Math. Model. Nat. Phenom.
Vol. 7, No. 2, 2012, pp. 13-31

DOI: 10.1051/mmnp/20127202

On Spectral Stability of Solitary Waves of Nonlinear Dirac
Equation in 1D

G. Berkolaikd*, A. Comech? *
I Mathematics Department, Texas A&M University, Collegetidta TX 77843, USA
2 Institute for Information Transmission Problems, Moscd®1447, Russig

Abstract. We study the spectral stability of solitary wave solutions to the nonlinear Diaati®n in
one dimension. We focus on the Dirac equation with cubic nonlinearity, kremithe Soler model in (1+1)
dimensions and also as the massive Gross-Neveu model. Presemiedcalicomputations of the spectrum
of linearization at a solitary wave show that the solitary waves are specstaltye. We corroborate our
results by finding explicit expressions for several of the eigenfunsti®ome of the analytic results hold
for the nonlinear Dirac equation with generic nonlinearity.
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1. Introduction

The study of stability of localized solutions to nonlineasgkrsive equations takes its origin in [9], where the
instability of stationary localized solutions to nonlimédein-Gordon equation was proved. It was suggested there
that quasistationary finite energy solutions of the farfm)e—:“*, which we callsolitary wavescould be stable.
The first results on (spectral) stability of the linearigatiat solitary wave solutions to a nonlinear Sifinger
equation were obtained in [23, 26]. Orbital stability anstability of solitary waves in nonlinear Sditinger and
Klein-Gordon equations have been extensively studied4nl1, 18, 20, 25]. The asymptotic stability of solitary
waves in nonlinear Schdinger equation was proved in certain cases in [2,3,5,22.24].

Systems with Hamiltonians that are not sign-definite aremadsly difficult, due to the absence of the a priori
bounds on the Sobolev norm. Important examples of suchregstee the Dirac-Maxwell system [13] and the
nonlinear Dirac equation [19], which have been receivingteof attention in theoretical physics in relation to
classical models of elementary particles. The stabilityaditary wave solutions to the nonlinear Dirac equation is
far from being understood. Some partial results on the nisaleanalysis of spectral stability of solitary waves are
contained in [4]. Generalizing the results on orbital digbof solitary waves [14] to the nonlinear Dirac equation
does not seem realistic, because of the correspondingyefsrgtional being sign-indefinite; instead, one hopes
to prove the asymptotic stability, using linear stabilitymbined with the dispersive estimates. The first results
on asymptotic stability for the nonlinear Dirac equatioe afready appearing [1, 16], with the assumptions on
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the spectrum of the linearized equation playing a cruci. rin view of these applications, the spectrum of the
linearization at a solitary wave is of great interest.

In the present paper, we give numerical and analyticalfjcations of spectral stability of small amplitude
solitary wave solutions to the nonlinear Dirac equationrie dimension.

Let us remind the terminology. Given a solitary wamer)e ¢, we consider a small perturbation of the form
Y(x,t) = (¢(x) + p(z,t))e” ™. We call a solitary wave (x)e~*! linearly unstablef the equation o is given
by 9:p = Ap + o(p), with A having eigenvalues with positive real part. If the entirectpum of A is on the
imaginary axis, we call the solitary wagpectrally stable The solitary wave is calledrbitally stable[14] if any
solutiont(t) initially close to¢ (in a certain norm, usually the energy norm) will exist gltypaemaining close
to the orbit spanned by for all times:

For anye > 0 there isd > 0 such that /|y — ¢|| < J, then there is a solutiogh(¢)
which exists for alt > 0 and satisfie®)|,_, = o, sup in]fR v, — e < e.
t>0 S€

Otherwise, the solitary wave is calleabitally unstable A solitary wave is callecasymptotically stabléf any
solution initially close to it (in a certain norm) will conkge (in a certain norm) to this or to a nearby solitary
wave. Linear instability of solitary waves genericallydisaoorbital instability[11, 12]; at the same timspectral
stability does not imply neither orbital nor asymptotic stability.

AcknowledgementsThe authors would like to thank Marina Chugunova for providing us wittpheliminary numerical results

on spectral properties of coupled mode equations (see also [4]) wteelly stimulated our research. The authors are grateful
to Nabile Boussaid, Thomas Chen, Linh Nguyen, Dmitry Pelinovsky, Bfandstede, Walter Strauss, Boris Vainberg, and
Michael Weinstein for most helpful discussions.

2. Nonlinear Dirac equation

The nonlinear Dirac equation has the form

i) = =iy a;0p b+ Bg("BY)Y,  (wt)eCN,  zeR” (2.1)

j=1
with ¢* being the Hermitian conjugate ¢f. The Hermitian matrices; and3 are chosen so that

of=1, =1 Aaoja}=205 {a;f}=0, 1<jk<n

We assume that the nonlinearitys smooth and real-valued. We denete= ¢(0). Equation (2.1) wit = 3 and
g(s) = 1—sis known as the Soler model [19] (when= 3, one can take Dirac spinors wiffi = 4 components).
The caser = 1 (when one can take spinors wilfi = 2 components) is known as the massive Gross-Neveu model

[10,15].
In the present paper, we consider the Dirac equatid®'in
i(0r + a0z )Y = g(" BY) B, P(x,t) € C?, z e R (2.2)
As o« and 3, we choose
Q= —02, B = 03, (23)
. . . 01 0—i 10 . . ) )
with the Pauli matrices; = 10):2=1;0)93=\g_1) Noting thaty* o5t = |11|? — |¢=|*, we
rewrite equation (2.2) as the following system:
{Z:aﬂ/h = 0pth2 + g([U1]? — [¥2]*)91, 2.4)
i0pthy = —0u1 — g([1|* — [1h2]? 2.

