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Abstract. An eco-epidemiological model of susceptible Tilapia �sh, infected Tilapia �sh and
Pelicans is investigated by several author based upon the work initiated by Chattopadhyay and
Bairagi (Ecol. Model., 136, 103 { 112, 2001). In this paper, we investigate the dynamics of the
same model by considering di�erent parameters involved with the model as bifurcation param-
eters in details. Considering the intrinsic growth rate of susceptible Tilapia �sh as bifurcation
parameter, we demonstrate the period doubling route to chaos. Next we consider the force
of infection as bifurcation parameter and demonstrate the occurrence of two successive Hopf-
bifurcations. We identify the existence of backward Hopf-bifurcation when the death rate of
predators is considered as bifurcation parameter. Finally we construct a stochastic di�erential
equation model corresponding to the deterministic model to understand the role of demographic
stochasticity. Exhaustive numerical simulation of the stochastic model reveals the large ampli-
tude uctuation in the population of �sh and Pelicans for certain parameter values. Extinction
scenario for Pelicans is also captured from the stochastic model.
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1. Introduction

Among various types of interacting population models, prey-predator type interaction models have re-
ceived signi�cant attention in the area of mathematical ecology after the pioneering work of Lotka and
Volterra [25,27,30,36]. A huge number of prey-predator models are proposed and several interesting dy-
namical features are investigated. Di�erent modeling approaches are adopted to analyze the interaction
between prey and predator populations. Depending upon the nature of interaction and parameter values,
some investigation reported sustained chaotic oscillation in all components of the model under consider-
ation. The observed chaotic dynamics are supported by laboratory experiments as well as �eld data. On
the other hand, research in the area of mathematical epidemiology have received considerable attention
after the pioneering work of Kermack-McKendric on SIRS model, where S, I, R stands for susceptible,
infective and recovered population respectively [23]. Epidemic models are investigated thoroughly by
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several researchers to understand the nature and progression of diseases and also to suggest the suitable
control mechanism by vaccination or any other means. Combining these two �elds, researchers engaged
themselves with the study of eco-epidemiological models during last two decades [4,7,13,20,21,29,34,35].
Ecological models are extended to eco-epidemiological models by dividing one or more species into sus-
ceptible and infective class. So far as our knowledge goes, most of the eco-epidemic models are dealt with
susceptible and infective classes only, SIR, SIER types of classi�cation are not adopted till to date.

Eco-epidemic models with prey-predator type interaction mainly dealt with the role of predation on
susceptible and infected prey population to slow down or eradication of disease. As the functional
response is the sole link between prey and predator population, the choice of functional response to
model the interaction between susceptible prey and predators as well as infective prey and predators.
In some situations the infective preys are more vulnerable or easily accessible to the predators. On the
other hand, the transmission of disease in to the predators due to predation of infected prey and reduced
predation ability of infected predators are also important issues to understand the dynamics of concerned
model. Although the division of species into subclasses increase the degree of complexity of the concerned
interacting model but chaotic dynamics is reported in few cases [32].

In 2001, Chattopadhyay and Bairagi [11] proposed and analyzed an eco-epidemic model to study the
interaction between Tilapia �sh population and Pelicans at Salton Sea. They have reported that the
Tilapia �shes are infected through Avian Botulism bacteria and hence results in huge death of the �sh
species. A detailed discussion of the habitat, nature and mechanism of infection, disease related death
of Tilapia �shes and massive death of Pelicans due to predation of infected �shes can be found in [11].
The authors considered a three dimensional nonlinear coupled ordinary di�erential equation model to
study the interaction between susceptible Tilapia population, infected Tilapia population and Pelican
population where Pelicans are considered as predator of infected �sh population only. The model was
built up with the assumption that infected Tilapia �shes come to surface of the sea and becomes more
vulnerable for predation by the Pelicans. For the concerned model, authors have obtained the conditions
for local asymptotic stability of all equilibrium points and global stability of axial equilibrium point only
and derived the condition for persistence of all species. Considering search rate of predators as key
parameter, it was reported that the co-existing steady-state losses its stability with the increase of search
rate level and oscillatory dynamics sets in. It was suggested that proper harvesting of infected Tilapia
�shes should be implemented to save the Pelicans.

