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Abstract. This paper is concerned with the existence and stability of travelling front solutions
for more general autocatalytic chemical reaction systems us = duzs — uf(v), vt = Vgz + uf(v)
with d > 0 and d # 1, where f(v) has super-linear or linear degeneracy at v = 0. By applying
Lyapunov-Schmidt decomposition method in some appropriate exponentially weighted spaces,
we obtain the existence and continuous dependence of wave fronts with some critical speeds
and with exponential spatial decay for d near 1. By applying special phase plane analysis and
approximate center manifold theorem, the existence of traveling waves with algebraic spatial
decay or with some lower exponential decay is also obtained for d > 0. Further, by spectral
estimates and Evans function method, the wave fronts with exponential spatial decay are proved
to be spectrally or linearly stable in some suitable exponentially weighted spaces. Finally, by
adopting the main idea of proof in [12] and some similar arguments as in [21], the waves with
critical speeds or with non-critical speeds are proved to be locally exponentially stable in some
exponentially weighted spaces and Lyapunov stable in Cynit(R) space, if the initial perturbation
of the waves is small in both the weighted and unweighted norms; the perturbation of the
waves also stays small in Li(R) norm and decays algebraically in Cynit(R) norm, if the initial
perturbation is in addition small in L; norm.
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1. Introduction and statement of main results

In this paper we investigate the following reaction-diffusion systems

U = dug, —uf(v),
{t f() zeR,t>0: (1.1)

Vg = VUgg + Uf(’l)),
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with f(v) satisfying
f(0)=0, f(v)>0,ve(0,1] (1.2)

System (1.1) has been derived to describe the autocatalytic step in isothermal, autocatalytic chemical
reaction scheme, where u and v are the concentrations of reactant A and autocatalyst B. System (1.1)
with f(v) = vP can describe the autocatalytic chemical reaction with p order reaction rate:

A+pB — (p+1)B, with rate kuv®.

For the case f(v) = k1v™ + kov™ with positive ki, ks, m and n, system (1.1) describes some mixed order
autocatalytic chemical reaction. System (1.1) can also describe thermal-diffusive combustion problems
or some epidemic models in mathematical biology.

In this paper we are only interested in the existence and stability of travelling wave solutions (U.(z —
ct),Ve(z — ct)) of (1.1) connecting (0,1) and (1,0), which correspond to chemical wavefronts, flame
wavefronts or epidemic wavefronts, with (U.(z), V.(2)) satisfying the following system

AU (2) + cU!(2) — Uf(V.) = 0, z € R,
V/(2) + V! (2) + Uf(V,) = 0, z€R, (1.3)
(Ue(—=00), V(=00)) = (0,1), (Ue(+00),Ve(+00)) = (1,0).

We first state some well-known results on the existence of travelling wave (U.(z), Vo(z)) of (1.3).
For the case d = 1, it is easy to see that

Ue(z) + Ve(2) =1, (1.4)
with V.(z) satisfying
Va4V, +(1-V)f(V)=0, z€R, (1.5)
and
V(-x) =1, V(+o0)=0. (1.6)

For the case f(v) = v, equation (1.5) becomes Fisher equation, it is well known that there exists a
travelling front solution V.(x — ct) to Fisher equation satisfying (1.6) if and only if ¢ > 2. It is also well
known that the wave V,(z) with the minimal speed ¢ = 2 decays to zero with the rate ze™*, while the
wave with a noncritical speed ¢ > 2 decays to zero with a slower exponential rate e(=eHVeE=Dz/2 \When
the initial value decays exponentially at z = 400, the stability of travelling front solution with the critical
speed or a noncritical speed for Fisher equation is also investigated in [7,18,24, 28], where it was shown
that the exponential decaying rate of the initial value determines the convergence of the solution. For
more general initial value with non-exponentially spatial decay, the large time behavior of solution to
Fisher equation has been recently investigated in [13].
For more general f(v) satisfying

feC?(0,1]), f(0)=0,f(0)>0 and f(v) >0 for v (0,1], (1.7)

equation (1.5) is called a generalized Fisher equation or KPP equation. It is well-known that there
exists a minimal speed ¢ € [2 f(0),8up,e 0,1 \/f(v)/v}, such that (1.5) has a traveling front solution

V(x — ct) if and only if ¢ > 2. In addition, the traveling front solution with noncritical speed ¢ > 2 is
locally exponentially stable in some exponentially weighted spaces.

For the case f(v) = vP with p > 1, equation (1.5) is also called p-degree Fisher equation. It has been
proved in [6] and [26] that there exists a minimal speed ¢!(p) > 0 such that there exists a travelling wave
V.(2) of (1.5)-(1.6) if and only if ¢ > c2(p), and V.(z) satisfies V/(z) < 0 for z € R and

1
Vc ~z pT — 400,
{ (2) ~ 2 ”o it e A2(p); (1.8)

1—=Vu(z) ~e%%as z— —oo,
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Ve(z) ~ e as z — 400,
if ¢=c2(p). (1.9)

1—Vu(z) ~e%c%as z— —oo,

The upper and lower bounds of the critical speed c(p) were investigated in [22] and [10].

By applying similar phase plane analysis as in [6] and applying center manifold theorems, the above
mentioned existence results for p degree Fisher equations are still valid for equation (1.5) with more
general f(v) satisfying

f€C?(0,1]), f(0)=0, f(v)>0 forve (0,1], and lirél+ % =ko >0 forsomep >1, (1.10)
v
i.e. there exists a minimal speed ¢ > 0 such that there exists a traveling wave V,(z — ct) satisfying (1.6)
if and only if ¢ > V. In addition, V,(z) satisfies (1.8) or (1.9).

The local asymptotic stability of travelling front solutions of p-degree Fisher equation with noncritical
speeds or with the critical speed in some exponentially weighted spaces or in some polynomially weighed
spaces have been obtained in [16][32] and [30], the global exponential stability of the wave front with the
critical speed is also obtained in [30]. The stability results obtained in [30,32] also imply that the solution
for the p degree Fisher equation tends to the wave with the critical speed, if the initial value decays to
zero exponentially or algebraically with some higher algebraic rate at z = oo; however, it tends to the
wave with some noncritical speed and always decays to zero at z = co with the same algebraic rate at any
time, if the initial value is close to a wave with some noncritical speed and decays to zero algebraically at
z = oo with the same algebraic rate. For higher dimension space, the existence and stability of travelling
waves for p-degree Fisher equation is investigated in [4].

For d = 0 and f(v) = v? with p > 1, the existence of the traveling front solutions for system (1.3)
as well as the estimates of the minimal speed ¢, (p) are obtained in [15,20,27] by applying phase
plane analysis. Besides, it is also shown in [15] that the wave with the minimal speed decays to (1,0)
exponentially as z — oo, and those with noncritical speeds decay to (1,0) algebraically at z = co. The
numerical results and some theoretical analysis in [3,20] show that when d = 0 or d is near zero and
p is large enough the traveling front solutions to system (1.3) become unstable and there exist some
oscillatory waves which may be stable.

For d > 0, d # 1 and f(v) = v + kv?, the existence and stability of traveling front solutions of the
autocatalytic system (1.1) was investigated in [11] for all & > 0. If d < 1, it was proved in [11] that there
exists a minimal speed ¢, (d, k) > 2 such that system (1.1) has a traveling wave if and only if ¢ > ¢, (d, k).
Moreover, there exists a constant k.(d) € [(3d — 1)/(3d — 2),2] such that the minimal speed c.(d, k)
satisfies

c(dyk) =2 if k <k*(d) and c.(d, k) > 2 if k> k.(d).

By applying energy method, the wave fronts with speed ¢ > 2 were proved to be locally asymptotically
stable in some exponentially weighted spaces when d is near 1 and k& > 0 is small enough. As far as we
know, there are no theoretical results on the stability of waves for the case when k is not small and d # 1
so far.

For d # 1 and f(v) = vP with p > 1, the existence of traveling front solutions of the autocatalytic
system (1.1) has been investigated in [1,6,9,10,15,19]. For d > 0 and f(v) = v?, it was shown in [6]
that there exists a critical speed ¢.(d) such that (1.1) has traveling waves (U.(z — ct), Vo.(z — ct)) for
any ¢ > c,(d), and the waves tend to (1,0) algebraically as z — +oo for ¢ > ¢, (d). For 0 < d <1 and
f(v) = vP with p > 1, by applying different phase plane analysis, it was proved in [1, 10, 15] that there
exists a critical speed which is also the minimal speed ¢, (d) > 0 of the wave fronts, and the waves with the
critical speed ¢ = ¢, (d) decay exponentially at both ends ( see [15] ) and the waves with noncritical speeds
¢ > ¢.(d) decay algebraically at z = 400 (see [1] and [15] ). Besides, by applying three dimensional phase
plane analysis, it was also proved in [15] that the minimal speed ¢, (d) is strictly monotone decreasing in
dfor 0 <d<1. Ford>1and f(v) = vP with p > 1, the existence of waves with exponential or algebraic
spatial decay was also claimed but without detailed proof in [15]. For the more general f(v) including
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the case f(v) = vP with p > 1 or the case f(v) = kiv™ 4 kov™ with n > m > 1 and kq, ke > 0, the
existence and estimates of the critical speeds have been investigated in [1,9,10,19], where the existence
of the minimal speed for 0 < d < 1 and the estimates of the critical speeds of the waves for any d > 0
were obtained. Some detailed estimates on the decaying estimates of the waves with noncritical speeds
were also obtained in [1] for 0 < d < 1.

For the system (1.3) with more general f satisfying (1.7) or (1.10), by combining the existence results
obtained in [1,9,10,15,19], and some detailed spatial decaying estimates obtained in [1,15] for 0 < d < 1,
we can summarize some known existence results as follows.

Theorem 1. Assume either (1.7) or (1.10) holds.

(i) For any d > 0 there exist some critical speeds ¢(d) and ¢(d) with ¢(d)
a traveling front solution (U.(z,d),V.(z,d)) satisfying (1.3) for any c
front solution for any ¢ < ¢(d).

> ¢(d) > 0, such that there exists
> ¢(d), and there is no traveling

(i) Let 0 < d < 1. Then ¢(d) = c(d) = ¢min(d), and the minimal speed cpin(d) is monotone decreasing
in d. Furthermore, if (1.10) holds, then the wave fronts with a noncritical speed ¢ > Cpmin(d) decay
algebraically as z — 400 and the wave fronts with the minimal speed decay exponentially as z — 400;
while, if (1.7) holds, the wave fronts with a noncritical speed decay with a lower exponential rate 79z gg

z — 400 and the waves with the minimal speed decay with a higher exponential rate e7+(9% 45 2 — +o0,
where ot (c) = (—c £ +/c2 — 4f'(0))/2.

It is worth mentioning that the two or three dimensional phase plane analysis and the powerful com-
parison methods used in [1,9,15,19] for the case 0 < d < 1 can’t be applied directly to the case d > 1. As
far as we know, when d > 1 and f(v) satisfies (1.7) or (1.10), the problem about the existence of minimal
speed is still open, and it is not clear if the waves with some critical speeds or noncritical speeds decay
exponentially or algebraically at z 4+ oo when (1.10) holds ( or decay with a higher or a lower exponential
rate when (1.7) holds), or if the critical speed depends on d continuously. In fact the precise decaying
rate of the waves and the estimates of the critical speed also play an important role in the investigation
of the stability of waves, especially in the spectral stability analysis of the wave.