14
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3. Solitary wave solutions

We start by demonstrating the existence of solitary wavetgwis and exploring their properties.
Definition 3.1. The solitary waves are solutions to (2.1) of the form
V(z,t) = o (x)e ™, ¢, € H'(R",CY), weR.
The following result follows from [8].

Lemma 3.2. Assume that
m := g(0) > 0. (3.1)

LetG(s) be the antiderivative ojf(s) such thatG(0) = 0. Assume that for given € R, 0 < w < m, there exists
Z., > 0 such that

wZ, = G(Z,), w# g(Z,), and  ws < G(s) forse (0,2,). (3.2)

Then there is a solitary wave solutigi{z, t) = ¢,,(z)e~**, where

buo() = mg] . v ueH'\(R), (3.3)

with bothv andu real-valued,w being even and odd.
More precisely, let us defing (x) and %/ (z) by

X =v? —u?, Y = vu. (3.4)
ThenZ (z) is the solution to
X" = —09(—2G(Z)* +2w°27?), Z(0) = 2., 2'(0) =0, (3.5)
and? (z) = — L 27 ().

Proof. From (2.4), we obtain:
wo = dgu+ g(Ju)? = |uf*),
{wu = —0v — g(Jv]? — |ul?)u. (3.6)
Assuming that bothv andu are real-valued (this will be justified once we found redlied v and ), we can

rewrite (3.6) as the following Hamiltonian system, witlplaying the role of time:

Opu = wv — g(v? — u?)v = d,h(v,u), 3.7)
—0,v = wu + g(v? — u?)u = 9, h(v,u), '
where the Hamiltonianh (v, u) is given by
1
h(v,u) = %(U2 +u?) — iG(UQ —u?). (3.8)
The solitary wave corresponds to a trajectory of this Hamilin system such that
rl}gloov(x) - IEI:EOO U(J?) - O’
hence Erﬁ Z = 0. SinceGG(s) satisfies7(0) = 0, we conclude that
h(v(z),u(x)) =0, (3.9)
which leads to
w? +u?) = G(v? — u?). (3.10)

Studying the level curves which solve this equation is moswenient in the coordinates
2 =0 —u?, 2 =v +u?
see Figure 1. We conclude from (3.10) and Figure 1 that splitaves may correspond t@| < m, w # 0.
15
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Remark 3.3. If w > 0, then there are solitary waves such thas nonzero while: changes its sign (shifting the
origin, we may assume that this happens at 0). Forw < 0, there are solitary waves such that~ 0, while v
changes its sign.

Remark 3.4. In the case whef(s) is odd, for each solitary wave correspondingte R there is a solitary wave

corresponding te-w. More precisely, in this case, [ﬁgﬂ e~ ™! is a solitary wave, then so %Z((iﬂ et

2
u z
7y
7 =92
G(Z
=92
,// B /U2
'%w \\
\;\
Z

FIGURE 1. Existence of solitary waves in the coordinatés = v? — u?, 2 = v2 + 2. Solitons withw > 0 and
w < 0 correspond to the bump on thé axis and to the dotted bump on thé axis (respectively) in the first quadrant.

The functionsZ(z) and%/(z) introduced in (3.4) are to solve

2 = —4w¥ ,
W' = (0 +u)g(X)+wZ = -L1G(X)g( ) +wZ,

w

(3.11)

and to have the asymptotic behavion,,| .., 2 (z) = 0, lim|;,o % (x) = 0. In the second equation in (3.11),
we used the relation (3.10). The system (3.11) can be widtsathe following equation o":

2" = —09 (—2G(Z)* +2w°2°?). (3.12)

This equation describes a particle in the poteritigls) = —2G(s)? + 2w?s?; see Figure 2. Due to the energy
conservation (withe playing the role of time), we get:

12 12
%; —2G(2) + 2w 2% = %T + Vo, (Z) =0. (3.13)
Using the expression fo®”’ from (3.11), relation (3.13) could be rewritten as
12
0= 3&; + Vi (2) = 8w*Z? = 2G(2)* + 2w 272 = 2w* (4v°u® + (v — u?)?) — 2G?, (3.14)

which follows from (3.10).

For a particular value ab, there will be a positive solutio®?” (z) such thalim,_, 1, 2 (z) = 0 if there exists
Z., > 0so that (3.2) is satisfied (see Figure 2). We shigb that2™ so that2"(0) = Z,,; thenZ (z) is an even
function.

OnceZ (z) is known,? (x) is obtained from (3.11), and then we can exprgas, u(z). O
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Vo (s) = —2G?(s) + 2w?s?

S

0 2o

FIGURE 2. Effective potentiall,,(s). A solitary wave corresponds to a trajectory which satisté§0) = 2.,

Remark 3.5. Note that for0 < |w| < 1, the functionsv(x) andu(z) are exponentially decaying &s| — oo.
Indeed, the exponential decay 4f (x) could be deduced from (3.12). Then the exponential deca¥ of) =
v(z)? + u(z)? follows from the relation” = G(.2") /w (Cf. (3.10)).

