/2 for α < 0, we conclude that
σ > 0 in both cases. Thus, solutions (2.11) are unstable.

For the base solution (2.13) (β < 0, α < 0), we define z =
√
−β/(2m)Asx and arrive at the

problem

uzz + 2m

(
α + σ

βA2
s

− sn2z

)
u = 0, |u(±∞)| < ∞.

Again, u = dnz is the eigenfunction with

σ = − α

1 + m
> 0.

Thus, solutions (2.13) are unstable.
We conclude that all the sign-changing stationary solutions are unstable.

2.3. Stability of localized pulses
Now we consider the stability of localized stationary solutions (2.9) and (2.10). In the absence of
zero mode the stability of these solutions has been studied in [19]. In that case, for arbitrary values
of parameters the upper branch is unstable with respect to real (amplitude) disturbances, while the
lower branch is stable. Here we obtain a similar result in the presence of zero mode near the point

p = p∗ =
√

2β, β = 1− w

mw

where two branches of stationary solutions are born due to a saddle-node bifurcation.
Let us parameterize the family of solutions (2.9), (2.10) using parameter k. Take x0 = 0

(obviously, the stability does not depend on x0). Both branches of solutions can be written as

A = a cosh−1 kx, B = − w

mw

A2, (2.17)

where

a =

√
2

β
k, p =

√
β

2

k2 + 1

k
.
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Solutions with k < 1 correspond to the lower branch, while solutions with k > 1 correspond to
the upper branch.

The time evolution of real disturbances (Ãr, B̃) on the background of (2.17) is governed by the
following system of functional-differential equations:

Ãr
t = Ãr

xx + (−k2 + 3A2 + B)Ãr + AB̃ − pAÃr(0, t),

B̃t = mwB̃xx + 2w(AÃr)xx.

Defining z = kx and assuming Ãr = u(z) exp(σt), B̃ = v(z) exp(σt), we obtain the following
system:

uzz(z) +

[
−1− σ

k2
+

2(2 + β)

β cosh2 z

]
u(z) +

√
2

k
√

β

v(z)

cosh z
=

(
1 +

1

k2

)
u(0)

cosh z
, (2.18)

vzz(z) +
2w

mw

√
2

β
k

[
u(z)

cosh z

]

zz

− σ

mwk2
v(z) = 0. (2.19)

Due to the symmetry of the problem, both components of the eigenfunction (u(z), v(z)) are either
even or odd. For odd eigenfunctions, u(0) = 0, while for even ones generally u(0) 6= 0. In
the present section, we consider even disturbances and normalize the solution of problem (2.18),
(2.19) by the condition

u(0) = 1.

For k = 1, i.e. in the point of the saddle-node bifurcation leading to the creation of two
branches of solutions for p >

√
2β, problem (2.18), (2.19) has an exact solution,

σ = 0, u = u0 =
1

cosh z
− z sinh zcosh2 z, v = v0 = − 2w

mw

√
2

β

u0

cosh z
.

Near that point, we apply the expansion

1

k2
= 1 + ε, σ = εσ1 + . . . , u = u0 + εu1 + . . . , v = v0 + εv1 + . . . .

Note that k = 1 − ε/2 + . . ., hence ε > 0 (ε < 0) corresponds to the lower (upper) branch of
solutions.

At the first order in ε, the following system is obtained:

(u1)zz +

[
2(2 + β)

β cosh2 z
− 1

]
u1 +

√
2

β

v1

cosh z
=

1

cosh z
+ σ1u0 − 1

2

√
2

β

v0

cosh z
,

(v1)zz +
2w

mw

√
2

β

( u1

cosh z

)
zz

=
σ1

mw

v0 +
w

mw

√
2

β

( u0

cosh z

)
zz

.

Eliminating v1, we find:

(u1)zz +

(
−1 +

6

cosh2 z

)
u1 =

1

cosh z
+ σ1

[
u0 +

2

β

w

d2

z sinh z

cosh2 z

]
; (2.20)
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|u1| < ∞, z → ±∞.