In this paper, for system (1.3) with more general f satisfying (1.7) or (1.10), by virtue of the exponential
spatial decay of the waves with critical speed and the spectral stability of the waves for the system (1.3)
with d = 1, by applying special perturbation method and detailed decomposition estimates in some
suitable weighted spaces, we shall first prove that when d is near 1 system (1.3) has a family of wave
fronts with some critical speed c,(d) near 2, which decay exponentially at both ends and the critical
speed c,(d) tends to ¢? as d — 1. Further, by applying phase plane analysis and different comparison
argument from those in [1,9,15] as well as approximate center manifold theorem, we shall further prove
the existence of traveling fronts with algebraic spatial decay for p > 1 and d > 1, and obtain the upper
bound of ¢, (d) for d > 1.

In the remaining of this paper, without loss of generality, we always assume f(1) = 1.

Our main existence results in this paper can be stated as follows:

Theorem 1.1. (Existence and spatial decay of wave fronts with critical speeds) Assume either
(1.10) holds or (1.7) and 2 > 2./f(0) hold, and denote © to be the minimal speed of the waves of
(1.5)-(1.6). Then for each fized d € [1 — 8,14 0] with § > 0 small enough, there exist a wave speed c..(d)
and a unique (up to shift) traveling front solution (U., (4 (2,d), Ve, (a)(2,d)) satisfying (1.8) and

C*(d) - 627 d—1
as ;
1A+ e**)(Ue.(a)(2,d) = Ueo ()l @) + (1 +€*%) (Ve (@) (2,d) = Voo (2)) e @) — O,
(1.11)
where o € (0,¢9/2) if (1.10) holds, and o € ((c — /(c9)2 — 4f7(0))/2,c2/2) if (1.7) holds.
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Furthermore, it holds that

Uc*(d)(z,d), Vc*(d)(z,d) 1~ @D g —00;

(2.d)
Ve, (@y(z,d) ~ e~ cx(d)z, Ue,(ay(z,d) =1 ~e~ = 4sz— 400, ford>1,if (1.10) holds; (1.12)
(z.d)

Theorem 1.2. (Existence and spatial decay of wave fronts with noncritical speeds) Assume
either (1.10) or (1.7) holds, let (U, (ay(2,d), Ve, (a)(2,d)) be a wave front with the speed c.(d) to system
(1.3) satisfying (1.12), then

(i) co(d) >0, if 0<d<1; cu(d) <, if d>1. (1.13)

(ii) For ¢ > c.(d) if 0 < d <1 or for ¢ > ¢ if d > 1 and (1.10) holds; or for ¢ > ¢ if d > 1 and
(1.7) holds, then there exists a unique traveling front solution (U.(z,d),Ve(z,d)) to system (1.3), which
satisfies the following decaying estimates

Ue(z,d), 1—=V.(2z,d)~ 1@ a5 5 —00;

Vi(z,d), 1—Ud(z,d) ~kz" 77T as z— +oo, if (1.10) holds,
(1.14)
Ve(z,d), 1—=U.(z,d) ~ t@2 a5 5 +oo, if (1.7) holds;

1 _ 2 __Af!
with k= (E2)77, of(c) = 7_”\2/@ and of(c) = —etye —470) - 470
Remark 1.3. Under the assumption of (1.10), Theorem 1.1 and Theorem 1.2 guarantee the existence
of wave fronts with some critical speed c.(d)(< ¢?) and with exponential decay for d > 1 and d near 1,
and the existence of wave fronts with algebraic decay for any d > 1 and ¢ > ¢?. However it is not clear

if there exist wave fronts with speed ¢ € (c.(d),c?) when d > 1 even if d is near 1, which is still an open

problem. It is worth mentioning that in [15] under the assumption of (1.10), for any d > 1 the existence
of minimal speed and similar results about the existence of waves with exponential decay and algebraic
decay are also claimed in [15] but without detailed proof. In this paper by applying different method of
proof and different phase plane analysis from those in [1,9,15], we shall first investigate the existence and
the precise decaying rates of waves for d # 1 and for more general f covering (1.10) and (1.7), which will

be useful in our later investigation of the stability of the wave.

For the case (1.10) when d is near 1, by applying spectral method and detailed semigroup estimates
in some exponentially weighted or unweighted spaces, the linear and nonlinear asymptotic stability of
the wave fronts with noncritical speeds ¢ > max{c,(d), c?} and with algebraic spatial decay was recently
obtained in [21], where more general Evans function theories were also established and applied to prove
the spectral stability of the waves with algebraic spatial decay for d near 1.

In this paper for the case (1.7) and the case (1.10) we shall further investigate the stability of waves
with critical speeds and with exponential spatial decay for system (1.1) when d is near 1. By virtue of the
exponential decaying estimates of the waves with the critical speeds ¢.(d) and the continuity of ¢, (d) for
d near 1, by applying spectral analysis and standard Evans function method, we shall prove the spectral
stability of the waves with critical speeds in some exponentially weighted spaces. Further, by combining
the main idea of proof in [12] with some similar estimates in [21], we shall prove the nonlinear asymptotic
stability of the waves with the critical or noncritical speeds in some suitable weighted or unweighted
spaces.
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Let (Ue(z — ct), Ve(z — ct)) be a traveling front solution of (1.3), in moving coordinate z = x — ct the
system (1.1) with initial data (ug,vo) becomes

up(z,t) = duy.(z,t) + cuy(z,t) —uf(v), z € R, t >0,

v(2,t) = va2(2, 1) + cv.(2,8) +uf(v), z€R, t>0; (1.15)
ul=o = uo(2), vlt=0 = vo(2), z€eR.

For the fixed pair (o, a™) 2 & with a_ > 0 and ay > 0, define weight function w, (2) € C?(R) satisfying

e® *, z <0,
wa(2) = { € [L,e*7], 2 € (0,1), (1.16)
e"+z, z2>1,

and define the weighted space Co(R) = {v(z) | v(2)wa(z) € Cunie(R)} with norm |jv|c, =
lv(2)wa(2)|lL., C2(R) can be defined similarly. For the case a= = 0 and o™ > 0, the weight func-
tion wq (z) defined in (1.16) can be replaced by wq(z) = 1+e® 2, and denote the corresponding weighted
space Co(R) by B,+(R) and B2, (R) can be defined similarly; and define X, = Co(R) x Co(R) and
Zot = Bat (R) x Byt (R).

Now we state our nonlinear stability results as follows:

Theorem 1.4. (Nonlinear stability of wave fronts with the critical speeds) Assume either (1.10)
holds or (1.7) and ¢ > 2./ f'(0) hold; and let (U., (z,d), V., (2,d)) (z =z — c.(d)t) be the traveling front
with the critical speed c.(d) obtained in Theorem 1.1 for d near 1; and c2 be the minimal speed of the
wave fronts of (1.5)-(1.6).

(i) For each fized o™ € (a%,a%) and small a= > 0, with o = (2 — \/(9)2 —4f'(0))/2 >0 (a° =0 if

1.7) holds) and o = c2/2; there exist positive constants &y, 0%, oo and K and some constant v, € R
JF «
such that for any d € [1 — 6o, 14 do] if

I(uo(2) = U (2),v0(2) = Ve (2)) 2, < da
then the solution to initial value problem (1.15) satisfies
7' 2||u(z,t) = Ue. (2 + Y| Gy @) + [0(2:8) = Ve (2 + ) | Gy ) < Koy VE> 0, (1.17)

and
H(U(Z’t) - Uc* (2 + ’7*)’U(Z’t> - VC* (Z + 7*))”)(@ < K(gge—aat7 vt > 0. (1'18)

(ii) Under the assumption of (i), if 62 > 0 is small enough and

luo — Uk,

L@ +llvo = Ve o, ®) <60,

s

then we further have
o722 |lu(z, 1) = Ue. (2 + 1)l e () + VI Hv(z,) = Ve, (2 + 1) Cniey < K105, ¥E20, (1.19)

and
72 u(z,t) = Ue, (2 + 1)l s @ + [0z 1) = Ve (2 + 7)) < K202, VE 20, (1.20)

with constant K1 independent of t and §2.

s

Theorem 1.5. (Nonlinear stability of wave fronts with noncritical speeds) Assume (1.7) holds,
let c2 be the minimal speed of waves of (1.5) satisfying (1.6), then for each fized c > ¢ there exists a small
positive constant oy, such that for any d € [1 — 6y, 1+ dg] the solution (u(z,t),v(z,t)) of system (1.15)
with a small initial perturbation of the wave front (Uc(z,d), Ve(z,d)) satisfies all the estimates stated in
Theorem 1.4, with c.(d) being replaced by ¢ and v, = 0.
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Remark 1.6. The estimates obtained in Theorem 1.4 guarantee that under the assumption of (1.10) or
(1.7) with ¢? > 2,/f/(0), if d is near 1 and if the initial perturbation of a wave front with the critical
speed c,(d) is small in L;(R) N Cyupit(R) N Cy(R) for some suitable positive a®, then the perturbation
of the wave front always stays small in L; norm and decays to zero algebraically in Cypif(R) norm and
decays exponentially in C,, (R) norm. Under the assumption of (1.10) , similar nonlinear stability results
but without shift were also obtained in [21] for the waves with noncritical speeds ¢ > ¢ when d is
near 1, where the algebraic spatial decaying of the waves with noncritical speeds and selection of the
initial perturbation in the spaces Cynit(R) N Cy(R) with small a= = a® > 0, require that the initial
value tends to (1,0) at one end algebraically with the same algebraic decaying rate of the wave. The
nonlinear stability of the waves with critical speeds stated in Theorem 1.4 requires that the initial value
(up,vo) tend to (1,0) exponentially at one end. For the case (1.10) the nonlinear stability (with shift)
of the waves with exponential spatial decay obtained in Theorem 1.4 and the nonlinear stability results
(without shift) obtained in [21] for the waves with algebraic spatial decay also imply that the decaying
rate of the initial value at z = oo may determine the asymptotic speed of the level set of solution or the
asymptotic behavior of the solution when d is near 1, which is true for the special case when d = 1, see
[29] [30] and [32].

For the system with a mixed order reaction f(v) = v + kvP for k > 0 and p > 2, Theorem 1.4 and
Theorem 1.5 guarantee that for any & > 0, p > 2 and d near 1, all the waves with speed ¢ > 2,/ f/(0) = 2
are nonlinearly asymptotically stable in both C\pni¢(R) and Cy, (R), if the initial perturbation of the wave is
small in L1 (R)NClnit(R)NCy(R) for small @~ > 0 and some suitable a™ > 0, and the perturbation decays
to zero in time algebraically in Cypit(R) norm and decays exponentially in C,, (R) norm, which improves
the nonlinear asymptotic stability results obtained in [11], except the special case when c¢,(d) = 2. For
the case f(v) = v + kv? with & > 0 small enough and d near 1, in [11] by energy method the waves
with speeds ¢ > 2 are proved to be nonlinearly asymptotic stable (without decaying estimates) in some
weighted spaces B+ (R).