Recently, Upadhyay et al [33] revisited the model proposed in [11] and observed the chaotic dynamics
for the same model under certain choice of parameter values. To obtain the chaotic oscillation for
susceptible and infected Tilapia �shes and Pelicans, authors have considered growth rate of Tilapia �shes,
their environmental carrying capacity and half-saturation constant as bifurcation parameters. They have
reported that the variation of other parameters is not responsible for chaotic oscillation. It was reported
that the chaotic dynamics is quite relevant as the nutrient concentration of the sea water increases during
late summer and which in turn increases the carrying capacity and growth rate of Tilapia �sh population.
This increased growth of �sh population drives the system towards the chaotic regime. Apart from these
observations, authors have reported that chaotic behavior is mixed with stable periodic coexistence. This
result is not true and we are intended to nullify this possibility by showing the period doubling route to
chaos, which was overlooked in [33]. We also derive the condition required for Hopf-bifurcation which is
responsible for the initiation of small amplitude periodic solution around co-existing steady-state.

Dynamical analysis of eco-epidemiological models within deterministic setup have received attention
from researchers but the uctuation of environment and/or demographic variation in the species involved
with the model remains an unexplored area apart from few investigations. On the other hand, various
stochastic modeling approach is adopted for mathematical models of epidemiology [3, 6, 8{10, 12, 18].
There are three di�erent modeling approaches to study the environmental and demographic variability
to understand the spread and progress of epidemic diseases. In the �rst modeling approach, a discrete
state space model is built up based upon the di�erent possible changes in the components involved with
the system under consideration within very small time interval. In the second modeling approach, a
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discrete-time stochastic model is constructed �rst based on the observed independent random changes
involved with the system and then approximated by a system of stochastic di�erential equation. The
third approach is the most well-known procedure adopted for the formulation of stochastic di�erential
equation models. In this approach, speci�c functional forms are chosen for drift and di�usion matrix for
the dynamical system under consideration [5]. Due to limitations of mathematical machineries to analyze
these stochastic models, most of the investigations in this direction are based upon exhaustive numerical
simulations and interpretation of the results obtained through numerical simulations for suitable range
of parameter values.

The main objective of the present paper is two fold, �rstly we are interested to study the global
dynamics of the deterministic model proposed in [11] and establish the period doubling route to chaos.
Secondly, we construct the stochastic analogue of the existing deterministic model with the help of newly
proposed stochastic modeling approach by Allen et al to understand the e�ect demographic uctuation
in �sh species as well as in Pelican birds to shape the resulting dynamics. The main objective of the
present paper is two fold, �rstly we are interested to study the global dynamics of the deterministic model
proposed in [11] and establish the period doubling route to chaos. Apart from the investigation for route
to chaos, we also perform local stability and Hopf-bifurcation analysis with the contact rate and death
rate of predators as bifurcation parameter. Secondly, we construct the stochastic analogue of the existing
deterministic model with the help of newly proposed stochastic modeling approach by Allen et al. to
understand the e�ect demographic uctuation in �sh species as well as in Pelican birds to shape the
resulting dynamics. In the next section, we recall basic results for the deterministic model and obtain
the criteria for Hopf-bifurcation and then establish the period doubling route to chaos. We describe the
construction of stochastic model in section 3. Results obtained through exhaustive numerical simulations
of the stochastic model are given in section 4. In concluding section we discuss the basic outcomes of
present analysis and future direction of work.

