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Abstract. In this paper, we shall obtain the symmetries of the mathematical model describing
spontaneous relaxation of eastward jets into a meandering state and use these symmetries for
constructing the conservation laws. The basic eastward jet is a spectral parameter of the model,
which is in geostrophic equilibrium with the basic density structure and which guarantees the
existence of nontrivial conservation laws.
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1. Introduction

The weather maps at mid-latitudes invariably show the presence of wave-like horizontal excursions of
temperature and pressure contours, superposed on eastward mean flows such as jet stream ([1],[2], [3]).
For illustration purposes, Figure 1 1 is used to show the photo of the cold front is marked by a blue line,
Sandy by the red symbol, the subtropical jet stream by a green arrow (bottom center), and the blocking
pattern by the “L” in the upper right. The subtropical jet stream is already deforming Sandy from the
symmetrical shape expected of a classic hurricane into the “comma” shape typical of Northeasters. The
trough in the polar jet stream lies behind (west) of the cold front. The blocking pattern keeps Sandy
from escaping to the east. Although not obvious on surface level maps, or even on the 850 mb level map
below, Sandy is sandwiched between the polar and subtropical jet streams.

Similar undulations are also found in the ocean on eastward currents such as the Gulf Stream in the
north Atlantic ([4], [5], [6]). A typical wavelength of these disturbances is observed to be of the order
of the internal Rossby radius, that is about 4000 km in the atmosphere and 100 km in the ocean. They
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Figure 1. Hurricane Sandy (right side) and the line of clouds marking the cold air front
coming in from Canada NOAA image taken from Joe Zagrodnik’s.

seem to be propagating as Rossby waves, but their erratic and unexpected appearance suggests that
they are not forced by any external agency, but are due to inherent instability of mid-latitude eastward
flows ([7], [8], [9]). This means that the eastward flows have a spontaneous tendency to develop wave-like
disturbances ([10], [11]).

The poleward decrease of the solar irradiation results in a poleward decrease of the temperature and
a consequent increase of the density [12]. One possible idealized distribution of the atmospheric density
in the northern hemisphere corresponds to the case when the density increases northward due to the
lower temperatures near the poles and decreases upward because of static stability [15]. According to the
thermal wind relation, an eastward flow (such as the Jet Steam in the atmosphere or the Gulf Stream)
in equilibrium with such a density structure must have a velocity that increases with height. A system
with inclined density surfaces has more potential energy than a system with horizontal density surfaces,
just as a system with an inclined free surface has more potential energy that a system with a horizontal
free surface. It is therefore potentially unstable, for it can release the stored potential energy by means
of an instability that would cause the density surfaces to flatten out. In this case, vertical shear of the
mean flow would decrease, and perturbations would gain kinetic energy (see also [16], [17], [18]).

Tests of atmospheric general-circulation models (GCMs) and, in particular, tests of their dynamical
cores are important steps towards future model improvements. They reveal the influence of an individ-
ual model design on climate and weather simulations and indicate whether the circulation is described
representatively by the numerical approach.

Thus stability of atmospheric jets (e.g. Gulf Steam in the Atlantic or Jet Streams) can be studied by
means of kinetic and potential energy of the linearized mathematical models. However, it is an always
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open question what other quantities, rather than energy, can be conserved for nonlinear models. In
this paper, we shall we shall obtain the symmetries associated with the nonlinear modeling describing
spontaneous relaxation of eastward jets into a meandering state and use these symmetries for constructing
the conservation laws by the method of nonlinear self-adjointness [13]. Similar analysis for the derivation
of the conservation laws for the model of nonlinear atmospheric flows around the rotating spherical surface
can be found in [14].

2. Mathematical Model

Instability of baroclinic jets that release potential energy by flattering out the density surfaces is called the
baroclinic instability (see e.g. [19]). Two “baro-” words occur commonly in meteorology. A “barotropic”
atmosphere is one in which the density depends only on the pressure; these are typically in the tropics.
(Note the word “tropic” in this term.) A typical barotropic region is the southeast U.S. in the summer, or
the tropics, where everyday is about the same: hot and humid. There are no weather fronts in a barotropic
atmosphere. A “baroclinic atmosphere” is one in which the density of the atmosphere depends on both
the temperature and the pressure; these are typically in the midlatitudes. Baroclinic atmospheres have
distinct air masses of different temperatures with boundaries (frontal boundaries) between the two. There
are density gradients at any level of the atmosphere in baroclinic environments.