The rest of this paper is organized as follows. The proof of Theorems 1.1 and 1.2 will be given in
Section 2. The linear exponential stability of the waves in some exponentially weighted spaces will be
proved in Section 3. In Section 4 we shall prove the nonlinear stability results stated in Theorems 1.4
and 1.5.

2. The existence and spatial decay of traveling fronts for d # 1

2.1. The existence of traveling waves with exponential decay

Let (U(x — ct),V(x — ct)) be a traveling wave of (1.1) connecting (0,1) and (1,0), then (U(z),V(2))
satisfies

dU" + U’ — Uf(V) =0,
{ ¢ 1) 2eR: 2.1)

V'+cV'+Uf(V)=0,
and
{ U(—o0) =0, U(c0) =
V(—) =1,
Let W(z) =U(z) + V(2) — 1, then (W(2),V (z)) satisfies

dW" +cW' + (1 —-d)V" =0,
{ ( ) z e R; (2.3)

VeV (1—V 4+ W)F(V) =0,
and
W(—o00) =0, W(o0) =0,
{V(—oo) =1, V(oco)=0.
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Obviously, system (2.3)-(2.4) can be rewritten as

W' = —SW + 6,V
Vi=—cV' = (1-V+W)f(V),

2.5
W(o0) =0, W(o0) =0, 22
V(-x) =1, V() =0,
where 64 = (d —1)/d.
(2.5) further implies that
W(z) = 64 / ed =V (t)dt = 64V (2) — géd / ed =2V (t)dt. (2.6)

It can be checked that if [V (2)| < Cp for z € R and [, [V'(t)|dt is convergent, then (2.6) further implies
that
W(z) = dqa(z,V(2)), la(z,V(2))| <2Cy, VzeR; and a(too,V) = 0;

where
c

a(z,V(z)) =V(z) — p /j e =2V (4)dt; (2.7)

thus (2.5) is equivalent to the following scalar integro-differential equation:

{ V"= —cV' = (1-V +64a(z, V) f(V), z€R, (2.8)

V(—o00) =1, V(+o0)=0.
For each fixed d > 0, let V,(z, d) be the solution of (2.8) satisfying 0 < V.(z,d) <1 and V/(z,d) < 0 for

z € R. Then, by standard asymptotic analysis and applying center manifold theorem, it can be proved
that V.(z,d) satisfies

1—V.(2,d),V!(z,d) — 0 exponentially as z — —o0; (2.9)
e““Vo(z,d) = Cy > 0, e*V/(2,d) — —cCy as z — +00, (2.10)

or
Ve(z,d),V!(z,d) — 0 algebraically as z — +o0. (2.11)

If V.(z,d) — 0 exponentially as z — +o0, then by (2.6), (2.7), (2.9) and (2.10), we have

Wz Vo)l < 60 J* e8¢Vt d)lde < 64 (o757 [ eB Vit d)lat + e 5 [ e3V/(t,d)|at)

< Cdyg (ef%z +efcz) , if z>1andd# 1.
(2.12)
In the remaining part of this section, under the assumption (1.7) or (1.10), we shall prove the existence
of solution of (2.8) which decays exponentially at both ends. Let V.(z) be the traveling wave of (1.5)
with the minimal speed ¢ = c?, i.e. V. (z) satisfies

VI+ AV +(1=Vo)f(Vi) =0, z€R, (2.13)
Vi(—o0) =1, Vi(4+00) =0. '
Let 9(2) = Vo(2,d) — Vi(2) and é = ¢ — ¢2, then (2.8) becomes
0" 4 e 4+ b(2)0 + éV] + g(0) + 0qa(z, Vi + 0) f(Vi +0) =0, z€R, (2.14)
0(£o00) =0, )

with b(z) = %

vy, 1) = —0)f(v) and g(0) = f1(Vs +0) = 1(Va) = b(2)0-
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Note that
0)| < Cl9|?, for case (1.10) with p > 2 or for case (1.7),
9(0)] < Clo (1.10) with p > (N 01s)
lg(0)| < C|o|P, for case (1.10) with 1 < p < 2;
Define operator
0? 0
L=——+=—+b
then (2.14) can be written as
Lo = F(0,¢,6q) 2 —eV] — et — g(0) — dqa(z, Vi + 0) f (Vi + D). (2.16)

For each fixed o > 0, define weighted space B,(R) = {v(z) | v(2)(1 4+ e**) € Cunit(R)} with norm
llvlls, = lv(2)(1 + e*%)||L.., and B2(R) can be defined similarly.
For each fixed o > 0 define operator L, : B2(R) — B, (R) by

Lov = Lv, for v e B%(R).
Lemma 2.1. Assume either (1.10) holds or (1.7) and ¢ > 2/f'(0) hold, then for each fized o €
(@,a%) , with a® = (¢ — \/(c9)? — 4f7(0))/2 and o = ¢}/2, there exists o > 0 such that
(1) sup{Re{o(La) \ {0}}} < —da; (2.17)
(ii) zero is a simple eigenvalue of Lo, with eigenspace Ker(L,,) spanned by V] (z).

Proof. Under the assumption of Lemma 2.1, by applying the standard spectral analysis on L, it can be
proved that for each fixed a € (a”,a9) there exists small J, > 0 such that

Re Oess(La) < —64 < 0.

Further, by virtue of the exponential decay of V/(z) at both ends for the case (1.10), or by the higher
exponential decaying rate of wave V/(z) for the case (1.7) if ¢! > 21/f/(0), we can apply the standard
spectral arguments including the application of Sturm-Liuville theorem to prove that all the eigenvalues
located in {\ € C | ReA > —4,} are real, which are also the isolated eigenvalues of some self-adjoint
second order linear differential operator, thus zero is the first and a simple eigenvalue of L. The detailed
proof is essentially the same as that in [30], in which the results of Lemma 2.1 are proved for the case
f(v) = vP with p > 1. Here we omit the details of the proof. O

Lemma 2.1 implies that

B (R) = Ker(Ly) ® Range(Ly,). (2.18)
Define the projection P : B, (R) — Ker(L,) by
<, ¢1 > /
Py=—fFf—"YV, 2.19
VS gy s (2.19)

where ¢4 (z) = ecng*’(z) and < u,v >= [ u(z)v(z)dz.
Notice that < v, ¢y > is finite for any v € B,(R) and ¢;(z) satisfies

L*1 2 ¢/(2) — 20 (2) + b(2)1(2) = 0,

then it is easy to see that < v,¢; >= 0, Vv € Range(L,,). Furthermore, using (2.18) and the fact that
< V! ¢1 ># 0, we have Range(L,) = {¢1}+ N By (R). Thus

<U7¢1 >

[-Pp=y— 21—
T=Pl=v=—35>

V! € Range(L,), Vv € B4 (R). (2.20)

112



Y. Li, Y. Wu traveling waves for autocatalytic systems

Proof of Theorem 1.1. Under the assumption of Theorem 1.1, for a fixed o € (a2, a9), let 9(z) be the
solution of nonlinear equation (2.16) in B2 (R) with small ||]/5, , i.e. © satisfies

Liv = —&V! — 0/ — g(0) — 6aalz, Vs + 0) f(Vi + ©) 2 F(0,¢,04), and d € B2(R), (2.21)
which implies that < F(9,¢,0d4),¢1 >= 0, thus ¢ can be uniquely determined by
< —9(0) — daa(z, Vi + 0)f (Vi +0), ¢ >

¢ = 2.22
¢ <VI+ i, 61 > (2.22)
Define operator
L*: D(L*) = Range(L) N B2(R) — X3 = Range(L) N Cy(R)
by
Lo = Lo, for ve D(LY), (2.23)
with [[v] pz+) = [[vllsz and [Jv]x, = [|lv]5,-

Lemma 2.1 and (2.18) imply that L+ is invertible with the bounded inverse (L+)~!, consider the
following nonlinear equation:
b= (L5 (6,64) 2 G(9,84), (2.24)
with
< g(0) + daa(z, Vi + 0) f (Vi + ), ¢1 >

1A . . .
F(0,04) = —g(9) — dqa(z, Vi +0) f(Vi + 0) + <V .01 >

(V*/ + ’IAJ/) S XQ.

It is easy to check that if & € D(L™) is a solution of (2.24) with small enough [|]|¢, (r) and ¢ satisfies
(2.22), then (0(2), ¢) satisfies (2.21).

In the following we shall prove that if |d—1| is small enough then there exists a unique solution (¢(z), ¢)
satisfying (2.24) and (2.22).

For d =1 1i.e. g =0, obviously G(0,0) =0 and (0, ¢) = (0,0) is a solution of (2.24) and (2.22).

For any 04 and any 01,02 € X satisfying |34, ||01]|8.,, [|02]|5, < 6« with d. small enough, by detailed
computation it can be verified that

C(l|lo1llpo. + 102l L )01 — D25, for case (1.10) with p > 2 or for case (1.7),
Co(llon]| L + [D2]l £ )P |91 — D2]|5,, ), for case (1.10) with 1 < p < 2;

llg(91)—g(02)llB, < {

and ||a(z, Vi +01) — a(z, Vi + 02)||5, < C||o1 — 02]|8,,,

with €}, and C independent of 64, 01 and 0s.
Thus we have

|G (91,84) — G(02,04)ll52 < Coll F* (01, 0a) — F*(02,04) 5.
< Collg(v1) = g(02)[|8, + |0alllalz, Vi + 01) (Vi + 01)P — a(z, Vi + 02) (Vi + 02)" (|5,
< 0||t1 — v2||B,, forsome 6 <1, if §. > 0is small enough.

We can similarly prove that G(01,d4) is continuous in §;. Then, by contraction mapping theorem, it
follows that for each fixed small enough &, there exists a unique small ©(z,d) € D(L') and é(d) satisfying
(2.24) and (2.22), and

o(z,d)|pLry — 0, &(d) —0, as d— 1. (2.25)

Thus, for small enough |d — 1| there exists a traveling wave (V. (z,d), W, (2,d)) € B2(R) x B2(R)
satisfying (2.5), where V., (z,d) = Vi(2) + 0(z,d), W, (2,d) = dqa(z, Ve, (2,d)) and c.(d) = (p) + ¢(d).
Let U, (z,d) =1 —W,,(z,d) — V., (z,d), then (U, (z,d), V., (z,d)) is a traveling wave of (2.1), and (1.11)
follows from (2.25). Further, as proved in [6] U, (z,d) must be strictly increasing in z and V., (z,d)
strictly decreasing in z, then (1.12) follows from (1.8), (1.11), (2.9), (2.10) and (2.12). This completes

the proof of Theorem 1.1. O
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2.2. The existence and spatial decay of traveling waves with noncritical speeds
For each fixed ¢ > 0, let (U(z),V(2)) be a solution of (2.1) satisfying (U(—o0),V(—o0)) = (0, 1), with
U(z) being strictly increasing and V' (z) strictly deceasing, then (U(z),V(z)) also satisfies

AU = V' —c(U+V —1),

Vi+eV'+Uf(V)=0

2.26
U(—o0) =0,V (-00) =1, (226)
U(z) >0, V(z) <1, V'(2) <0, forz> —o0.
Rewrite (2.26) as the following first order differential system
U'=—3 - 5U+Vi-1),
Vi="Vs,
Vg = —cVo = Uf(V1), (2.27)

U(—00) =0,Vi(—0) =1, Va(—00) =0,
U(z) >0, 0<Vi(2) <1, Va(2) <0, forz> —oc.