3.1. Explicit solitary waves in a particular case

As shown in [15] for the massive Gross-Neveu model (the Sutadel in 1D), in the special case of the potential

G(s)=s— 5 (3.15)
the solitary waves can be found explicitly. Substitut@gs) from (3.15) into (3.13), we get the following relation:
de = — dz = - el . (3.16)
2\/(Z — 22/2)2 — w222 22\ (1= Z7/2)2 — w?
We use the substitution pe
w w
1_7_(:082@7 %_2(1_@52@)' (3.17)
Then s sin 26
222502C JO d
do = YN di 2)2 2 n 2@/ 2 - Cos2g—w’ (3.18)
\/( - / ) v 4(1 - 00:)2@) cosu(i’2@ —w?
t
T = 1 In Vit tan® ’ (3.19)
2k | \/p—tan©®
where .
k=v1-w?, o p=-_2. (3.20)
14+w
Then
(Vi + tan ©)e*** = /i — tan O, tan ©(z) = —/ptanh K. (3.22)
Also note that
w w 1+ tan? O(x)
=2(1— =2l1l— ———— | = 1l-—w————-5—7-—= .22
Z () ( cos 2@) < 2c0s2 O — 1) ( “T— tan? O(x))’ (3.22)
and then
o, 12 . de
Y (x) = E,%” (x) = 4c0322@( 25in 20) ir

12 . o
— 71m(728m2@)(00629 —w) = ?tan29
_ KM _ _%(x)\/ﬁta—nh/;x.
2 1—tan*@ 1 — ptanh” kx

17
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Denote
Z(z) = v*(z) +u*(x). (3.23)

Then

B 2 w 1+ tan?O(x) 1+ tan? O(x)
Z(z) = cos 20(x) (1 ~ cos 26(x)) - 71— tan?O(x) (1 " YT tan? 9(30)) )

The other functions are expressed frathas follows:

v(x) =/ Z(z) cos O(z), u(z) = —\/Z(z)sin O(z), (3.24)
X(@) = Z(@)c0s20(),  V(z) = —%Q‘”(m)sin 26(x). (3.25)

Combining equations (3.24) with (3.20), (3.21) and usingid&igonometric identities, we obtain the following
explicit formulae forv(z) andu(z):

o(x) = 2(1 —w) u(z) = 2u(1 — w) tanh kx (3.26)

(1 — ptanh? kz) cosh ka’ (1 — ptanh? kz) cosh k'’

Remark 3.6. By (3.21), tan © changes from/x to —,/iz asx changes from-oo to +oo. Thus, in the limit
w — 1, wheny — 0, one has?” ~ 2, while |%| < 2\ /p.

4. Linearization at a solitary wave

To analyze the stability of solitary waves we consider tHatgm in the form of the Ansatz

Bat) = Gulo) oo ), o) = [P0 €% planect (.1)

u(x

Then, by (2.1)idp + wp = =iy @0s;p + B [9((9w + P) (b + £)) (P + p) — 9(Pudu) P - The linearized
equation orp is given by

iatp =—i Z aawjp —wp + 6 [g((gwd)w)p + (Q_Swp + ﬁ?bw)g/(a)wﬁbw)(ﬁw] .

J

The linearized equation dR(z, t) = [ﬁ ng’g] € R* has the following form:
_ | 0 I Ly O _ 4
R = [[2 O} {O Lo] R =]JLR, R(z,t) € R, 4.2)
0 L] . . . L; 0 .
where] = A with I, the 2 x 2 unit matrix, andL = 0 Lol wherel, L, are self-adjoint operators
given by
v —u?) —w Oy v2 —ou
Lo = |:g( _81) —g(y2 — u2) — w:| ’ L =1To+ 29[(02 - u2) [—U’U, u? :| '

Remark 4.1. The operatorg,, Ly, andlL; depend on the parameter

18
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5. Spectra ofLy and L,

While we are ultimately interested in the spectrum of the afmej L, we start by analyzing the spectralgf and
L, which are easier to compute and which will shed some lighherbehaviour of the full operatgi.

Lemma 5.1. The essential spectrum of the operatbisand L, is given byR\(—1 — w,1 — w). There are no
eigenvalues embedded into the essential spectrum.

Proof. Due to the exponential decay of the solitary wave componeatsdv (see Remark 3.5), the operatdss
L, are relatively compact perturbations of the operator

D —w, where D = —iad, + 5 = [—18 ?ﬂ . (5.1)

The free Dirac operatdD is a (matrix) differential operator with constant coeffiti® Its essential spectrum is
given by the values\ for which ker(D — \) contains bounded functions. In other words, we are lookorg f
solutions of(D — \)y = 0 of the formy = Ze%*, with real¢ and constanZ € R?. Calculating the determinant
of the symbol ofD — A, we get

I—=X i€ | _ |2 2
det[—z{x—l—)\]_/\ —1-¢&=0.

Thus the essential spectrum is the range\of +./1 + £2 whené € R, that is, two interval§—oco, —1] and
[1,00).

Regarding the embedded eigenvalues, the space of solufofls — \)¥ = 0 (similarly, (L; — \)¥ =
0) is spanned by the two Jost solutions, i.e. the solutionstihge the same asymptotics as the solutions of
(D —w—M\¥ = 0. For\ € o.ss, there are two oscillating Jost solutions which cannot damlo produce a
decaying solution. Thus there are no eigenfunctions cporeding to\ € o.s. |

The spectrum of has the following symmetry property.