Problem (2.20) is solvable when its right-hand side is orthogonal to the solution of the homo-
geneous problem, which is u0, hence

σ1 = −
∫∞
−∞ u0 sechz dz

∫∞
−∞ u0

[
u0 + 2

β
w

m2
w

z sinh z
cosh2 z

]
dz

.

Calculating the integral, we find:

σ1 = − 18

(12 + π2)− 2(π2 − 6)w/(βm2
w)

.

One can see that if

w < w∗ =
m2

w

mw + 2(π2 − 6)/(π2 + 12)
, (2.21)

then σ1 < 0. That means that in the region (2.21) the upper branch (that with ε < 0) is unstable,
while the lower branch (that with ε > 0) is stable with respect to even real disturbances. In [7] it
was shown that the stationary solutions become unstable with respect to odd disturbances leading
to the development of traveling waves at the value w = w0 = m2

w/(mw + 2) < w∗ (see also
Sec. 2.4.). Therefore, there is no need in the consideration of the stability of stationary solutions in
the region w > w∗.

2.4. Traveling waves
In the present section we recall briefly the main results on the bifurcation of traveling-wave solu-
tions obtained in [7]. These results will be used for the construction of a low-dimensional model
in Sec. 3..

Numerical simulations in [7] reveal the transition of stationary solutions to traveling wave
solutions. For w > w0, a transition to either a traveling wave moving to the right,

A(x, t) = Ar(Xr), B(x, t) = Br(Xr), Xr = x− vt, v > 0, (2.22)

or a traveling wave moving to the left,

A(x, t) = Al(Xl), B(x, t) = Bl(Xl), Xl = x + vt, v > 0,

is observed. Due to the symmetry of the problem, these two solutions are obtained from each other
by reflection x → −x, and their properties are equivalent. Later on. we consider waves (2.22)
using the notation Xr = X .

The traveling wave solution satisfies the system of equations

AXX + vAX + A(1− p max
X
|A|) + A3 + AB,

mwBXX + vBX + w(A2)XX = 0
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with periodicity conditions

A(X + L) = A(X), B(X + L) = B(X)

and the condition of zero mean value of B:

〈B〉 =
1

L

∫ L/2

−L/2

B(X)dX = 0.

The nonlinear analysis of the bifurcation has been performed in the limit L À 1, which corre-
sponds to the numerical simulations. In this case the elliptic function (2.7) can be approximated by
the solitary-wave solution (2.9). The following expression for the threshold of the transition from
the stationary to traveling-wave solutions is derived:

w0 =
m2

w

mw + 2
. (2.23)

The expansions utilized in the bifurcation analysis,

A(X) = A0 + εA1 + ε2A2 + . . . ,

B(X) = B0 + εB1 + ε2B2 + . . . ,

v = εv1 + . . . , w = w0 + ε2w2 + . . . ,

lead to the following asymptotic expansion of the solution:

A(X) =
a

cosh(κX)
+ εO(1/L) + o(ε), (2.24)

B(X) = − w0a
2

mw

(
1

cosh2(κX)
− 2

κL

)

+ε
v1w0a

2

m2
wκ

(
tanh(κX)− 2X

L

)
+ o(ε). (2.25)

It has been also found that in the threshold point there holds

dv2(w)

dw
=

v2
1

w2

=
2κ(mw + 2)2

L
. (2.26)

This quantity tends to zero as L →∞.

3. Variational model
In the present section we construct a low-dimensional model for studying the dynamics of system
of equations (2.1) and (2.2). For this purpose we utilize a modified variational approach that has
been formerly applied in [2, 22, 11, 12].
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Following [7] we define the operator

∂−1
x B =

∫ x

0

B(y)dy −
〈∫ x

0

B(y)dy

〉

and rewrite the system (2.1), (2.2) in the form

A + Axx + A3 + AB = At + p(max
x

A)A ≡ Q1, (3.1)

mw

2w
B +

1

2
A2 =

1

2w
∂−1

x Bt ≡ Q2. (3.2)

In the absence of terms Q1 and Q2, equations (3.1), (3.2) would be the Euler-Lagrange equations
for the functional

S = −
L/2∫

−L/2

L[A,B] dx,

with
L[A,B] = −1

2
A2 − 1

4
A4 +

1

2
A2

x −
mw

4w
B2 − 1

2
A2B.

Thus, there holds:
δS

δA
= Q1 and

δS

δB
= Q2.