Linearizing the system of (2.27) around (0,1, 0), we have
Y =A7Y, with A== 0 o0 1

Note that matrix A~ has two negative eigenvalues and a positive eigenvalue denoted by oi(d,c) =
(—c + /2 +4df(1))/(2d), with an eigenvector Y| = (—02(d,c),1,01(d,c))T, where o9(d,c) =
o1(d,c)(o1(d,c) + ¢). Then, by standard asymptotic analysis, it follows that for each fixed ¢ > 0 and
d > 0 there exists a unique solution (U~ (z,d), V| (z,d), V5 (z,d)) of (2.27) satisfying

e XU (2,d), Vi (2,d) — 1, Vy (2,d))" — =Y,
and any solution of (2.27) can be expressed as (U~ (z+2z0,d), Vi (2+20,d),Vy (2+20,d)) for some zy € R.
Proposition 2.2. For each fized d > 0 and ¢ > 0, let (U(z),V(z)) be a solution of (2.26), then
U()+V(z)—1>0 for z>—o0, if 0<d<1;
U()+V(z)—1=0 for z> —o0, if d=1; (2.28)
U()+V(z)—1<0 for z> 001fd>1.
V(z)

Proof. Let W(z) = U(z) + V(z) — 1, then W(z) satisfies

W’ = —gwwdv' for z € R, and W(—oc) = 0.

Thus we have W (z) = 51 [%_ed(t=2)V/(¢)dt. This, together with ¥V’ < 0, imply (2.28) holds for any
d> 0. ]

Let S =1 —V; be an independent variable and define P(S) = S, and Q(S) = U, then system (2.27)
is equivalent to the following initial value problem
dPQ' =P —cQ+cS, S>0,
PP = —cP+Qf(1-5), S>0;
P(0)=0,Q(0) =
P(S), Q(S) >0 for S>0;
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thus for each fixed ¢ > 0 and d > 0 there exists a unique local positive solution (P(S),Q(S)) of (2.29).
Note that system (2.1)-(2.2) is equivalent to the system

dPQ' =P —cQ+cS, Se(0,1),

PP = —-cP+Qf(1-5), Se(0,1);
P(0) =0, Q(0)=0, P(1)=0, Q1) =1,
P(S), Q(S) >0 for S e (0,1).

(2.30)

Lemma 2.3. Assume either (1.7) or (1.10) holds, then for each fized ¢ > 0 and d > 0 there exists a
unique solution (Q(S), P(S)) of (2.29) satisfying

P(S) =o01(d,c)S 4+ 0o(S) and Q(S) = 02(d,c)S +0(S) as S| 0. (2.31)

Furthermore, P(S),Q'(S) > 0 for all S € (0,1), and there are only two possible cases:
(a) P(1) > 0: there does not exist travelling wave of (2.1)-(2.2),
(b) P(1) = 0: there exists a travelling wave of (2.1)-(2.2).

Proof. (2.31) can be obtained by the standard asymptotic analysis on the corresponding ODE system
(2.27) and phase plane analysis, only note that

e 71 d2([7(2), —S(2), =5"(z)) = —kY, as z — oo, for some k >0,

thus (P'(0),Q'(0)) = (o1(d, ¢), 02(d, ¢)).
The remaining part of Lemma 2.3 can be proved by a similar argument as in [9], and so here we omit
the details. 0

By virtue of Lemma 2.3, for any ¢ > 0 the unique positive local solution of (2.29) can be defined for
all S € (0,1), thus we can rewrite (2.29) as

P=—c+ U5 g€ (0,1),
dPQ =P —cQ+cS, Se(0,1);
P(0) =0,Q(0) =0,

P(S), Q(S) >0 for Se(0,1).

(2.32)

Lemma 2.4. (i) Assume (1.10) holds, then for any ¢ > 2 and d > 1, system (2.1)-(2.2) has a unique
solution (U.(2),V.(2)), which decays non-exponentially as z — +00.

(i) Assume (1.7) holds, then for any ¢ > ¢ and d > 1, system (2.1)-(2.2) has a unique solution
(Ue(2), Ve(2)), which decay exponentially with the slower exponential rate o (c) = (—c++/c® — 4f7(0))/2
as z — +0o0.

Proof. For each fixed ¢ > ¢ let (P1(S),Q1(S)) denote the unique solution of (2.32) with d = 1. Note
that Q1(S) = 5, and P;(S) satisfies

P(8) = —c+ IS0, S e(0,1),
Pi(0) =Py (1) =0; Pi(S)>0 for Se(0,1), (2.33)
P'(0) = o1(1,¢).

For d > 1 and a fixed ¢ > ¢, let (P(S,d),Q(S,d)) be the unique solution of (2.32), and note that
Q(S,d) < S for S € (0,1). By (2.31) and using the fact that o1(d,c) < o1(1,¢) for d > 1, there exists
small € > 0 such that

0< P(S,d) < Pi(S) for Se€(0,¢). (2.34)
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We shall first prove that
0 < P(S,d) < P(S) for S € (0,1). (2.35)

By contradiction, assume (2.35) does not hold, then by (2.34) there exists B € (0,1) such that
0 < P(S,d) < Pi(S) for S € (0,B); and P(B,d)= P (B) >0,

thus P/(B,d) > P/(B).
By (2.32), (2.33) and using the fact Q(S,d) < S for S € (0,1) and d > 1, we have

Q(B,d) - B

<0,
which contradicts with P’(B,d) > P{(B). This completes the proof of (2.35).

(2.35) and Lemma 2.3 further imply P(1,d) = 0 and P’(1,d) > Pj(1). Thus for any ¢ > ¢? and d > 1
there exists a traveling front (U.(z), V.(2)) satisfying (2.1) and (2.2). Also note that P(1,d) = 0 and
Q(1,d) = 1. This, together with the first equation of (2.32), implies that P'(1,d) = o (c) or o (c),
where O'_::_:(C) = (—ct /2 —4f'(0))/2.

Note that if (1.10) holds then o (c) = 0 and o (¢) = —¢; while 0 (c) < o (c ) < 0 for ¢ > ¥ if (1.7)
holds. To complete the proof of Lemma 2.4, it suffices to prove that P'(1,d) = (c)

Ubing the fact that o (c) and o (c) are independent of d, P{(1) = o7 (c) for ¢ > ¢, and P{(1) = 07 (c)
for ¢ = ¢, which with P'(1,d) > P{(1) for d > 1 imply that

P'(1,d) = of(c), if ¢>cl; P'(1,d) =0f(c)oroi(c), if c=c.
Finally, we shall prove
P'(1,d)=0f(c) =0, ford>1andc=cl, if (1.10) holds. (2.36)

By contradiction, assume P'(1,d) = o (c) = —c for d > 1 and ¢ = ¢J.

By (2.32) and (2.33), we have

P'(S,d) — P{(S) + (JM) (P(S,d) — P1(9)) = (Q; S)f(l -S5)<0, Se(0,1),
thus we have
o298 pig q)  py(sy)| = et Q=9 gy 2o se1)21), (2.37)
P
with a(z,d) = zf(1 — 2) /(P (2)P(z,d)).
Note that
Py(2), P(z,d) = c}(1 — ) + o(|1 — z]), 1

and f(1—2)=(1—-2)"+o0(|]1 —zP) withp > 1,

thus a(z,d) ~ (9)72(1 —2)P"2 as 2 — 1~ for p > 1, and |f11/2 a(z,d)dz| < oo.
Integrating the both sides of (2.37) from 1/2 to 1, we have

1 s _
Pi(1/2) — P(1/2,d) = / efl/za(z’d)“@f(l — 8)dS < 0, if (1.10) holds,
/2

which contradicts (2.35). This completes the proof of (2.36) and the proof of Lemma 2.4. O
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2.3. The existence of center manifold and proof of Theorem 1.2

In this subsection, we shall further investigate the precise decaying rate of the traveling waves
(Ue(2), Ve(2)) obtained in Lemma 2.4(i) for the case (1.10), which decay non-exponentially as z — +oc.
For each fixed d > 0 and ¢ > 0, let (U(z),V(z)) be a solution of (2.1) satisfying (U(+00), V(+00)) =

(1,0), with U(z) strictly increasing and V (z) strictly deceasing, then (U(z),V (z)) also satisfies

AU ==V —c(U4+V —1),

V'+cV'+Uf(V) =0,

U(+o00) =1,V (400) = 0,

0<U((z) <1, 0<V(2)<1, V'(2) <0, forz < +4o0.

(2.38)

Let W(z) = U(z) + V(z) — 1, Vi(z) = V(z) and Va(z) = V'(2), then (W(z),Vi(z), Va(z)) satisfies the
following first order differential system

W' = 54Vs — SW,

Vi =Va,

2.39
V= —cVs— (1 - Vi + W)F(V). (2:39)
0<Vi(z) <1, Va(2) <0,
with d; = (d — 1)/d and the boundary condition
W(400) =0, Vi(+x) =0, Va(+oco)=0. (2.40)

Theorem 2.5. Assume (1.10) holds for some p > 1, and let d > 0 and ¢ > 0 be fized.

(i) There exists a two-dimensional solution set Si on which all the solutions of (2.39) decay to zero
exponentially as z — +00.

(12) If |(W(20),Vi(20), Va(20))| is small enough for some zy € R with Vi(29) + Va(z0)/c > 0 and
(W (20), Vi(20), Va(20)) ¢ Sg, then the solution (W (2),Vi(2), Va(2)) of (2.39) tends to zero algebraically
as z — +0o and satisfies

{Vl(z) ~ k‘zfﬁ,\{g(z) ~ —%kpzfﬁ, W(z) ~ —16;2”127% as z — +00, (2.41)

with k= (E=1)77 .