Lemma 5.2. For eachw such that there is a solitary wave solutigrix)e =" to (2.2), the spectrum of, is
symmetric with respect th = —w. See Figure 3.

Proof. It suffices to check that ¥ (z) = F;((i))} € C? satisfies(Ly — \)¥ = 0, thenO(x) = Lig;] satisfies
(Lo + (2w + A))© = 0. O
Remark 5.3. The statement of Lemma 5.2 takes place for any nonlineafiy.

Next we explicitly find two eigenvalues together with theégenvectors for each of the operatays L;.

Lemma5.4.1. 04(Ly) D {0}, o4(L1) D {0}. The corresponding eigenspaces are given by

ker Ly = Span(¢) = Span < {Z] > , ker L; = Span(d,.¢) = Span < [U:} > .

u

2. 0p(Lo) D {—2w}, op(L1) D {—2w}. The eigenfunction of both, andL; corresponding to the eigenvalue
—2w is given by (z) = {

Proof. By (3.6),Lg [z =0, hencep = {Z] € ker Ly. Since there are two Jost solutionslgfcorresponding to

A = 0 with prescribed asymptotic behavior as— +oc, with one growing at-oco and the other decaying, there
are no more.? eigenfunctions corresponding ko= 0. For more on Jost solutions, see Section 7.
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From Lemma 5.2 we immediately get that= —2w is an eigenvalue with the corresponding eigenfunction
given by [ﬂ .
Turning our attention to the operatbi, we take the derivative of the relatidR¢ = 0 with respect tar to
obtain
L V'] [2¢'v? +g—w O —2¢'vu v —0
/| 7 | =0, — 2¢'vu 2¢'u® — g —w| [v/| —
Using (3.6) again, we get

ul 200 +g4+w 0, —2¢vu | [u]l  [g+w O u|
(L1 +2w) LJ{—&E—ZQ%W 20u? —g+w| |v| | =0, —g+w||v =0

The last equality is due to (3.6). Again, there are no morerdignctions since there is one Jost solution growing
asz — +oo and the other decaying, and one can not use them to constonetthan one eigenfunction. |

At the thresholds (the endpoints of the essential specttinendolutions of Ly — \)¥ = 0and(L; — \)¥ =0
are, in general, linearly growing. However, the operdfphas “resonances”, that is, generalized eigenfunctions
that are uniformly bounded.

Lemma 5.5. For the nonlinearityg(s) = 1 — s (the Soler model), the values= 1 — w and\ = —1 — w are
resonances df.

Proof. The generalized eigenfunction corresponding te 1 — w is explicitly given by

_ [R() | __ul@u(@) i =il
¥(x) = [S(x)} ,  with R(z) = v(x)? — u(z)?’ 3e) = v(@)? = u(x)?
By Lemma 5.2, the generalized eigenfunction corresponing= —1 — wis¥ = {;] _ .

The numerical computations show that for the nonlineariy) = 1 — s (the Soler model), there are no other
eigenvalues irLy; see Figure 3, bold symbols. This agrees with [4]. The traresgt symbols on Figure 3 denote
antiboundstates which will be discussed in detail in Section 7.4. Nlo& the antibound states numerically found
at the edges of the essential spectrum are nothing elseégghnances described in Lemma 5.5.

The spectrum of ;, besides eigenvalues = 0 and A = —2w discussed in Lemma 5.4, may contain more
eigenvalues. For the nonlinearigys) = 1 — s, the numerical computation of the spectrumiefis on Figure 4.
On that picture, eigenvalues are represented by the boldagm There are 4 eigenvalues that belong to the
spectrum for all values @b starting fromw = 1. Moreover, there are eigenvalues that “emerge” from therd&s
spectrum as decreases. In fact, they can be traced to being antiboutes gieior to becoming eigenstates. We
will discuss this in more detail in Section 7.4.
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6. Spectrum ofJL

The analysis of the spectrum PE builds upon what has been discovered for the operdigrk; in Section 5. In
particular, starting from the explicit eigenvectors for L; we are able to construct explicit eigenvectorsjbr

Lemma 6.1. For any nonlinearityg(s) in (2.2)with ¢(0) = 1, for linearization at a solitary wave(x)e =™ with
|w] < 1, the following is true:

1. The spectrum diL is symmetric with respect to the real and imaginary axes.
2. The essential spectrum Hf lies on the imaginary axis and is given by

Oess(JL) = iR\ (—i(1 — w),i(1 — w)).

3. ker JL = Span < [Qéﬂ , [g} > , with ¢ = {Z] € R2,

4. The values\ = +2iw are eigenvalues dfL. The corresponding eigenvectors {@?A , Wherep = [ﬂ .

Remark 6.2. More generally, it turns out that = +2wi are L2-eigenvalues oJ L which corresponds to a lin-
earization at a solitary wave of nonlinear Dirac equatiod)&vith any nonlinearityy(s) and in any dimension
n > 1. These are embedded eigenvalues as long|as m/3, wherem := g(0). See [6].

0 Lo
-L; 0’
bothL. real-valued\ € o(JL) implies that if¢ € L*(R, C*) satisfiesJL¥ = \¥ (in the sense of distributions),

— {IQ 0

Proof. Let us show tha#,(JL) is symmetric with respect tBe A = 0 andIm A = 0. SinceJL = { with

then¥ (z) satisfieJL¥ = \W. At the same time, the functioB¥ (), with X = 0 —IJ , satisfies

LYW = JYLY = — SJLW = - \XV.