We consider a basic state in which the density is stably stratified in the vertical with a uniform buoyancy
frequency N, and increases northward at a constant rate ∂ρ/∂y. According to the thermal wind relation,
the constancy of ∂ρ/∂y requires that the vertical shear of the basic eastward flow U (z) also be constant.

Let u = (u(x, y, z, t), v = v(x, y, z, t), w = w(x, y, z, t)) be the velocity vector, p(x, y, z, t) be the pres-
sure and ρ(x, y, z, t) be the density in the Cartesian coordinates (x, y, z). The starting model describing
the large-scale geophysical motions for baroclinic jets that release potential energy in the atmosphere are
given by nonlinear model for internal waves under the Boussinesq approximation ([20], [21], [22], [23]):

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− fv = −

1

ρ0

∂p

∂x
,

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ fu = −

1

ρ0

∂p

∂y
,

∂p

∂z
+ ρg = 0,

∂ρ

∂t
+ u

∂ρ

∂x
+ v

∂ρ

∂y
+ w

∂ρ

∂z
= 0,

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0,

where g is the acceleration due to gravity so that p and ρ are to be interpreted as the pressure and density
departures from their mean state

ρ̄(y, z) = −
ρ0
g
N2z, p̄(y, z) = p0 − ρ0gz − g

∫ z

0

ρ̄(ξ)dξ,

in which ρ0 is the constant reference density, ρ̄(z) is a background stable density profile with the associated
buoyancy frequency N defined by

N2 = −
g

ρ0

dρ̄

dz

and we require ρ0 + ρ̄ and p̄ to be consistent with the state of rest, i.e.,

dp̄

dz
= −(ρ0 + ρ̄)g.
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The quantity N measures the degree of density stratification of a fluid with average potential density
ρ (z) and thus represents the frequency with which a vertically displaced fluid element would be expected
to oscillate because of restoring buoyancy forces. If the displacement is not strictly vertical, as in the case
of internal waves, the restoring force is less, so the frequency of oscillations is reduced. The traditional

f−plane approximation is made whereby we take 2
−→
Ω = (0, 0, f) , where f is the inertial frequency which

depends on the rotation rate of the earth (angular velocity Ω = 2π rad/day ≈ 0.73× 10−4 s−1).
We assume that the total flow is composed of the basic eastward jet U(z) in geostrophic equilibrium

with the basic density structure ρ̄(y, z), plus perturbations. That is

u = U(z) + u′(x, y, z, t), v = v′(x, y, z, t), w = w′(x, y, z, t),

ρ = ρ̄(y, z) + ρ′(x, y, z, t), p = p̄(y, z) + p′(x, y, z, t).

The basic flow is in geostrophic and hydrostatic balance:

fU = −
1

ρ0

∂p̄

∂y
, 0 = −

∂p̄

∂z
− ρ̄g.

Eliminating the pressure, we get the thermal wind relation

dU

dz
=

g

fρ0

∂ρ̄

∂y

which says that the eastward flow must increase with height since ∂ρ̄/∂y > 0.
In this paper, we find the symmetries and the associated conservation laws for the simplified model

obtained by assuming that ∂ρ/∂y is constant, so that the background flow is U = U0z with U0 = const.
As a result, we have the model described by the following system:

∂u

∂t
+ U0z

∂u

∂x
− fv +

1

ρ0

∂p

∂x
= −

(

u
∂u

∂x
+ v

∂u

∂y

)

,

∂v

∂t
+ U0z

∂v

∂x
+ fu+

1

ρ0

∂p

∂y
= −

(

u
∂v

∂x
+ v

∂v

∂y

)

,

∂p

∂z
+ ρg = 0, (2.1)

∂ρ

∂t
+ U0z

∂ρ

∂x
+

fρ0
g

U0 v −
ρ0
g
N2w = −

(

u
∂ρ

∂x
+ v

∂ρ

∂y
+ w

∂ρ

∂z

)

,

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0.

Here U0, f, ρ0 and N are constants. The system (2.1) has four independent variables t, x, y, z, and five
dependent variables u, v, w, p, ρ.