Proof. By virtue of (1.10) with p > 1, linearizing the system of (2.39) around (0, 0,0), we have
-5 0 dq
Y' = ATY, with At = 0 0 1
0 0 —c

Note that A" has three eigenvalues —c¢/d, —c and 0, then statement (i) follows from the standard asymp-
totic analysis on (2.39). Here we omit the detailed proof of (i).
Let

X1(2) = Vile) + 2Va(2), Xa(z) = W(2) + 1Va(e), Xs(2) = —2Va(2), (2.42)
or equivalently
Vi(z) = Xu1(2) + X3(2), Va(z) = —cX3(2), W(z) = Xa(2) + X5(2), (2.43)
then (X;(z), Xa(2), X3(2)) satisfies

X{ = F(X15X27X3)5
X5 = —§X2+F(X1,X2,X3), (2.44)
X3 = —cX3 — F(X1, X2, X3),
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with F(Xl,Xg,Xg) = —%(1 - X1+ Xo)f( X1+ Xg).
For X; > 0 small enough, let go(X;) = —% X7 and g3(X;) = 5 X7, using (1.10) for kg = 1 and p > 1,
it can be checked that

95(X1) F (X1, g2(X1),93(X1)) — (= §92(X1) + F(X1, 92(X1), 93(X1))
= —EXPT < O(XT) + § (& XT) + (X7 + O0( X, P (2.45)
= O(|X1|P*9), ¢ =min{l,p—1} >0,
and
95(X1)F (X1, 92(X1), 93(X1)) — (—egs(X1) — F(X1, 92(X1), 93(X1))
= 2XPT ) O(|X1|P) + 1XT - LXP 4+ O(|1 X [PtY) = O(| X1 [P+9), ¢ =min{l,p—1} > 0.
By applying center manifold theorems ( see [8] Theorem 3 in Chapter 2), it follows that there exists a
one-dimensional center manifold X = ho(X1), X5 = h3(X1) of (2.44) satisfying
ho(X1) = =% X7+ O(1X1|P+9), hs(X1) = 2 X7+ O(|X1|P+9), for small enough X; > 0,
g=min{l,p—1} > 0;

thus the flow of (2.44) on the center manifold Xy = ho(X7), X3 = h3(X;) with X; > 0 is governed by
the following scalar equation

(2.46)

(2.47)

1
u' = F(u,ha(u), hs(u)) = —=f(u) + O(JulP™), for small enough u > 0. (2.48)
c

Obviously for p > 1 and ¢ > 0, the zero solution of (2.48) is locally asymptotically stable and it is easy
to prove that if w(0) > 0 is small enough then the solution of (2.48) satisfies

1

pfl ﬁ 1
) 2771 +o(z P T)as z — +00. (2.49)

c

u(z) >0 for z >0, and u(z) = (

By virtue of (2.47)-(2.48), the center manifold theories (see [8] Theorem 2 in Chapter 2) also guarantee
that the zero solution of (2.44) is also locally asymptotically stable for X;(0) > 0; furthermore, for each
fixed small (X7(0), X2(0), X3(0)) with X7(0) > 0, there exists a solution u(z) > 0 of (2.48) such that the
solution (X (z), X2(z), X3(2)) of (2.44) satisfies

X1(2) = u(z) + O(e™7%),

Xa(2) = ha(u(z)) + O(e™7%), v = min{c, ¢/d}, as z — +oo, (2.50)

X3(2) = hs(u(2)) + O(e™%),
which with (2.47) and (2.49) further imply that if (X7(0), X2(0), X3(0)) is small enough with X;(0) >
0, then the solution (X;(z), X2(z), X3(2)) of (2.44) either decay exponentially as z — 4o or decay
algebraically satisfying

1
d P 1 P —1\*T»
Xi(z) ~ kz_Plj, Xo(2) ~ =5 kP27 77, X3(2) ~ kP27 7T, as z — oo, with k = (p .
c c c
(2.51)
(2.50) also imply that except on the two-dimensional solution set ST, all the solutions of (2.44) near zero
with X5 (z) > 0 satisfy (2.51) as z — 400, which with (2.43) further imply the estimates (ii) of Theorem

2.5 hold. This completes the proof of Theorem 2.5. O

Proof of Theorem 1.2. (i) First for the case 0 < d < 1, using the fact c.(d) = ¢nin(d) and the monotone
decreasing of ¢,,in(d) in d (see Theorem 1), we have c,(d) > 2.

For the case d > 1, estimate ¢, (d) < cg follows from Lemma 2.4 directly.

(ii) For the case 0 < d < 1, the existence and decaying estimates of the waves with noncritical speeds
¢ > ¢, (d) stated in Theorem 1.2 follow from Theorem 1 (ii) and Theorem 2.5.

For the case d > 1, the results stated in (ii) follow from Lemma 2.4 and Theorem 2.5. |
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3. Linear stability of wave fronts with exponential decay for d near 1

Under the assumption of (1.7) or (1.10), let (U.(x — ct,d), Vo.(z — ct,d)) be a traveling front solution
obtained in Theorem 1.1 and Theorem 1.2 for d near 1. In this section we shall investigate the spectral
and linear stability of the wave front in some suitable spaces.

In moving coordinate z = x — ¢t the original nonlinear systems (1.1) becomes

U = du,, + cuy, — uf(v),
t v (3.1)
V= Vs + v, +uf(v).
Linearizing system (3.1) around (Uc(z),V.(z)) we can define the linear operator Lq.: C2;;(R) x
C\?mif (R) — C(unif(IR) X Cunif(R) by
‘ (dg e e ) (32)
d,c = . .
JVe) St egt + U (V)

Let (u(z,t),v(z,t)) be a solution of the nonlinear system (3.1), and define w = u + v — 1, then
(w(z,t),v(z,t)) satisfies

wy = dw,, + (1 — d)v,, + cw,,

{vtzvzz—i-cvz—l—(l—v—l—w)f(v),ZER’t>O' (3.3)

Obviously, (W.(z,d), Ve(z,d)) = (Ue(z,d) + Ve(z,d) — 1,V.(z,d)) is a steady state solution of (3.3), the
linearized system of (3.3) around (We(z,d), V.(z,d)) is the following

{wt =dw,, + (1 - d)’l)zz + cws, zeR, t>0, (34)

UVt = Vzz +CUz + Fv(Wm VC)U + Fw(Wm VC)U),

with F(w,v) = (1 —v 4+ w) f(v).
Define the linear operator L4 .: C? (R) x C?

unif

~ o, L0 o
Lac= Toz2 +Co: 5° (13 oz : (3.5)
Fw(Wc; ‘/c) 5.2 T Ch; T+ Fv(Wm ‘/(/)

(R) — Cunif(R) X Cunif(R) by

It is obvious that for each fixed d > 0, both £, . and Edﬁ generate analytic semigroups on X = Cypir(R) x
Cunit(R). For any given pair o = (o, a+) with = > 0 and o™ > 0, it is easy to check that Ly and

L4, also generate analytic semigroups on the exponentially weighted space X, = Co(R) x Cyp(R), with

Cu(R) 2 {u € C(R) |wau(z) € Cunit(R)} and w,(z) defined as in (1.16); the weighted spaces C2(R) and
X2 can be defined similarly.
Define operators Ly ca, Laco :X2 — Xo by

wy) u U 9
£d,c,a (’U) - ACd,z: (’U) for (U) S Xa,
de(w)—fdc<w> for <w> GXi.

v v ’ v v

It is easy to see that the linear operator L, . is equivalent to Zd,c in the sense that

and

0(£d70) = J(Ed,c) and U(Ld.,c,oz) = U(Ed,c,a)- (36)
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Consider the eigenvalue problem of Zd’c, ie.

HORIE!

which can be rewritten as the following first order differential system

/

Y (Z) - A(Z7 A, d, C)Y(Z)7

with Y (2) = (w(z),w’(z)m(z),v'(Z))T 2 (1,92, Y3,94)", and

(3.10)

(3.11)

0 1 0 0
14(27 )\,d, C) — % - al(ga da C)5d _gc _a2(zvda(c))5d + )‘5d _iéd ,
—ay(z,d,c) 0 A —as(z,d,c) —c
where 64 = %, a1(z,d,c) = Fpy(We, Vo) = f(V) and as(z,d,c) = F,(We, Vo) = (1 + W, = Vo) f' (V) —
F(Ve).
Note that
ai(z,d,c) =0, az(z,d,c) — f'(0) as z — +oo,
and
ai(z,d,c) = 1, as(z,d,c) = —1 as z = —o0;
then
0 1 0 0
A= _f1(0)04 + Nog —cb
A(+OO,)\7d7C): d d f(o) d+ d COq ’
0 O 0 1
0 0 A —1(0) —c
and
0 1 0 0
A —c _
A(—oo N dc) = | @ da = A0q+0q —cdq
0 0 0 1
-1 0 A+1 —c

Denote the four eigenvalues of A(+o00,\,d,¢c) by ui (N, d,c) (i =1,...,4) with

—c—+/c2+4AXN—4f'(0 —e—/c
i\ d,¢) = ZSVEEREO R ( d, o) = =Y,

—ct+/c2+4N—4f(0) —c++Vc
:U{J’,r()‘vdv c) = 2 ) /‘Z()‘vdv ) = W

It is easy to check that for each fixed ¢ > ¢.(d) > 0 and d > 0, it holds that

c? —4f'(0)
2

Reui (A, d,c), Repus (N d,c) < max { -

Repud (A, d,c), Reuf (A, d,c) >0, if (1.10) holds,
Reug (A, d,c) > —etyve 24770 VC;W, Re (A, d,c) > 0, if (1.7) holds,

and
pd (0,d,¢) = pf (0,d,c) =0, if (1.10) holds.
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It can be verified that if ¢ > 24/f(0) then for each fixed a* € ((¢ — \/c? —4f7(0))/2,¢/2) there exists

small §, > 0, such that

Repf (A d,c), Repus (A, d,c) < —c/2 < —at < Repug (\ d,c), Repuf () d,c),

for ReA > =6, and |d — 1| < d,. (3.16)

It can be checked that for d = 1 and ¢ > 0, A(—o0, A\, d, c) has four distinct eigenvalues denoted by
w; (A, 1) with
_ —c—/c2+4(A+1 _ —e—/C
pr (A 1,e) = “SVEHOHD (01, 0) = oD

- 7C+¢c22+ﬁ - —ct c2+4(A+1>, (3.17)
H3 (Avlﬂc):fv Moy ()‘al’c):f;
and for each fixed ¢ > 0 and small o~ > 0 if necessary, we choose d, > 0 smaller such that
Repy (A 1,¢), Repiy (A 1,¢) < *% < —a” <Repz (N 1,¢), Repy (A 1,¢) (3.18)

for Re A > —4,.

Then by applying the classical perturbation theories of eigenvalues (see [17]), it follows that for each
fixed small o~ € (0,¢/2) and bounded A > 0, there exists small 6, 4 > 0 such that for any Re A >
—0a.4, A < A and |d — 1| < 04,4, A(—00, A, d,c) has four distinct eigenvalues denoted by p; (A, d,c),
which are analytic in A and continuous in d and satisfy

{Reul_()\,d,c) <Repy (A d,c) < =5 < —a” <Repuz (N d,c) <Repy (\d,c)

for ReA > =044, [A| <A and |d —1| < a4, (3.19)

with four corresponding linearly independent eigenvectors denoted by V™ (A, d), which are also analytic
in A and continuous in d.
Define curves ST (d, c) and S~ (d, c) by

St ={X\eC|det(ir] — A(+00,\,d,c)) =0 for some 7 € R} and
S, ={AeC|det(it] — A(—00,\,d,c)) =0 for some 7 € R}.

By applying the spectral theory in [14], the boundary of essential spectrum of Zd,c is characterized by S[J{

and S, and S, S; C 0ess (La), then by detailed computation or by (3.12)-(3.15) and (3.17), it follows
that

Lemma 3.1. (i) If (1.10) holds, then for any d > 0 Re O'ess(Zdyc) <0, and 0 € aeSS(Ed,C),
(it) If (1.7) holds and c.(d) > 24/ f'(0), then for small |d — 1| 0ess(La,c) N{Re A > 0} # 0.