It follows that bothA and —\ are also eigenvalues gL, henceo,(JL) is symmetric with respect to the line
Im A = 0 and with respect to the point= 0.

To find the essential spectrum B, by the Weyl criterion, we need to consider the limitJdf asz — +oo,
D 0}

substitutingv, u by zeros andy by g(0) = m = 1; thenJL — X turns intoJ (D — w) — A, whereD = {0 D

with D = {16 awl] defined in (5.1). Substituting intd (D — w) — \)¥ = 0 the Ansatzl/ (z) = Ze'¢?, with

Z e C* E+#0,we get:

(J(D —w) = N)Ee* = (J(D(E) —w) — A)Z = e [_D@)A+ y D(f_); W] Z=0,

whereD(¢) = {D(()g) D(()g)}’ with D(§) = {_11.5 iﬂ being the symbol oD. The essential spectrum §E is

the range of values of which correspond t§ € R. To find the relation betweekhand¢, we need to compute the
determinantlet (J(D(£) —w) — A) and to equate it to zero. In order to compute the determimanfotice that

(J(DE) —w) =X (J(D(E) —w) + A) = =(D(§) —w)* =N = =% =1 —w’ = N + 0D(9),

(—€—1-w? =N +2wD()) (- -1-w? =N —2wD(€)) = (1 —w? + &+ N*)* + 4?\?) I,

wherel, is thed x 4 identity matrix. Sincelet (J(D(&) —w) — A) should be even with respect §candw, two
above relations allow us to conclude tiat (J(D (&) — w) — \) = (1 — w? + €2 4 A\?)? 4 4w?\2. The equation

det J(D(§) —w) —A) = (1 —w? + € + N\?)? +4w*X* =0
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allows one to expressin terms of¢ asA = +i(w £ /1 + £2), or, vice versa,

=2/ (wEir)? —1.

This shows that the essential spectrunfi§(—i(1 — w),i(1 — w)).
The kernel of]L is known by Lemma 5.4. Finally, again due to Lemma 5.4,

e R R e e o o

Definition 6.3. Threshold points are the values. ot C which correspond t§ = 0.

On Figure 5, one can see that the essential spectrdh obnsists of two overlapping components, which we
distinguish by the symbolsandj. Theb-component is’R\(Abw A2, with the threshold points
M= —i—iw, N =i—iw; (6.1)

thef-component is’R\(/\Z, M), with the threshold points

M= —itiv, M =i+tiw. (6.2)

We use the subscriptgl™ and “u” for the lower (“down”) and the upper edges of each of the components of
the essential spectrum.

The numerical computation of the point spectrunjloinside(0, i(1+w)), as a function o € (0, 1), is plotted
on Figure 6. The eigenfunctions corresponding to threetmigenvalues at = 0.1 are plotted on Figure 7.

7. Jost solutions and Evans functions

Looking for zeros of the Evans function is a way to test whea@umtion has solutions with the correct asymptotics
at infinity. The definition involves two main steps. The fingsis to construclost solutionswhich are defined as
solutions with certain decaying asymptotics either at pifiity or at minus infinity. The second step is to match
these two types of solutions. In the presence of symmetrgahstruction can be made simpler, simplifying the
numerical computations. We describe this in detail below.

7.1. Jost solutions forJL

Jost solutiong”(x, A) of JL are defined as solutions {§L — \)¥ = 0 which have the same asymptoticsiato
or at—oo as the solutions t¢J (D — w) — \)¥ = 0, where

DO . 1 0,
D:{OD}’ D:_maﬁﬁz{—aw—l]'

For a given\ € C away from the threshold points(1 + w)i, solutions to(J (D — w) — A\)¥ = 0 have the form

Uz, \) = [15%'} el
where [lﬂ € C* and¢ € Cis a solution tadet (J(L(§) —w) — A) = 0. Let A = a + ib, with @ > 0 andb > 0.

(Because of the symmetry of JL) with respect to the lineBe A = 0 andIm X\ = 0, we only need to consider the
spectrum in the closure of the first quadranCof Then define

& = V((b—ia) +w)? -1, & =V((b—ia) —w)? — 1,
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FIGURE 5. Domains of analytic functiong’ (1), £f()), and the essential spectrumJdf. The thresholds are located
at\y = —i —iw, A} = —i 4w, A5, = i —iw, andA}, = i + iw. The analytic functior” (\) is defined orC with the
cuts fromA?, to +ico and from\?, to —ico (thick lines on the left side of the imaginary axida £ < 0, in&f < 0
for all A € C. The analytic functiorg? ()) is defined onC with the cuts fromk?t to <00 and fromA’; to —ioo (thick
lines on the right side of the imaginary axis). The boundaagés of botle? and¢” at the double-covered part of the
essential spectrum (abos)é and beIowAZ) are real-valued.

where for the square root we choose the branch that has veegatginary part (so that botT €’ ande ¢~
decay ast — +00). Then¢’ is defined forA € C with the cuts from\’ = i(1 — w) to +icc and from
N = —i(1 4+ w) to —ioo, while ¢ is defined for\ € C with the cuts from)\!, = (1 + w) to +ico and from
)\fi = —i(1 — w) to —ico. See Figure 5. Altogether the four solutions to the equation{J (D ({) —w) —A) =0
are+£°(\) and+£f ().