3. Nonlinear self-adjointness

Recall the definition of the nonlinear self-adjointness [13]. Let

Fα(x, u, u(1)) = 0, α = 1, . . . ,m, (3.1)

be a system of first-order partial differential equations with n independent variables x = (x1, . . . , xn)
and m dependent variables u = (u1, . . . , um). Here u(1) = {uα

i } denotes the set of the first-order partial
derivatives:

uα
i =

∂uα

∂xi
, α = 1, . . . ,m; i = 1, . . . , n.
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The adjoint system to the system (3.1) has the form

F ∗

α(x, u, v, u(1), r(1)) = 0, α = 1, . . . ,m, (3.2)

where the adjoint operator F ∗

α is defined by

F ∗

α(x, u, r, u(1), r(1)) =

n
∑

i=1

Di

(

∂L

∂uα
i

)

−
∂L

∂uα
· (3.3)

Here r = (r1, . . . , rm) is the set of new dependent variables, L is the formal Lagrangian given by

L =

m
∑

α=1

rαFα(x, u, u(1)),

and Di denotes the total differentiation:

Di =
∂

∂xi
+ uα

i

∂

∂uα
+ uα

ij

∂

∂uα
j

+ rαi
∂

∂rα
, i = 1, . . . , n.

The system (3.1) is said to be nonlinearly self-adjoint if there exist a substitution

rα = ϕα(x, u), α = 1, . . . ,m, (3.4)

where not all ϕα vanish identically, such that the adjoint system (3.2) is satisfied for all solutions of the
system (3.1) after eliminating the variables rα by the substitution ( 3.4). This definition is equivalent to
the requirement that the equations

F ∗

α

(

x, u, ϕ, u(1), ϕ(1)

)

= λβ
α(x, u)Fβ

(

x, u, u(1)

)

(3.5)

hold identically in x, u, u(1) for all α = 1, . . . ,m. Here λβ
α(x, u) are undeterminate coefficients, ϕ is the

m-dimensional vector ϕ =
(

ϕ1(x, u), . . . , ϕm(x, u)
)

and ϕ(1) = {Di(ϕ)}
n
i=1. The summation is assumed

in β = 1, . . . ,m.
We write the system (2.1) in the form (3.1),

Fα(x, u, u(1)) = 0, α = 1, . . . , 5, (3.6)

with x = (t, x, y, z), u = (u, v, w, p, ρ) and

F1 = ut + U0zux − fv +
1

ρ0
px + (uux + vuy),

F2 = vt + U0zvx + fu+
1

ρ0
py + (uvx + vvy),

F3 = pz + gρ, (3.7)

F4 = ρt + U0zρx +
ρ0
g

(U0fv −N2w) + (uρx + vρy + wρz),

F5 = ux + vy + wz,

where the differentiations are denoted by the corresponding subscripts. Then we use the notation

u = u1, v = u2, w = u3, p = u4, ρ = u5,

t = x1, x = x2, y = x3, z = x4 (3.8)
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and obtain the following adjoint operators Eq. (3.3):

F ∗

1 = r1t + (u+ U0z)r
1
x + vr1y + r5x − (f + vx)r

2 − ρxr
4 + vyr

1,

F ∗

2 = r2t + (u+ u0z)r
2
x + vr2y + r5y + (f − uy)r

1 −

(

ρy +
ρ0
g

fU0

)

r4 + uxr
2,

F ∗

3 =

(

ρ0
g

N2 − ρz

)

r4 + r5z , (3.9)

F ∗

4 =
1

ρ0

(

r1x + r2y
)

+ r3z ,

F ∗

5 = r4t + (u+ u0z)r
4
x + vr4y + wr4z + (ux + vy + wz)r

4 − gr3.

Solving the equations (3.5) with Fα and F ∗

α given by the equations (3.7) and (3.9), respectively, we
obtain the following substitution (3.4):

r1 = 0, r2 = 0,

r3 = H ′

1, r4 = gH ′

2 + gH1, (3.10)

r5 = H2 + (gρ−N2ρ0z + fU0ρ0y)H1 +H3.

Here H1, H2, H4 are arbitrary functions of one variable each,

H1 = H1(t), H2 = H2

(

gρ−N2ρ0z + fU0ρ0y
)

, H3 = H3(t). (3.11)

The prime denotes the differentiation.

Thus, the system (3.6) is nonlinearly self-adjoint. The nonlinear self-adjointness condition (3.5) is
satisfied in the following form:

F ∗

1 = F ∗

2 = F ∗

3 = F ∗

4 = 0,

F ∗

2 |ri=ϕi = 0,

F ∗

5 = H2F4 + g(H ′

2 −H1)F5.