Lemma 3.1 implies that all the waves with critical or noncritical speeds can not be exponentially
stable in space X. To get the linear exponential stability of the waves in some appropriate spaces, we
first investigate the location of essential spectrum of £; . in some exponentially weighted space of X.

For the fixed pair a = (a=,a™) with a=,at > 0, define the weight function w,(z) € C%*(R) as in

(1.16), and define operator Ly c.q : C2 (R) x C2 (R) = Cynir(R) x Cynis(R) by
~ w(z)\ 1, x we (2)w(z)
‘Cd,c,a (’U(Z) ) = W, (Z)‘Cd,c (wa(z)v(z) . (320)

Obviously, the operator Edmx is equivalent to the operator Zd,qa and operator Lg ¢ o, thus Uess(2d7c,a) =
Oess(Ld,c.a) = Tess(Lac.o)- By (1.16), (3.8), (3.20) and by applying the standard spectral theories in [14],

~

it is easy to prove that the boundary of 0ess(L4,c,o) can be characterized by the curves S _ and S;C o>
which are defined by

S;C’M ={\eC|det(it] —a™I — A(+00,\,d,c))) =0 for some 7 € R},
and S; . - ={Ae€C|det(itT] —a I — A(—o0,\,d,c)) =0 for some 7 € R}.
Further, by (3.16) and (3.19) or by direct computation, we have the following estimates
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Lemma 3.2. Assume either (1.7) or (1.10) holds, then for ¢ > 24/f(0), a= € (0,¢/2) and ot €
((c—+/c®—4f(0))/2,¢/2), there exist small positive constants §g and 6, such that

sup{ReUess(fjd,c,a)} < =8, <0 for any |d—1| < do.

Remark 3.3. If (1.7) holds and ¢.(d) = 24/ f/(0), then it is easy to check that for ¢ = ¢.(d) there exists
no appropriate exponential weight function we(2), such that gess(Ld.c,o) can be shifted to the left of the
imaginary axis of the complex plane.

Under the assumption of Theorem 1.1, for ¢ = ¢2, a™ € ((¢? — /(c2)2 — 4£/(0))/2,c2/2), a= € (0,¢0/4)
and small 09 > 0, let A with Re A > —dg be an eigenvalue of Elm’a with eigenfunction (wy(2),vA(2)) € X,
satisfying

{w&’ + cw) = dwy,

vy 4 cvl + Fy (0, Vo)oy + Fiu (0, Vo)wy = vy, (3:21)

From the first equation of (3.21), it is easy to prove that if (wx(z),vx(z)) € X, is a solution of (3.21) for
Re A > —d,, then wy(2) = 0 and vy(2) € C,(R) satisfies

Aox = v} + O + F, (0, Ve)v 2 Luy. (3.22)

By applying standard asymptotic analysis to the eigenvalue problem (3.21) and by Lemma 2.1, it is easy
to prove that

Lemma 3.4. Assume either (1.10) holds or (1.7) and ¢ > 2,/f'(0) holds. Let o~ € (0,¢0/4), ot €
(2 — /(92 —4£7(0))/2,c2/2), then there exists small positive constant 5o > 0 such that

sup{Re {op(zl’cg’a)\{O}}} < =04 <0,

and zero is a simple eigenvalue of L1 0 q-

Under the assumptions of Lemma 3.4, by virtue of Theorem 1.1, Lemma 3.2 and Lemma 3.4, for the
fixed a= € (0,¢%/4) and at € ((c? — /()2 — 4£7(0))/2,%/2), in the following we always choose &y > 0
and d, > 0 small enough such that Lemma 3.4 holds and

sup{Re 0ess(Lac, (d),0)} < —0a <0 for any [d— 1] < do. (3.23)

Further, we shall apply Evans function method to prove the similar spectral estimates as stated in
Lemma 3.4 hold true for d near 1. Before applying Evans function method, we need to prove the uniform
boundedness of unstable eigenvalues of Ly ._(4),« When d is near 1. By applying similar energy estimates
as in [21] (see the proof of Theorem 3.4 in [21]), we can obtain the following estimates.

Lemma 3.5. Assume either (1.10) holds or (1.7) and 2 > 2./ f'(0) hold, and let o~ and o™ satisfy the

assumption of Lemma 3.4, then there exist small 6, > 0, 09 > 0 and large Ay > 0 such that Ed7c*(d),a has
no eigenvalues in {A € C| Re X > —d,, |A| > Ao} if |[d — 1] < .

Let «, &g, do and Ag be fixed to satisfy the assumptions in Lemmas 3.2-3.5. Further, by virtue of the
spectral gaps in (3.16) and (3.19) and the exponential spatial decay of the waves with speed c.(d) for
d near 1, we can apply the standard asymptotic ODE theories and similar arguments as in [2] and [23]
or apply the more general results on Evans function obtained in [21] ( in [21], A(z, ), d, ¢) is allowed to
be slow algebraic decay at z = oo and the eigenvalues uii()\, d, ¢) can be not simple) to prove that for

small |d — 1| < dg, ¢ = c«(d) and X € 2y £ {A € C|ReX > —d4, |A| < Ag}, there exist two families
of four linearly independent solutions to system (3.8) denoted by {Y; (z,d,c,\)} and {Y; (z,d,c,\)}
(i=1,...,4) satisfying

e*”;(’\’d’c)z}/’i_(z,d, e, A) =V, (Nde), i=1,...,4, as z = —o0;
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e"‘+ZY1-+(z,d, 6 A)—0, i=1,2, as z — +o0,
and .
e Y (2,d,c,\) = 400, i=3,4, as z — +oc;

where Y, (z,d, ¢, \) (i = 1,...,4), the wedges Y;" A\ Y5" (2,d, ¢, \) and Y35 \ Y, (2,d, ¢, \) are analytic in A
and continuous in d and c¢; the detailed constructive proof of the existence and analyticity of Yl-i (z,d,c,\)
(1 =1,...,4) can be found in [21].

By virtue of the existence, analyticity and decaying estimates of Yii (z,d, e, A) (i=1,...,4), for X € 29
and d near 1 we can define Evans function ([2,21]) by

D()\, d) = exp {— /OZ A(s, A\, d,ci(d)) ds} det [V"Y5" Y5 Y] (2,d, c.(d), N), (3.24)

which is independent of z and analytic in A and continuous in d. Furthermore, D(X, d) = 0 if and only if A
is an eigenvalue of Zd,c*(d),a with an eigenfunction (wx(z,d),vx(z,d)) € X,; and the number of the zeros
(counting the algebraic multiplicities) of D(A,d) in 2y equates the number of eigenvalues of Ed7c*(d))a
(counting the algebraic multiplicities) in 2.

Note that Lemma 3.4 guarantees that the Evans function D(\,d) at d = 1 has exactly one zero
(counting the algebraic multiplicity) in 2y, then by applying Rouchét Theorem it follows that for each
fixed d near 1 there is exactly one zero of D(\,d) in 2. Further, note that zero is an eigenvalue of
Ed,c*(d),a for d near 1, with eigenfunction (WC’*(d)(z, d), V'*(d)(z,d)) € X, then it follows that Ed,c*(d),a

c
has no eigenvalues in 2y except at A = 0 and zero is a simple eigenvalue of de‘*(d)’a, which with Lemma

3.5 further implies the spectral results stated in Lemma 3.4 are still valid for Zd,c*(d),a for d near 1. Then
by virtue of (3.6) and (3.23) we also have the following spectral estimates on Ly ., (4),a-

Lemma 3.6. Assume either (1.10) holds or (1.7) and ¢ > 2./ f'(0) hold. For each fized o~ € (0,c2/4)
and at € ((2 — \/(c9)2 —4£7(0))/2,c2/2), there exist positive constants 8, and 8 such that for any
|d — 1] < do
sup{Re {0p(Lac. (@)a)\{0}}} < =00 <0,
and zero is a simple eigenvalue of L .. (d),o with eigenspace spanned by $f(z) = (UL, (a)(2:d), VI () (2,d)).
By applying the classical semigroup theories, Lemma 3.6 implies that under the assumption of Lemma
3.6 for each fixed d near 1, Range {Lg., (d),o} is closed and we can define the Riesz spectral projection

P4 of X, onto the one-dimensional space Ker{Lq ., (4).o} = Span{®{(z)}, thus the weighted space X,
can be decomposed as follows

Xo =Ker{Lyc.(d).a} @ Yaa, with Yoo = (I - P X, =Range{Lyc. (4.0} C Xa- (3.25)
Define a linear bounded functional p : X, — R such that
PYY = p(Y)® for YV € X,, and p(dd) = 1. (3.26)

Denote Q¢ = I— P4, which is a projection onto Yy . Obviously both P4 and Q¢ commute with etfd.cu(d).a
for all t > 0.

Denote Ed,c*(d),an by L'g’a, then Lemma 3.6 and (3.25) imply that Re {Lg’a} < —0q, which further
guarantees the linear exponential stability of the wave front (U, (4)(2,d), Ve, (a)(2,d)) with perturbation
in the weighted space Yy o, which can be stated as follows.

Theorem 3.7. (Linear exponential stability of wave fronts with critical speeds) Assume
either (1.10) holds or (1.7) and ¢ > 2,/f(0) hold. For each fized a~ € (0,¢)/4) and ot €

*

(2 — /(92 —4f7(0))/2,c0/2), there exist positive constants M, > 1, §g and o4, such that for any
d € [1— 0,1+ 0] the analytic semigroup etfi.a generated by Eg,a on Yq.o = Range{Lg, (a),a} satisfies

et Yollx, < Mae | Yollx,, Yo € Yaa and V2 0. (3:27)
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In the following of this section we shall investigate the spectral and linear exponential stability of waves
with noncritical speeds ¢ > ¢,(d) for the case when (1.7) holds and d near 1. Note that Lemma 3.2 and
Lemma 3.5 are still valid for all the wave fronts with noncritical speeds ¢ > ¢, (d). In the following for the
fixed ¢ > max{ec.(d),c?}, we always assume o~ € (0,¢/2), a™ € ((c — /c2 —4f'(0))/2,¢/2), such that
Lemma 3.2 holds, further by Theorem 1.2 the slow decaying rate of the wave with a noncritical speed at
2 = +oo implies that (W/(z,d), V/(z,d)) ¢ X2; in fact by standard 1 argument (smnlar proof can be found
in [25] or [31] ) it can be proved that zero is not an eigenvalue of £1 c.o for any ¢ > ¥, and £1 c,a has no
eigenvalues with nonnegative real parts, which can be stated as follows

Lemma 3.8. Assume (1.7) holds. For anyc > c?, leta™ € (0,¢/4) and at € ((c—+/c% —4f(0))/2,¢/2),
there exists small positive constant 6, such that

sup{Re 0, (L1.c.0)} < =04 < 0.

For the fixed ¢ > max{c.(d),c!} and d near 1, by (3.16) and (3.19), we can define Evans function
D()\, d,c) as in (3.24) by

D(\,d,c) = exp {—/ A(s, N\, d,c) ds} det [YfY;Y{Y[] (z,\,d,c); (3.28)
0

which is independent of z and analytic in A for A € 2y, with 2y defined as before; and D(\,d,¢) = 0 if
and only if A is an eigenvalue of Edﬁ,a.