The four solutions t¢J (D — w) — \)¥ = 0 corresponding td away from the thresholds (6.1), (6.2) are given
by

Zh(A)etEMe 2t ()t Ve (7.1)
where
—i&" () —ig* ()
=b A -14w —t | iA-1+4w
= ()‘> fb()\) ’ ~7<)‘) - —fﬁ(A) ) (7-2)
A —i(l —w) A+i(1 —w)
i€ (N) igh(N)
o= - (&)ﬂ’ . =)= Mgﬁ (1”“’ . (7.3)
A—i(l —w) A+i(l —w)

We will only be considering the Jost solutions which havespribed asymptotics at — +oo.

24



G. Berkolaiko, A. Comech Spectral Stability of Nonlinear Dirac Equation

Lemma 7.1. Foreach\ € C, A ¢ {\, Ag, A2 A1, there are Jost solutions {JL —\)# = 0 with the asymptotics
Vi (2, ) ~ ZL (Nt N7 and V2 (2, A) ~ S5 (Ve N7 1 5 400, More precisely,

VE(2, NeF D — L) = 0(1), @ +oo;

Y2 (2, \)eFE Nz _ 25 (V) =0(1), & — +oo.

Proof. The proof follows from the Duhamel representation for theuson to (JL — \)¥ = 0 and from the
exponential spatial decay of the solitary wav&s) corresponding to € (0, 1); see Remark 3.5. |

Remark 7.2. Atthe threshold pointa? = —i+iw and\!, = i+iw (respectively\’, = —i —iw and\’ = i —iw),
where¢f(\) = 0 (respectively£®(\) = 0), one hasEi(/\) ==\ (respectively,=" (\) = =” ())). For such
A, there are only three Jost solutions as in Lemma 7.1, and ane dost solution which is linearly growing as
T — +00.

7.2. Evans functions forJL

Normally, Evans function describes a matching between sistions decaying to the left and Jost solutions
decaying to the right. However, presence of symmetriesvallas to streamline calculation in the present case.
Denote byX ¢ the “even” subspace of functions framt (R, C*) with even first and third components and with odd
second and fourth components. Similarly, denoteXythe “odd” subspace o'} (R, C*) with odd first and third
components and with even second and fourth components. Th@h, C*) = X* @ X*. Noticing thatJL acts
invariantly in X* and in X*, we conclude that all eigenvalues [df always have a corresponding eigenfunction
either inX'* or in X® (or in both subspaces). To find eigenvaluegbfcorresponding to functions frooy ¢, we
proceed as follows:

— For A € C, construct solutiong;, 1 < j < 4, to the equatiofL¥ = A% with the following initial data at

x=0: )
nl, - H Bl = [
0

Then¥, ¥5; € X*, while,, ¥, € X°.
— Take the Jost solutions” (z, A) andY? (2, \) as in Lemma 7.1, which decay for— +oc.
— Define the Evans function

}7 W?)‘m:o = |:§:|’ Lp4|ac:0 = |:§:| (74)

coro

E*_(\) = det [wl (2, \), Ws(z, N), Y2 (2, \), Yﬂ(x,x)} . (7.5)

This is a Wronskian-type function which does not depend and could be evaluatedat= R > 1, where the
asymptotics of? andY? are known from Lemma 7.1. Vanishing & _(\) at particular\ € C means that a
certain linear combination aF, (x, \) and¥s(z, \) has the asymptotics of the linear combinatior¥sf(z, \)
andY_ﬁ(x, \) asz — 400, Which decays at-co (according to our choice @ (\) and¢?(\). By the symmetry
of ¥ (its first and third components are even while its second enttli components are odd), this same linear
combination also decays as— —oo. Therefore, vanishing af’* _(\) at some\ € C implies that there is an
eigenfunction corresponding to this particular value\ of

— Similarly, define

E*_(\) = det [wg(x,x), Wy(a, \), Y2 (2, \), Yﬁ(m)} . (7.6)

The conditionE*(\) = 0 means that a certain linear combinationtef ¥, € X* has the same asymptotics
whenz — +o00 as a solution ofJ(D — w) — A)¥ = 0 which decays for: — +oc.

Let us summarize the above in a convenient form:

Lemma7.3. X € o,(JL) if and only if E*_(A)E® _(\) = 0. Furthermore, E*_(\) = 0 (respectively,
E* _(\) = 0) if the corresponding wave function belongstg(R, C*) N X* (respectivelyL?(R,C*) N X*).
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When searching numerically for zeros of the Evans functionthé spectral gap on the imaginary axis, we
benefit from the following observation.

Lemma 7.4. For A € i(—(1 — w), (1 — w)), the real part of the function&’® _ (), E* _()) equals zero.