2. Basic Model

In this section, we consider the same three dimensional model as proposed by Chattopadhyay and Bairagi
[11] and further investigated by Upadhyay et al [33]. Deterministic model consists of mainly two species,
Tilapia �shes and Pelican birds. Fish population is divided into two classes, susceptible and infected where
susceptible �shes are getting infection in contact with infected individuals and disease is transmitted by
following the law of mass action. In [11], authors have assumed that the susceptible Tilapia �shes are
only capable to give birth of new individuals but infected �shes compete with susceptible �shes for the
food. It was further assumed that the Pelicans are catching infected Tilapia �shes only as they come
to the surface of sea after getting infected and consumption of infected �shes by Pelicans follow Holling
type-II functional response. s(t), i(t) and p(t) denote susceptible �sh population, infected �sh population
and Pelican population respectively at any instant of time ‘t’. The dynamic interaction is governed by
the following three dimensional coupled nonlinear ordinary di�erential equations,

ds

dt
= rs

�

1 � s + i

k

�

� �si; (2.1)

di

dt
= �si � �i � mip

i + a
; (2.2)

dp

dt
=

�ip

i + a
� �p; (2.3)

subjected to positive initial conditions s(0) = s0 > 0, i(0) = i0 > 0 and p(0) = p0 > 0. All parameters
involved with the model are positive constants and their ecological interpretation are in order, r is the
intrinsic growth rate of susceptible �shes, k denotes the environmental carrying capacity for total �sh
population, � is the contact rate, � is intrinsic death rate of infected Tilapia �shes, m is the rate of
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predation, a denotes half-saturation constant, � is the growth rate of Pelicans due to predation and �
is the death rate of Pelicans. Here the parameter � includes natural death rate and death rate due to
predation of infected Tilapia �shes. Existence-uniqueness and boundedness of solutions for the model
(2.1) - (2.3) are discussed in [11].

E0(0; 0; 0) is trivial equilibrium point, E1(k; 0; 0) is the disease free equilibrium point, predator free

equilibrium point is E2

�

�
�

; r(�k��)
�(�+�k) ; 0

�

and E�(s�; i�; p�) is the interior equilibrium point whose compo-

nents are given by

s� = k � a�(r + �k)

r(� � �)
; i� =

a�

� � �
; p� =

1

m
(a + i�)(�s� � �):

E0 and E1 exist without any parametric restriction, feasible existence of E2 demands the restriction

� > �=k and satisfaction of parametric restrictions �k > � and � > � +
�a�(r + �k)

r(�k � �)
ensure the

existence of interior equilibrium point. Local asymptotic stability results of all equilibria were investigated
by Chattopadhyay and Bairagi [11]. Here we discuss the local stability of E� only as it is required for
the Hopf-bifurcation analysis. Further we like to remark that the stability conditions for E� derived in
[33] are su�cient but not necessary. Those conditions are rather stronger conditions compared to the
conditions required.

The Jacobian matrix for the model (2.1) - (2.3) evaluated at E� is given by

J� =

2

4

� r
k

s� �
�

r
k

+ �
�

s� 0
�a�
���

�
�
(�s� � �) � m�

�

0 ���
m

(�s� � �) 0

3

5 ; (2.4)

and the characteristic equation associated with J� is given by

�3 + A1�2 + A2� + A3 = 0; (2.5)

where

A1 =
r

k
s� +

��

�
� ��

�
s�; (2.6)

A2 =
�

�
(� � �)(�s� � �) +

� r

k
+ �

� �a�

� � �
s� � r�

k�
(�s� � �)s�; (2.7)

A3 =
r�(� � �)

k�
(�s� � �)s� > 0: (2.8)

According to the Routh-Hurwitz criteria, E� is locally asymptotically stable if A1 > 0 and A1A2 > A3.
It is quite di�cult to �nd explicit parametric restriction for local asymptotic stability of E� but we
can discuss this issue for some speci�c choice of system parameters. For this purpose, we choose
the parameter values k = 400, � = :06, � = 3:4, m = 15:5, a = 15, � = 10, � = 8:3 and
consider r as bifurcation parameter. Units of the parameters, suitability of their magnitudes, and
ecological justi�cations are discussed exhaustively in [11, 33]. For this choice, interior equilibrium

point is E�

�

326:76 r � 1757:65

r
; 73:24;

92:25 r � 600:33

r

�

and feasibility condition requires r > 6:5.