By nearly the same argument as in [21] (see the proof of Theorem 1.3 in [21]) it can be proved that
(Ue(z,d),Ve(z,d)) = (Ue(z,1),Ve(2,1)) in Lo norm as d — 1, which implies that D(\, d,¢) — D(X, 1,¢)
as d — 1, then by Lemma 3.8 and by applying Rouchét Theorem it follows that there exists small §y > 0
such that

D(\,d,c) #0, for A€ 2y and |d— 1] < o,

which guarantees that in 2y there exist no eigenvalues of Edycﬂ. Then, by Lemmas 3.2,3.5 and 3.8 and
the standard analytic semigroup theories, we have the linear exponential stability of the wave front with
speed ¢ > max{c.(d), 2} in X, when d is near 1, more precisely we have

Theorem 3.9. (Linear exponential stability of wave fronts with noncritical speeds for case
(1.7)) Assume (1.7) holds. For each fived c > %, let a= € (0,¢/4) and ot € ((c—+/c2 —4f'(0))/2,¢/2),
there exist positive constants My, 09 and o4, such that for any d € [1 =g, 1+ o] the analytic semigroup
etfac.o generated by Lg.c.o satisfies

”etﬁd,c,a ||X(,—>X,y < Ma672oat’ Yt > 0. (329)

4. Nonlinear stability of waves for d near 1

Let (Uc(z — ct), Vo(z — ct)) be a travelling wave obtained in Theorems 1.1 and 1.2, which decays ex-
ponentially at both ends. In this section, we investigate the nonlinear asymptotic stability of the wave
(Ue(z — ct), Ve(x — ct)) in some weighted and unweighted spaces when d is near 1.

In moving coordinate z = x — ¢t, let (u(z,t),v(z,t)) be the solution of the nonlinear system (3.1)
with initial data (uo(z),vo(2)), and define u(z,t) = u(z,t) — Uc(z) and 0(z,t) = v(z,t) — V¢(z), then
(t(z,t),0(z,t)) satisfies

(%Ltt((j)g) - Edj (%3) * (Z{Z(uf» » 2€R, t.> 0 (4.1)
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with L4 defined by (3.2), and

satisfying

1 (Vo ) Cillo]7 (ry> for case (1. 10) with 1 < p < 2,
1(Ve, )l = Cl||UHL (ry» for case (1.1 0) with p > 2 or for case (1.7), if 9] 5o m) < 1. (4.3)

P2 (Ve, 0)|l L vy < Cal|o]| L (r);

Let X = Cunif(R) X Cunit(R), and for a= > 0 and a™ > 0 define weight spaces C,,(R), B+ (R), X, and
X2 as in Section 1 and Section 3.

We shall first investigate the evolution of the perturbation of the wave with the critical speed ¢ = ¢, (d)
in X and X,, when the initial perturbation of the wave is small in the weighted space B,+(R) x B+ (R) =
X N X,, with the pair a = (o™, a™) satisfying the assumptions in Theorem 3.7.

For the fixed d near 1, introducing new variables v(¢) € R and Y (2,t) = (y1(z,t),y2(2,1))T € Vg0 =
Range(Lg,c,o) such that

Y(z,t) = (u(z,t),v(z,t)T = P(z +7(t) = (a2, 1), 0(2, )T — @C(z,v(t)) for t > 0, (4.4)

Y (2,0) = (uo(2) — Uz + 70), v0(2) — Vilz +70))" 2 Yo € Yia, and v(0) = o; (4.5)
with @.(2) = (U.(z,d), Vo(z,d))T, ¢ = c.(d) and

||l>

Do(2,7() = Ue(z + (1) = Ue(2), Velz +7(8)) = Ve(2)" = (Uelz,7(1), Velz, 7 (1))

Then system (4.1) becomes

{Yt + 9/ (OP,(z +(0) = L3, + H(=, 1Y), 2 € Ryt > 0;

Y (2,0) = Yo(2), 7(0) = 10, ZER; (4.6)

where H(z,t,Y,7) = (—H1(2,t,Y,7), Hi(2,t,Y,7))" and

Hi(z,1,Y,7) = Ue(z + 7(8)) 1 (Ve(2,7(1)), yz(z t)) yl(z’t)[hﬂ(‘/c 2,7(t))
+y1(2, ) (f(Ve(z,7(1) = F(Ve(2))) + 42U,

with hy and hs defined by (4.2).
By (1.11), (4.3) and (4.7), it can be verified that

Cilyr (2, 1) + |y2(z,1)]) (\yg(z,t)|p_1 + |7(t)\) , for case (1.10) with 1 < p < 2,

(26 Y.< Cullyn (2, 6)] + Iy (2, 8))(Jy2(2, 0] + [¥(0)]),  for case (1.10) withp > 2, (4.g)
or for case (1.7),

if Jya(z,8)[ + ()] < 1;

with some positive constant C, independent of Y, v, z and ¢.
(4.8) also implies that there exists a positive constant C' such that

I ( ix < Ceb™ MY (-, 1) x, for case (1.10) W%th 1<p<2,
Ceo|lY (-, t)||x, for case (1.10) with p > 2, or for case (1.7); (4.9)
if (g2, )L @) + V()] < €0 < 1
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and for any aF > 0 it holds that

CeP MY (-, 1) x.., for case (1.10) with 1 < p < 2

. < 0 ) a) )

I3 Y )lx, < CeollY (-,t)||x,, for case (1.10) with p > 2, or for case (1.7); (4.10)
if [ly2( )l + ()] <o < 1.

(4.6) with the selection of Y(¢t) € Yy, implies that Y (¢) and ~(t) satisfy the following initial value
problems

/ _ p(H(Y (2,t),7(t))) é .
{’Y (t) = POz (D) (Y (-, t),7(t), t>0, (4.11)
7(0) = 0
and o
Yi=L; Y + Ha(z,t,Y,7), z€R,t>0,
ET 2( 7 (4.12)
Y (2,0) = Yy(2), z €R;
with p defined by (3.26), 7o defined by (4.5) and
Hy(z,t,Y,7) = H(z,1,Y,7) = 6(Y(,1),7()Pe(z + 7(1)) € Yaa- (4.13)

Before proving Theorem 1.4, by virtue of Theorem 3.7 we shall first prove that under the assumption
of the smallness of the perturbation (Y (¢),v(¢)) in X x R norm, the solution (Y (¢),~(t)) to nonlinear
system (4.11)-(4.12) satisfies some exponential decay estimates in X, x R norm.

Proposition 4.1. Assume either (1.10) holds or (1.7) and c® > 41/ f'(0) hold, for small enough o~ > 0
and ot > 0 satisfying the assumptions of Theorem 3.7, let g € (0,1) be small enough and satisfies

{50 < 405%, for case (1.10) with p > 2, or for case (1.7), (414

or 6]5—1 < 168> for case (1.10) with 1 < p < 2;
2M,

with positive constants Cy,C, oo and M, defined as in (4.18), (3.29) and (4.10). For any initial data

Yy € XNY,.q and o satisfying ||Yo||x + 70| < €0, let (Y (z,t),7(t)) € C([0, Taz), (X NY4.q) X R) denote

the unique maximal solution to the initial value problem (4.11)-(4.12), if for some 0 < T < T4 it holds

that

1Y (2, 0)]lx + [v(t)] < €0, Vt€[0,T), (4.15)
then
1Y (2, )] x, + 7 ()] <2Cqe” 7" Yollx,, Vte0,T), (4.16)
and
CO
VO] < Pl +2—=(Yol x.., vt € [0,T); (4.17)

with CO some positive constant independent of Yy, €0, Yo, t and T.

Proof. For any initial data Yy € XNY,, 4 and small ||, the existence and uniqueness of a maximal solution
(Y(z,t),v(t)) € C0, Thnas), (X N Yy ) x R) follow from the standard analytic semigroup theories, and
the smallness of ||Yp||x + 70| also implies that the estimate (4.15) holds true for some T' > 0.

Note that wq(2)P((2) — 0 exponentially as z — £oo for small a= > 0, and p(P,(z)) = 1. If the
assumption of (4.15) holds for small enough ¢y > 0, then it is easy to prove that

< p(# (= +A(0) < 5, Ve 0,7,

N =

and there exists a constant Cj such that

B D.(2+0(t)))
Y)| < CollY lx. VY € Xo: and ot < 2%
Ip(Y)| < ColY]|x, MM =60+ o (0)lx
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which with (4.10) further implies

20Coeh ™Y (2,1)||x,,, for case (1.10) with 1 < p < 2,
|k(H(z,t,Y, 7)) < vt € [0,7);
2CCheo||Y (2,1)||x,, for case (1.10) with p > 2, or for case (1.7);
(4.19)
and
20C2eL™ Y (2,t , for case (1.10) with 1 < p < 2,
ol ¥, < 20000 IVl forease (L0 e 0.1,
20C3¢6||Y (2,t)||x,, for case (1.10) with p > 2, or for case (1.7);
(4.20)

By Theorem 3.7, for any ¢ € [0, T4z ) the solution (Y'(¢),7(t)) € Yy X R to system (4.11)-(4.12) satisfies

t
0 0
1Y (#)x. < lle"“2aYo] x, +/ el 50 QL Hy (-, 5, Y, y)||x, ds
0 (4.21)

t
< Mpe 27t Yol x, + M, / e 202 Hy (-, 5, Y, )| x.. ds.
0

For any t € [0,T) let K;(t) = sup e7*®||Y(z, )| x., then by (4.14), (4.15),(4.20) and (4.21), we have
0<s<t

t
Ki(t) < M| Yollx., + U—;Kl(t)/ e 7=9)ds,  te[0,7T);
0

thus
Ky (t) < 2M,|| Yol x.,, Vt€[0,T),

which with (4.11) and (4.19) implies estimates (4.16) and (4.17) hold. This completes the proof of
Proposition 4.1. 0

The main idea of the proof of Theorem 1.4 is similar to that in [12], in which the similar nonlinear
stability results were obtained for more general R-D systems under a series of abstract assumptions. It
is worth mentioning that the detailed proof in [12] about the decaying estimates of the perturbation of
waves in the unweighted spaces is rather long and not standard, which is also closely related with the
special form of the system, some additional spectral estimates and some abstract assumptions. Instead
of verifying all the abstract assumptions in [12], in the following we shall combine the main idea of the
proof in [12] with some additional estimates for our system to give a complete proof of the nonlinear
stability of the waves with critical speeds when d is near 1.

Proof of Theorem 1.4. (i) For the fixed d near 1, to prove the exponential decay of the perturbation of
the waves with the critical speed ¢ = ¢,(d) in X, for small a— > 0 and fixed at € (a%,a9) , it suffices
to prove that for each fixed small eg > 0 satisfying (4.14), there exists a small positive constant 62 such

that if the initial perturbation satisfies
H(UO(Z’) - Uc*(d)(zﬁ d)7 UO(Z) - ch*(d)(zvd))||3(,+ < 627 (4'22)

then there exists a unique global solution (Y(z,t),7v(t)) € C([0,00), (X NYy4) X R) to system (4.11)-
(4.12), and estimate (4.15) holds for all £ > 0; which with Proposition 4.1 will further assures that (4.16)
holds for all ¢ > 0. Estimate (4.15) for all ¢ > 0 can be proved by combing the main idea of proof in [12]
with the similar estimates in [21]. Here we just give the outline of the proof.