Proof. For A with Re A = 0, one immediately concludes frofiL — A\)%; = 0 that for allz € R the components
(¥1(x)); and (W»(x)); are real forj = 1, 2 and imaginary forj = 3, 4, and that(¥s(x)); and (W4(x)); are
imaginary forj = 1, 2 and real forj = 3, 4. On the other hand, whene (—i(1 — w),i(1 — w)) and both¢” and

¢* are imaginary, the first two components®f and=* from (7.2) are real and the second two are imaginary. It
follows that

det [Q’/l(x,A),%(x,A)E"_(A),E”_()\)} ciR,  det [wg(x,A),m(m,A),Eb_(A),EE(A)] € iR,

for anyz € R. Since¢” and¢t are purely imaginarw*’fbx ande—i€"* are real; we conclude from Lemma 7.1
that
B*_(\) = det [ (2, A), W, A), Y (), Y2 ()]

and
E*_(\) = det [%(x, A), (2, M), Y2 (N, Y_ﬁ()\)}

are purely imaginary. |
7.3. Jost solutions and Evans functions fof.g and L

The construction of the Jost solutions and Evans functioithie operatoi; (and, respectivelyl.) is similar to
the construction fofL. At z — 400, L; coincides withD — w. The equation

(D —w— \)¥(z) =0

has two linearly independent solutions
Ei ()‘)eiiE(A)xa

where=4 (\) € C? are given by

+(A) = {l;-g(j\r))\} , where ¢ =/(w+ A2 — 1.

The function{()) is defined forA € C with branch cuts fromh = 1 — w to +c0 and fromA = —1 — w to
—oo. These branch cuts correspond to the essential spectruma operatoi; (similarly, of Ly). The square root
denotes the branch with the negative imaginary part wheardugment is negative, so that fdifrom the spectral
gap(—1 — w,1 — w), the function=_ (\)e~ %M is decaying ag — +oo. The Jost solution¥ 1 (z, \) for L;
are solutions t¢L; — \)Y(z, A\) = 0 with the asymptotic behavior

[n)

Yi(z,\) ~ Zx(N)eFiENz gy 4o, (7.7)

There are two subspaces®@f (R, C?), X* (spinors with the even first component and odd second conmpjozued
X* (spinors with the odd first component and even second conmppsiech thatX* @ X* = C!(R, C?), which
are invariant with respect tb, (also with respect td,). We define two solutiongl; (z, \) and¥,(z, \), to the
equation(L; — \)¥ = 0, with the initial data

1 0
W1|m:0 = |:0:| ) W2|x:0 = [1:| .

Then we define the Evans functionslgfby
E$(N\) = det [T (x,N), Yi(x, V)], EL(N\) = det [Ta(x, N), Yi(x, V)], (7.8)
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and look for their zeros.

If E* (\) vanishes at somk € C, then it means thak; (x, ) asz — +oo has the asymptotics of the decaying
Jost solution. (By the symmetry, as— —oo, ¥ (x, \) also has the asymptotics of the Jost solution decaying to
—00.) We can summarize this as follows.

Lemma 7.5. The inclusiom\ € o,(L;) takes place if and only i£* (A\)E® (A) = 0.

In the same way one defines the Evans functiéhg)\) andE® (\) for Ly. The zeros of the Evans functions
E2 () andE2 ()) are plotted on Figure 3 (fdry) and Figure 4 (foil;). The meaning of zeros &% andE? is
discussed in Section 7.4.

7.4. Antibound states forLy and L4

The Evans function is defined using two pieces of data: aisolutith the given initial data and the Jost solution
that corresponds to one valuegfsee equation (7.7). However, we can vigik) as defined on a Riemann surface
with two sheets (corresponding e,/- and—+/-) and two singularity points at1 — w. The two sheets are glued
across the cuts—oo, —1—w] and[1—w, co). The two eigenvectors @ —w (this operator coincides with, andL,

atx — +o00) can be thought of as the same eigenvector that changeslagrto which sheek is on. Continuing

in this vein, we consider two previously defined Jost sohsi6 . (z, A), A € C\ ((—o0, =1 —w) U (1 —w, +0)),

as one Jost solution defined on the Riemann surface, whidhés @f two copies of®\ ((—oo, =1 — w) U (1 —

w, +00)). We use this Jost solution to define the Evans function orRtémann surface. Thus, foron the first
sheet of the Riemann surface, the Evans functiohé\), E*(\) are represented biyg* (), E® (\) from (7.8),
while on the second sheet they are representeld®i)), ES (A). When a zero of the Evans function disappears
at the end of the spectral gap, it does not “dissolve” in tlsersal spectrum, but, rather, it goes back into the gap,
albeit on a different sheet of the Riemann surface on whiet&byans function is defined. Such an “unphysical”
zero of the Evans function is known in the literature as adnegce” or an “antibound state”. Since the “resonance”
is also a name used specifically for a bounded solution ahtiesiiold of the essential spectrum (at the threshold,
the two notions coincide), we will be using the “antibounatst as the name of choice. Itis “antibound” since the
solution is purely exponentially increasingas- +oo, consisting solely o, (z, \) asz — +oo.

On Figure 4 the antibound stateslgfare indicated by transparent symbalsq for the states with even eigen-
functions and> is for the states with odd eigenfunctions). Sometimes aatid states pass from the unphysical
sheet onto the physical one at the threshold pviat 1 — w. Note that the curve of transparent circles on the right
has a maximum. This is the valuewf(on the vertical axis) at which two zeros of the Evans functieing off the
real axisim A = 0 on the unphysical sheet collide and create two zeros on #i@xés. The self-adjointness of
the operatoi_; forbids such a behaviour on the physical sheet, but it isiplessn the unphysical one.

Antibound states for the operatbg are plotted on Figure 3.

7.5. Antibound states forJL

The Riemann surface on which the Evans function of the opejatis defined is similar but more complicated.
Indeed, the two limiting frequencie® and¢! are defined on a two-sheeted surface each, but the surfazes ar
different. The Evans function is then defined on four she®@és. will denote them by(+, +), (+, —), (—, +),
(—, —), depending on the sign in front ¢”, ¢*). The sheet—, —) is the physical one, in the sense that the zeros
of the Evans function on this sheet are the eigenvalues affibeatorJL.