A1 = :82 r � 17:84 + 87:53
r

and it is positive for r 2 (7:5; 7:44) [ (14:41; 1) and A3 is positive whenever
E� is ecologically feasible. So for local asymptotic stability of E�, we have to check the sign of A1A2 �A3.
Evaluating A1A2 � A3 as a function of ‘r’ only, we get

A1A2 � A3 = �6:04 r2 + 293:33 r � 5171:47 +
36419:09

r
� 87252:62

r2
; (2.9)

which is positive for r 2 (5:55; 7:28). For r > 7:28 the quantity A1A2 � A3 remains negative. At

r = r� = 7:277970290 we have A1 > 0, A3 > 0 and A1A2 � A3 = 0 with
d

dr
(A1A2 � A3)

�

�

�

�

r=r�

6= 0.
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Hence at r = r�, all conditions for Hopf-bifurcation are satis�ed and the interior equilibrium point looses
its stability [26, 28]. As a result small amplitude periodic solution bifurcates from E�. Similar type
analysis can be carried out for choosing other parameter as bifurcation parameter.
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Figure 1. Projection of periodic attractors on si-plane for di�erent values of r, showing
period doubling of the limit-cycle. Periodic solutions are depicted with period 2 (for
r = 20:57), period 4 (for r = 21:2543) and period 8 (for r = 21:31).

For chosen set of parameter values, authors [33] have reported that E� is stable for r 2 [5; 7:25], stable
limit cycle exists for r 2 [7:30; 21:10], chaotic attractor exists for r 2 [21:15; 22:20], stable limit cycle
exists for r 2 [22:25; 23:35], chaotic dynamics observe for r 2 [23:39; 23:86], stable limit cycle exists for
r 2 [23:87; 23:97] and again chaotic dynamics observed for r 2 [23:98; 25:00]. This result is not true as
feasibility of interior equilibrium point demands r > 6:5 and limit-cycle arises through Hopf-bifurcation
at r � r� = 7:277970290. Further, their claim for alternative occurrence of stable limit cycle and chaotic
attractor is also not true. To establish our claim, now we show the period doubling route to chaos with
the variation of r.

We have performed numerical simulations for the model (2.1) - (2.3) with �t = :0001 and used ex-
plicit 4-th order Runge-Kutta scheme and for initial condition (s0; i0; p0) = (100; 80; 20). The interior
equilibrium point E� is locally asymptotically stable for 6:5 < r < 7:277970290. Thorough numerical
investigation reveals that the oscillatory solution with period one arising through Hopf-bifurcation at
r = 7:277970290 and sustain up to r < 20:57. First period doubling occurs at r = 20:57230178
and we observe periodic solution with period-2 whenever r belongs to (20:57230178; 21:2541287).
Next period doubling occurs at r = 21:2541287 and we �nd periodic solution with period-4 for
r 2 (21:2541287; 21:3127834). Further increment in the magnitude of r results in chaotic oscillation.
Period-doubling of limit cycle with varying r is presented in Fig. 1. The bifurcation diagram is drawn for
s-component against the bifurcation parameter and is presented in Fig. 2. The chaotic attractor obtained
for r = 24 in three dimensional space is shown in Fig. 3.

2.1. Two Hopf-bifurcation with � as parameter

In this subsection, we consider the contact rate as bifurcation parameter. For the bifurcation analysis,
we choose other parameter values as r = 7, k = 400, � = 3:4, m = 15:5, a = 15, � = 10 and � = 8:3.
With � as parameter, interior equilibrium point is given by E�(326:76 � 4184:87�; 73:24; 1860:14� �
23822:81�2 � 19:35) and feasibility of coexisting steady-state determines the admissible range for � as
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