By nearly the same argument as in [12] (see the detailed proof in Sect.5.4 [12]), it follows that for each
fixed small §, > 0 there exists small enough 62 > 0, such that for any (uo,vo) satisfying (4.22) there
exists a unique (Yy(2),7) € (Yoo N X) x R satisfying

(UO(Z)>U0(2)) = (Uc*(d)(z +707d)7 Vc*(d)(z + ’YOad)) + YO(Z)v S Ra
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and
Wollx + [¥ollx. + ol <. < co. (1.23)

Let (Y (z,t),v(t)) be the unique solution of system (4.11)-(4.12) defined on the maximal existence interval
(0, Thnae) with the initial data (Yo, 7o), which satisfies (4.15) on [0,T") for some T € (0, Tnqz). Denote
T1(z,t) = wa(2)y1(z,t) and Ga(z,t) = wa(2)y2(2,t), we can rewrite the equation of y1(z,¢) in system
(4.12) as

y1e(2,t) = dy1zz(2,1) + cyrz(2,t) = y1(2, 1) +y1(2, ) [ (1) = f(Velz +7) + y2(2,1))]
—Ue(z +f(Ve(z +7)) = f(Velz +7) + y2)] = Usz + )7 (1)
= Lyt + 51 (2, )w ' (2)[1 = F(Ve(z + )] = y1(z Oy, O (Ve(z + 7)) + ha(Ve(z +7),92)]
—[w () Ue(z + 1) (2, [ (Ve(z, 7 (1)) + ha(Ve(z + 1), 92(2,1))] = Us(z,4()7' (1)
= Liyr + Hi(2,t,Y, (1)) + g(2,t,7) (4.24)

where the operator L; is defined by L = daa—; + c% =1, g(z,t,y) = =UlL(z,7(t))y(t) and

Hl(zata Y;’Y) = 91(2,7)@\1(2,75) + 92(y27 Z?V)yl(zvt)yZ(zat) + g3(y27 277)g2(zat)7

with
91(z,7) = wy ' (2)(f(1) = f(Ve(z,7(0)s g2(y2,2,7) = —F (Ve(2,7(1))) — halya, 2 +7),

and g3(y2,2,7) = —wg ' ()Velz, YO (Velz,7(1))) + ha(Ve(z +7),y2(2 +7)).
Note that Reo(L;) < —1, which implies that for each fixed b € (0, 1), there exists constant Cj, such that

||eL1t‘|cuxlif(R)—>Cunif(R) < Cbe_bta ”ethHLl(R)—’Ll(R) < Cbe_bt’ vt > 0. (4'25)

It follows from Theorem 1.1 that

wi(2)Ue(z,d) — 0, wg

e} [e3

Y2)[Ve(z,d) — 1] — 0, exponentially as z — o0,

(4.26)
for small enough a~ > 0 and at € (a2, af);

which with the assumption (4.15) for small g9 > 0, further implies that there exist positive constants K
and K independent of d, T" and ¢( such that

1912, N Lo ®) + 1932, 2 ML ®) < Ko,
g1 (z, ML @) + 932, 2. ML, ®) < Koy VE€[0,T);
192(y2, 2, V)| Lo (r) < K1,

thus we have

H ',t7Y7’Y 0o SK Y 'at a+K6 Y .’t o ’
{H o N ®) ollY ()|l x 180lly1(5 )l Lo m) Vi e [0,7). (4.27)

”Hl('ath”Y)HLl < KOHY('vt)”Xa + KlsOHyl('?t)”le
Further, by Proposition 4.1, we have
Y )lxas 9zt N a @, 9zt @ < Kee™|[Yolx,, Vt € [0,T); (4.28)

for some constant K5 independent d, Yy, T and €.
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Rewrite equation (4.24) as

t
yl('at) = ethy(l)(') + / eLl(tiS) [Hl('a S, }/77) + g(a 577)] dS, (429)
0

then by (4.25)-(4.29), under assumption (4.15) we have

t
o1 (5O @) < Coe™ M1l + Cb/o e PO (|[Hi (8, Y, ) b ) + 19C, 5,9 1w (r))ds
t
< Coe™ YL m) + CbKIEO/ e P 1y (-, 8) || oy ds (4.30)
0

t
+Cy (Ko + 1)Ko | Yol x. / ebt=5g=rasds: Vit € [0,T).
0

By choosing 0 = %* > 0 small enough such that 20 < b < 1, then by (4.30) it follows that

t
eo-tHyl(',t)HLoo(]R) S Cbe_(b_a)t||y?||Loo(R) + Cb(KO —+ 1)K2HYO||XQ / e_b(t—s)eo't—Qo'SdS
0
t
+CbaoK1/ e ey (-, )| ryds

0
_ Co(Ko+ 1)K
< Cye "yl oo ) + 717(17320) 1Yol x.,

t
+Cheo K / e” == 075y, (- 8)|[ 1 myds, V€ [0,T).
0

Let K(t) = sup e”®|u(-,s)| . (r), then
0<s<t

Cp(Ko+ 1)K Cpeo K
K(0) < Colls o + R0t D2 gy OB gy i e o),
b— 20 b—o
Further, by choosing £y > 0 small enough such that
b—o
< 4.31
€0 = 2CbK1 ) ( )
then we have (Ko + D
Jr
K(t) < 200|802y + 275 5 [Yollx.. V¢€(0.T),
which proves that under the assumption that
1Y, t)lx + ()] < eo, VE€[0,T), with g satisfying (4.15) and (4.31); (4.32)
it holds that
(Ol ) < Coe™ T (19l ey + Yol x.), VE€[0,T), (4.33)
with Cy depending only on « and og.
Now rewrite the yo equation in (4.12) as
Yot = L2y2 + —HQ(Zu t7 Yv ’7) + GQ(Zu t7 7) (434)

with Ly = 25 + ¢, Ga(z,t,7) = V/(2,7(t))7'(t) and

hl(VC(Z + 7)7y2(z7t)) .

Hy(2,t,Y,y) = y1f(Ve(z +7) + y2) + Jowy  (2)Ue(z +7) | f'(Ve(z + 7)) + D) ;
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where h; is defined as in (4.2).
By (1.10), (1.7) and (4.3), under the assumption of (4.32) we have

{ 12, e + 1G22 6 ey < OB (D) + 1320 Dl + D, o

1H2 (-6, Y, M)y + 1G2 (2t ) < O3y Co8) iy + 172C D)l ey + 1 (1), .

4.35

with constant C9 independent of €y and T. (4.16), (4.33) and (4.35) further imply that there exists a
constant K independent of Y and T such that

1Ha (- 6, Y ) b @) + 1G22t ) ey < K 2 (19|l noe @y + [Yollx.)s V€ [0,T); (4.36)

then using the fact that |le®2*||;_ 7 <1 for any t > 0, it follows from (4.34) that

t
ly2( D)l < lle™*93] L., +K/ le®=2(=) (Hy (-, 5, Y (), 7(s)) + G2 (2, 8,7() | Lo (i) ds
0
t

. 4.37
<1l + K [ e R as(l e + Vol x.) 3
< 2K (IYollx + [Yollx.), Vte[0,T);
which with (4.33) and (4.17) further implies that
1Y (0l x +v(@)] < M([[Yollx + [Yollx. + 1ol), V& €[0,T), (4.38)

with constant M independent of g, T, Yy and ~q.
For the fixed gy > 0 satisfying (4.14) and (4.31), then (4.38) implies that if initial value (Yo, yo) satisfies
€0

[¥allx + [¥ollx, + ol < 88 = 5o (4.39)

and if || Y (z,t)||x + |v(t)| < eo holds on [0,T") for some maximal T € (0, T},q4], then

0 e o,7),

1Y (2, 0)llx + (O] < 5

which further implies for any initial value (Yp,70) small enough satisfying (4.39), then the solution
(Y(z,t),7(t)) to system (4.11)-(4.12) exists globally and estimate (4.15) holds for all ¢ > 0, thus
(4.16),(4.17) (4.33) and (4.38) are true for all ¢ > 0.

Note that (4.16) with T' = co also guarantees that there exists 7. € R such that

eFy(t) — 4| = 0 as ¢t — oo,

thus (1.18) holds, and (1.17) follows from (4.23), (4.33) and (4.38). This completes the proof of Theorem
1.4 (i).

(ii) Under the assumption of the smallness of the initial perturbation of the wave in X N X,, in (i)
we have shown that there exists a unique global in time classical solution (Y (z,t),v(t)) to system (4.11)-
(4.12) satisfying (4.16),(4.33) and (4.38) for any ¢ > 0. In the following we shall further assume that the
initial perturbation is in addition small in L;(R) x L1 (R) space, i.e. for small enough 6% > 0 the initial
data (Yp,~o) satisfies

I¥ollx + [I¥ollx, + [Yollzy xLy + [0l < 3, for small &7, > 0. (4.40)

Lot

Noting that the semigroups e“1* and e’2* satisfy estimate (4.25) and

1
o™ s @iy < L and [l 1, )2ty < 77 8> 0, (4.41)
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thus )
le" "yl L@ < == 1931lL,®) + 193]l Lo (w))s VE > 0. (4.42)

V14t

By virtue of (4.16) (4.19), (4.27) and (4.28) for all £ > 0, as in the proof of (4.33) we can similarly prove
that for small o, > 0 under the assumption of (4.40) with small enough 69 > 0, it holds that

lys )2y < Coe™ " (197, ) + [ Yollx,)s VE > 0. (4.43)

By (4.34), (4.35) and (4.42) , we have

t
ly2( )Ly < lle™"98ll L. ®) +CO/ "2 =) (Hy (-, 8,Y,7) + 920, 8,7)) | Lo myds
0

< 12+t (131 y ) + 1981 Lo (v))

t
1 ~
+C/0 T (Gl + 1y G 9)llzy @) + 1820, 9) @ + 1 (9)]) ds, vt = 0;

which with (4.16), (4.33), (4.40) and (4.43) further implies

2 k 1 _oay, C*5°
ly2( )l my < ﬁég+052 ; \/ﬁe z%ds < 1_:‘t7 vt > 0. (4.44)

By (4.16), (4.34), (4.35), (4.41) and (4.43), we can similarly prove that

t
12 (o )|z, ) < ||y8||L1(R)+/O (a8, Y, v () @) + 1G5 8,7(8)) Ly m))ds @s5)
4.45

t
<80 + 053/ e F 0 ds < C*60.
0

Thus estimates (1.19) and (1.20) follow from (1.18) and (4.43)-(4.45). This completes the proof of
Theorem 1.4. O

Proof of Theorem 1.5. For the case (1.7) and ¢ > 2, by virtue of Theorem 3.9, Theorem 1.5 can be
proved by similar argument as in the proof of Theorem 1.4 with v(¢) = 0, and the proof can be much
simpler. A similar proof or estimates can also be found in [21] for the case (1.10) but in different weighted
spaces. Here we omit the details of the proof. O
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