A modified variational approach for the system of equations (3.1), (3.2) with an ansatz
A(x, t) = A(b1(t), . . . , bN(t), x), B(x, t) = B(b1(t), . . . , bN(t), x), leads to the following system
of equations:

−∂ < L >

∂bj

=

L/2∫

−L/2

Q1
∂A

∂bj

dx +

L/2∫

−L/2

Q2
∂B

∂bj

dx, j = 1, . . . , N, (3.3)

where

< L >=

L/2∫

−L/2

L [A(b1(t), b2(t), . . . , bN(t), x), B(b1(t), b2(t), . . . , bN(t), x)] dx.

The derivation is given in the Appendix.
For studying the dynamics of a traveling-wave solution, we use the ansatz compatible with the

asymptotic expansion (2.24), (2.25),

A =
aw(t)

cosh[κ(t)(x− s(t))]
,

B = bw(t)

[
1

cosh2[κ(t)(x− s(t))]
− 2

κL

]

+cw(t)

[
tanh[κ(t)(x− s(t))]− 2(x− s(t))

L

]
,
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with aw(t), bw(t), cw(t), κ(t) and s(t) playing the role of b1(t),..., b5(t) and with x in the interval
(−L/2, L/2). In the computation of integrals the leading order in the limit L À 1 was considered.

The obtained evolution equations for aw(t), bw(t), cw(t), κ(t) and s(t) are as follows:

(1 + π2/3)wa2
wκt = 2bwκ(mwbw + wa2

w)− 2wa2
wκ(2κ2 − a2

w − bw), (3.4)
6κ(aw)t − 3awκt = 2awκ(3− 3paw + 2a2

w + 2bw − κ2), (3.5)
L(bwκt − κ(bw)t + cwκ2st) = 4κ2[mwbw + wa2

w], (3.6)
L2κ(cw)t

60
+ bwst = −mwκcw, (3.7)

L(bwκ(cw)t − cwκ(bw)t + bwcwκt) + (4b2
w − 4wa2

wκ2 + Lc2
wκ)κst = 0. (3.8)

The stationary localized solution of system (3.4)-(3.8) is obtained by substituting (aw)t =
(bw)t = (cw)t = κt = s = 0. The exact solitary-wave solution (2.9), (2.10) is reproduced:

aw =
p±

√
p2 − 2(1− w/mw)

1− w/mw

, κ2 =
1

2
(1− w/mw)a2

w,

bw = − w

mw

a2
w, cw = 0. (3.9)

3.1. Hopf bifurcation
For a study of the Hopf bifurcation we consider the following expansions:

aw = aw,0 + εaw,1 + ε2aw,2 + . . . , κ = κ0 + εκ1 + ε2κ2 + . . . ,

bw = bw,0 + εbw,1 + ε2bw,2 + . . . , cw = εcw,1 + ε2cw,2 + . . . ,

st = v = εv1 + ε2v2 + . . . , w = w0 + εw1 + ε2w2 + . . . .

(3.10)

where the subscript index 0 denotes the stationary localized solution with aw,0, bw,0 and κ0 given
by (3.9). We substitute (3.10) into system (3.4)-(3.8), and after some algebraic transformation we
obtain in the first order of ε:

aw,1 =
a3

w,0

2mw(κ2
0 − 1)

w1, (3.11)

bw,1 = − 1

mw

(2aw,0w0aw,1 + a2
w,0w1), (3.12)

κ1 =
1

4κ0

(2aw,0aw,1 + bw,1), (3.13)

cw,1 = κ0v1, (3.14)

w0 =
m2

w

mw + 2
. (3.15)
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The relation (3.15) coincides with the theoretical result (2.23) from [7].
The second order of ε in (3.7), (3.8) leads to

cw,2 = κ0v2,

w1 = 0,

thus, it holds that aw,1 = κ1 = bw,1 = 0. Therefore, from (3.4)-(3.6) we obtain the following:

aw,2 =
aw,0

6mw(κ2
0 − 1)