Now one can use the simple method for constructing conservation laws associated with symmetries of
all nonlinearly self-adjoint equations [13]. According to this method, any infinitesimal symmetry

X = ξi(x, u)
∂

∂xi
+ ηα(x, u)

∂

∂uα

of the system (2.1) provides a conserved vector given by the formula

Ci = (ηα − ξjuα
j )

∂L

∂uα
i

, (3.12)

where L is the formal Lagrangian L =
∑5

α=1 r
αFα(x, u, u(1)) of Eqs. (3.6). The auxiliary dependent

variables rα must be eliminated from the expressions (3.12) by means of the substitution (3.10).

4. Symmetries

The calculation shows that the symmetries of the system (2.1) is an infinite-dimensional Lie algebra with
the basis
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X1 = gz
∂

∂p
−

∂

∂ρ
, X2 =

∂

∂z
− U0

∂

∂u
+ fρ0U0y

∂

∂p
,

X3 = y
∂

∂x
− x

∂

∂y
+ v

∂

∂u
− (U0z + u)

∂

∂v
− fρ0U0xz

∂

∂p
+

ρ0
g

fU0x
∂

∂ρ
,

X4 = z
∂

∂z
− U0z

∂

∂u
+ w

∂

∂w
+ ρ0z(U0fy −N2z)

∂

∂p

+

[

ρ0
g
(2N2z − fU0y)− ρ

]

∂

∂ρ
, (4.1)

X5 = x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z
+ u

∂

∂u
+ v

∂

∂v
+ w

∂

∂w
+ 2p

∂

∂p
+ ρ

∂

∂ρ
,

X6 = 4t
∂

∂t
+ 2(2x+ fty)

∂

∂x
+ (4y − 2ftx)

∂

∂y
+ 2f(tv + y)

∂

∂u

− 2f(U0tz + x+ tu)
∂

∂v
− 4w

∂

∂w

− fρ0[fx
2 + fy2 + 2U0z(ftx− 2y)]

∂

∂p
+ 2

ρ0
g

fU0(ftx− 2y)
∂

∂ρ
,

X7 =
∂

∂t
, X8 = h1

∂

∂x
+ h′

1

∂

∂u
− ρ0(fyh

′

1 + xh′′

1)
∂

∂p
,

X9 = h2
∂

∂y
+ h′

2

∂

∂v
+ ρ0(U0fzh2 + fxh′

2 − yh′′

2)
∂

∂p
−

ρ0
g

U0fh2
∂

∂ρ
,

X10 = h3
∂

∂p
,

where h1 = h1(t), h2 = h2(t), h3 = h3(t) are arbitrary functions.

5. Conservation laws

The conservation laws for Eqs. (3.6) will be written in the form

Dt(C
t) +Dx(C

x) +Dy(C
y) +Dz(C

z) =

5
∑

α=1

µαFα, (5.1)

where µα are undetermined variable coefficients.
The components Ct, . . . , Cz of the conservation law (5.1) can be readily obtained by applying the

conservation formulae (3.12) to the symmetries (4.1). The calculation shows that it is sufficient to use the
symmetries X1, X5 and X7. Combining the conserved vectors provided by X1, X5, X7 and eliminating the
trivial terms by the simplification procedure described in [13], we obtain the following conserved vector:

Ct = gρH1 +H2, (5.2)

Cx = g(U0z + u)ρH1 + ρ0(fU0y −N2z)uH1 + U0zH2 + u(H2 +H3),

Cy = (gρ−N2ρ0z + fU0ρ0y)vH1 + v(H2 +H3),

Cz = pH ′

1 + (gρ−N2ρ0z + fU0ρ0y)wH1 + w(H2 +H3),

where the functions H1, H2, H3 are given by Eqs. (3.11),

H1 = H1(t), H2 = H2

(

gρ−N2ρ0z + fU0ρ0y
)

, H3 = H3(t). (3.11)

The remaining symmetries from (4.1) do not lead to new conserved vectors. Moreover, one can verify
by the direct method, i.e. calculating conserved vectors from the definition (5.1) of the conservation
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law, that (5.2) is the most general form of the conserved vector whose components do not depend on
derivatives of the dependent variables.

The vector (5.2) satisfies the conservation equation (5.1) with the coefficients µα given by Eqs. (3.10),

µ1 = 0, µ2 = 0,

µ3 = H ′

1, µ4 = gH ′

2 + gH1, (5.3)

µ5 = H2 + (gρ−N2ρ0z + fU0ρ0y)H1 +H3.
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