The sheets are glued in the following manner.

Across the cuté)\f,, ico) and ()\’, —icc), the sheet+, +) is glued to(—, —), while the sheet+, —) is glued
to (—, +) (that is, both signs change to their opposites).

Across the cut)\’, A1), the gluing is(+,:) < (—,-) (only the sign of” changes), while across the cut

u’ U

(X%, A%) the sign of? changes:(-, +) ¢ (-, —).
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The four branches of the Evans functifit on these sheets could be written as follows:

E*_(\) = det [!Pl(x,A),u'/g(x,)\),Y_b(x, /\),Y_ﬁ(a:)] ,

EY_(\) = det [ (2, 1), Ws (2, \), Y} (2), Y ()],
B (\) = det [Ql(:r, A) W (2, 0), Y2 (2, ), Yﬁ(w)} :

B, (\) = det [wl (2, \), W3(z, ), Y2 (), Yﬁ(x)} .

Similarly one defines the four branches of the Evans fundtidon

In Figure 8 we trace the zeros of the Evans function on(thg—) sheet (eigenvalues, solid symbols) as well
as the zeros on ther, —) sheet (“antibound states”, transparent symbols). Theszeao change between the two
sheets by hitting the (square root type) singularityﬁ’gtNote that when a curve has infinite derivative (with respect
tow on thex-axis) it signals that the zeros of Evans function are lggtfie imaginary axis into the complex plane
away fromRe A = 0. This behaviour can be seen for zeros on(the—) sheet, but we have not observed it for the
eigenvalues, which are the zeros on the —) sheet. This suggests that the eigenvalues stay on the iaTg@iris
for all values ofw.

The zeros lying on the other two sheets are unlikely to snedé the “physical’(—, —) sheet to become
eigenvalues for the following reason. To pass onto thiststieey would either have to leave the imaginary axis
and circle around or to go inside the essential spectrum #ritiehsingularity at the embedded threshold\at
We have not observed such a hypothetical behaviour.

For completeness, we also plot on Figure 8 the zeros of Evantsions on thé€—, +) sheet and on the+, +)
sheet. Note that between the threshol¢jsand \¥,, these zeros (marked on Figure 8 with™and “x”) meet.
Indeed, there is the following simple observation.

u? u

Lemma 7.6. For A € (A, \%) U (A2, A1),
E:+()‘) = E_T_+(/\), E:+(/\) = E—T—+(>‘)-

Proof. First, we notice that foh € iR, if ¥ is a solution to

| 0 Lo .
JLY = |:_I—1 0} W=\, (7.9)
then so isX¥, whereX = %2 _012] From (7.4), we conclude that forc iR,
Ty (z,\) = S0 (z,)),  Us(z,\) = ZW(z, \), (7.10)
W3(I,A) = 72%3(1’7)\), W4(l’,>\) = 72&174(50, A) (711)

For\ € (X2, \f), since¢® () is real anct? () is imaginary, and taking into account (7.2) and (7.3), wetbae

u’ u

there are the relations
27 (\)ei e = )’JEK()\)e—if"(k)ﬂf7 =5 (\)ei€ Ve = 25&()\)6%“(%)%. (7.12)

Given the Jost solution¥? (z, \) and Yj:(:c,)\) which satisfy(JL — \)¥ = 0, with A € iR, we know that

XY (x,)) andEYj‘i (x,\) also satisf(JL — A\)¥ = 0. Matching the asymptotics of the Jost solutions with (7.12)
(see Lemma 7.1), we conclude that

V(2 ) = ZY2(2,)),  Yi(z,\) = ZYi(z,\). (7.13)
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FIGURE 8. o(JL). The zeros of the Evans function on the upper half of the imagiaxis (vertical) as a function of

w (horizontal axis). Eigenvalues for even eigenfunctions, for odd) and the values of corresponding to antibound
states ¢ for even,o for odd). The symbols-+” and “x” denote zeros of the Evans functions which correspond to to
the Jost solutions on the other unphysical sheets (skeet$) and (+, +)) of the Riemann surface; see Section 7.4.
The star symbols found inside the essential spectrum aralfctnade up of coinciding symbols+” and “x"; see
Lemma 7.6.
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Taking into account (7.10) and (7.13), we have:
EY, = det {EJZ YT,YT”} — det [2@1, — XU, BY?, Z‘YH — det [wl, —%,Yj,yﬂ - B,

In the same manner one proves that, (\) = E$, (\) for A € (A3, \%).
The proof for € (A%, %) is similar. O

8. Conclusion

We considered the spectrum of the nonlinear Dirac equatidtDi, linearized at a solitary wave solution. The
numeric simulations have been performed for the nonliteafis) = 1 — s (the Soler model), while some of our
analytical conclusions remain valid for any nonlinearity.

In particular, we found that for any nonlinearijys) there are the eigenvalue2wi of the linearizatioJL. For
a certain range ab, these eigenvalues are embedded in the essential spedtjim o

For the nonlinear Dirac equation with the nonlineartys) = 1 — s we have not found any other embed-
ded eigenvalues dfL. We have not found any complex eigenvalues off the imagimaryg, concluding that the
linearization at all solitary waves is spectrally stable.
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