(3a2
w,0w2 − κ0v

2
1L), (3.16)

bw,2 = − 1

4mw

(8aw,0w0aw,2 + 4a2
w,0w2 − κ0v

2
1L), (3.17)

κ2 =
1

16mwκ0

(8mwaw,0aw,1 + 4mwbw,1 − κ0v
2
1L). (3.18)

Equations (3.16)-(3.18) must be balanced, hence it is obvious that v2
1 ∼ 1/L.

In the third order of ε from (3.8) we derive

8bw,0bw,2 − 4a2
w,0κ

2
0w2 − 8w0(a

2
w,0κ0κ2 − κ2

0aw,0aw,2) + κ0c
2
w,1L = 0,

which leads to

v2
1

w2

=
2(mw + 2)2κ0

L
.

The latter result confirms the analytical result (2.26) from [7].

3.2. Stability of a traveling-wave solution
In the previous subsection we have seen that v1 ∼ cw,1 ∼ 1/

√
L. Hence, in order to study the

stationary traveling-wave solution, we consider aw, bw, κ = O(1) and set cw = Cw/
√

L, st = v =
V/
√

L. In this case system (3.4)-(3.8) is reduced to the following equations:

3− 3paw + 2a2
w + 2bw − κ2 = 0 (3.19)

wa2
w(2κ2 − a2

w − bw)− bw(mwbw + wa2
w) = 0 (3.20)

mwbw + wa2
w =

CwV

4
(3.21)

bwV = −mwκCw (3.22)
4b2

w − 4wa2
wκ2 + C2

wκ = 0 (3.23)

From (3.21)-(3.23) it follows:

mwb2
w + wa2

wbw =
Cw

4
bwV = −mw

4
C2

wκ = −mw

4
[−4b2

w + 4wa2
wκ2],
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therefore,
bw = −mwκ2. (3.24)

Using (3.24), we can rewrite eqs. (3.19) and (3.20) in the following form:

3− 3paw + 2a2
w = (1 + 2mw)κ2,

m3
wκ4 − 2(1 + mw)wa2

wκ2 + wa4
w = 0.

Thus,

bw = −mwκ2, (3.25)

V =
Cw

κ
, (3.26)

C2
w = 4(wa2

wκ−m2
wκ3), (3.27)

κ2 =
a2

w

m3
w

[
w(1 + mw)−

√
(1 + mw)2w2 − wm3

w

]
, (3.28)

aw =

3p±
√

9p2 − 12
(
2− 1+2mw

m3
w

[
w(1 + mw)−

√
(1 + mw)2w2 − wm3

w

])

2
(
2− 1+2mw

m3
w

[
w(1 + mw)−

√
(1 + mw)2w2 − wm3

w

]) . (3.29)

The existence condition for a traveling-wave solution is C2
w > 0. From (3.27) it follows that the

existence condition is equivalent to a condition w > w0. If the denominator in (3.29) is negative
then a−w > 0, and if the denominator in (3.29) is positive then a±w > 0 under a certain condition on
p (p > 2/

√
2 + mw is a sufficient condition for all w > w0).

The validity of relation (3.29) is checked with substitution of w = w0. For w = w0 we obtain:

w0

m3
w

[
(1 + mw)−

√
(1 + mw)2 −m3

w/w0

]
=

1

mw + 2
, (3.30)

a−w =

3p− 3

√
p2 − 4/3

(
2− 1+2mw

mw+2

)

2
(
2− 1+2mw

mw+2

) = 3
p−

√
p2 − 4/32mw+4−1−2mw

mw+2

22mw+4−1−2mw

mw+2

=
p−

√
p2 − 4 1

mw+2

2 1
mw+2

,

which coincides with localized pulse solution (2.10) with w taken equal to w0.
For a stability test we consider a perturbed solution aw(t) = aw + ãw, bw(t) = bw + b̃w,

κ(t) = κ + κ̃, Cw(t) = Cw + C̃w and V(t) = V + Ṽ, and linearize system (3.4)-(3.8):

(1 + π2/3)wa2
wκ̃t = 2bwκ(mwb̃w + 2wawãw) + 2(mwbw + wa2

w)(bwκ̃ + κb̃w)

−2wa2
wκ(4κκ̃− 2awãw − b̃w)

−2w(2κ2 − a2
w − bw)(a2κ̃ + 2awκãw) (3.31)

6κ(ãw)t − 3awκ̃t = 2awκ(−3pãw + 4awãw + 2b̃w − 2κκ̃) (3.32)
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−L(κ(b̃w)t − bwκ̃t) + (VC̃w + CwṼ)κ2 = 4κ2[mwb̃w + 2wawãw] (3.33)

bwṼ + Vb̃w +
L2κ(C̃w)t

60
= −mw(κC̃w + Cwκ̃) (3.34)

L(bwκ(C̃w)t − Cwκ(b̃w)t + bwCwκ̃t) = −(8bwb̃w − 8wawκ(awκ̃ + κãw)

+C2
wκ̃ + 2CwκC̃w)κV (3.35)

From (3.33)-(3.35) we obtain:

bwκ̃t − κ(b̃w)t =
κ2

L
[4(mwb̃w + 2wawãw)− VC̃w − CwṼ]) (3.36)

(C̃w)t =
60

κL2
[−mwκC̃w −mwCwκ̃− bwṼ − Vb̃w] (3.37)

4bwb̃w − 8wa2
wκκ̃ + C2

wκ̃ + CwκC̃w − κ2CwṼ = O(1/L) (3.38)

From (3.36) it follows b̃w = −mwκκ̃, thus the characteristic equation for the growth rate λ is:

λ2 + a1λ + a0 = 0,

where

a1 =
1

3 + π2

[
12κ2 −

(
1 +

π2

3

)
(4aw − 3p)

]
,

a0 =
4

3 + π2
[−aw(4aw − 3p)(a2

w + bw) + 4(1 + mw)κ2(a2
w + bw − κ2)]. (3.39)

A computer test of (3.39) shows that for p ≥ √
2 the solution with aw = a−w exists and is stable.

3.3. Limit of large w

For w →∞ we can use the following expansion in a small parameter 1/w:

√
w2(1 + mw)2 − wm3

w = w(1 + mw)

√
1− m3

w

w(1 + mw)2

= w(1 + mw)

[
1− m3

w

2w(1 + mw)2
+ o

(
1

w2

)]
. (3.40)

Applying (3.40) to (3.25)-(3.29), we obtain
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aw =
1 + mw

2mw + 3

[
3p±

√
9p2 − 6

3 + 2mw

1 + mw

]
, (3.41)

κ2 =
a2

w

2(1 + mw)
, (3.42)

bw = − mwa2
w

2(1 + mw)
, (3.43)

C2
w = 4κa2

ww, (3.44)

V =
Cw

κ
. (3.45)

For aw = a+
w it holds:

a0 =
4a3

w

3 + π2
[aw − (4aw − 3p)(2 + mw)/(2 + 2mw)]

=
4a3

w

2(3 + π2)(1 + mw)
[3p(2 + mw)− aw(2mw + 6)]

=
4a3

w

2(3 + π2)(1 + mw)(2mw + 3)
×

[−3mwp− (2mw + 6)(1 + mw)
√

9p2 − 6(2mw + 3)/(1 + mw)] < 0,

therefore at least one eigenvalue is positive, thus a solution with aw = a+
w is unstable.

For aw = a−w it follows:

a0 =
4a3

w

3 + π2
[aw − (4aw − 3p)(2 + mw)/(2 + 2mw)]

=
4a3

w

2(3 + π2)(1 + mw)(2mw + 3)
×

[−3mwp + (2mw + 6)(1 + mw)
√

9p2 − 6(2mw + 3)/(1 + mw)] > 0

for p2 > p2
∗ =

8(1 + mw)(mw + 3)2

3(2 + mw)(2m2
w + 9mw + 6)

.

A simple computation shows that p2
∗ ≤ 2(2mw+3)

3(1+mw)
≤ 2, where p2 ≥ 2(2mw+3)

3(1+mw)
is the existence

condition from (3.41). Also it holds that for p2 ≥ 2 the coefficient a0 is positive for all values of
mw.

A computer test of the coefficient a1 for aw = a−w , shows that it is positive for p2 ≥ 2. Thus,
the solution with aw = a−w is stable for p2 ≥ 2.
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4. Numerical results
A direct numerical simulation of (1.2) was performed in order to check the validity of the low-
dimensional model. We have used a pseudospectral code with time integration in Fourier space, pe-
riodic boundary conditions, Crank-Nicholson scheme for the linear operator and Adams-Bashforth
scheme for the nonlinear one. The results of simulations for two values of the domain length are
compared with the values predicted by the ODE-model in Figure 1. The results of a direct numer-
ical simulation for a large value of w are presented in Figure 2.
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Figure 1: Bifurcation diagram for mw = 1, p = 2: a) dependence of maximum amplitude on
w for L = 20π; b) dependence of v on w for L = 20π; c) dependence of v on w for L = 40π.
w0 = 1/3. Solid lines: analytical results given by (3.26) and (3.29). Dashed lines: results of a
direct numerical simulation of (1.2).

The theoretical value of w0 given by (3.15) is derived in the limit L → ∞, while numerical
results are obtained for the finite values of the domain length L (see Figure 1). For the maximum
amplitude value maxx|A| it holds that three digits of analytical and numerical results coincide, see
Figure 1(a). The comparison of the theoretical results and the results of the direct numerical simu-
lation of (1.2) for the dependence of the velocity of the traveling wave v on the coupling parameter
w allows us to make the following conclusions: (i) the theoretical prediction of v(w) is valid near
the bifurcation point, that is, for relatively small values of w; and (ii) the approximation of numer-
ical results by the analytical ones is improved with the growth of the domain length value, when
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the numerical value of w0 approaches the theoretical value given by (2.23), see Figure 1(b),(c).
The explanation why the ODE-model fails to predict the dependence v(w) for large values

of the coupling parameter w is obvious from Figure 2. For large values of w the traveling wave
changes its shape [see Figure 2(b)], therefore the ansatz utilized in our ODE-model can not describe
the actual dynamics of the traveling wave.

Figure 2: Dynamical regime for L = 80π, p = 2, mw = 1 and w = 20: a) spatio-temporal plot of
|A|; b) plot of |A(x)|; c) plot of B(x).
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Appendix
Derivation of (3.3). Assuming that A, B, Ax and Bx are functions of bi(t), i = 1, . . . , N , and x,
we find:

−∂ < L >

∂bi

= −
L/2∫

−L/2

[
∂L
∂A

∂A

∂bi

+
∂L
∂B

∂B

∂bi

+
∂L
∂Ax

∂Ax

∂bi

+
∂L
∂Bx

∂Bx

∂bi

]
dx

=

L/2∫

−L/2

[(
−∂L

∂A

)
∂A

∂bi

+

(
−∂L

∂B

)
∂B

∂bi

− ∂L
∂Ax

∂

∂x

∂A

∂bi

− ∂L
∂Bx

∂

∂x

∂B

∂bi

]
dx

=

L/2∫

−L/2

[(
Q1 − ∂

∂x

∂L
∂Ax

)
∂A

∂bi

+

(
Q2 − ∂

∂x

∂L
∂Bx

)
∂B

∂bi

− ∂L
∂Ax

∂

∂x

∂A

∂bi

− ∂L
∂Bx

∂

∂x

∂B

∂bi

]
dx

=

L/2∫

−L/2

(
Q1

∂A

∂bi

+ Q2
∂B

∂bi

)
dx−

L/2∫

−L/2

∂

∂x

[
∂L
∂Ax

∂A

∂bi

+
∂L
∂Bx

∂B

∂bi

]
dx

︸ ︷︷ ︸
=0

.
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