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1. Introduction and statement of main results

In this paper we study the notion of dimension for a large finite subset A of Rd, d ≥ 2, of cardinality N ,
discrete and 1-separated in the sense that |a− a′| ≥ 1 for all a 6= a′ ∈ A. The notion of dimension is well
developed in the “continuous” setting.

Definition 1.1. Given E ⊂ [0, 1]
d

and δ > 0, let Nδ denote the smallest possible number of balls of
radius δ needed to cover E. If

− lim sup
δ→0

log(Nδ)

log(δ)
= − lim inf

δ→0

log(Nδ)

log(δ)
,

we call the resulting number the Minkowski dimension of E, denoted by dimM(E).

Definition 1.2. Let E ⊂ [0, 1]
d
. Define the Hausdorff dimension of E, denoted by dimH(E) to be

inf {s ≥ 0 : Hs∞(E) = 0} ,

where

Hs∞(E) = inf

{∑
i

rsi : E ⊂
⋃
i

B(xi, ri)

}
,

i.e. the infimum is taken over all the possible coverings of E by balls B(xi, ri) of centers xi and radius ri.
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A. Iosevich, M. Rudnev, I. Uriarte-Tuero Theory of dimension for large discrete sets and applications

One can check that the Hausdorff dimension always exists, while the Minkowski dimension may not,
and that dimM(E) ≥ dimH(E). Indeed, if E is any countable set, one can easily check that dimH(E) = 0,
whereas dimM(E) may well be positive. For example, if for a > 1 one defines

E =
{
n−

1
a : n = 1, 2 . . .

}
,

then one can check by a direct calculation that dimM(E) = a
1+a . For a detailed description of the

beautiful mathematics related to the Minkowski and Hausdorff dimension, see, for example, treatises by
Mattila [10] and Falconer [4].

We will later (see section 2) define a notion of Minkowski and Hausdorff dimension for discrete sets
of large cardinality N . More precisely, we will state results about families of sets AN ⊂ Rd, so that the
cardinality #AN = N , where N →∞, and the corresponding Minkowski and Hausdorff dimensions will
be denoted as dimM(AN ) and dimH(AN ) (there should be no confusion since the context should make it
clear when we refer to the continuous or the discrete version of these dimensions.) We will also develop
in section 2 some basic facts about such a theory of dimension for large discrete sets.

A main application of such machinery is to the study of connections between the Erdős and Falconer
distance problems in geometric combinatorics and geometric measure theory, respectively. Let us remind
the reader what these conjectures say.

Conjecture 1.3. [Erdős distance conjecture] Let A ⊂ Rd, d ≥ 2, and #A = N , then

#∆(A) ' (#A)
γ
,

where

∆(A) = {|a− a′| : a, a′ ∈ A},

with

|x|2 = x21 + x22 + · · ·+ x2d,

and where X / Y with the controlling parameter N if for every ε > 0 there exists Cε > 0 such that
X ≤ CεN εY . Erdös’ conjecture is that γ can be taken to be 2

d .

Taking A = [0, N
1
d ]
d
∩ Zd shows that one cannot in general do better. In the continuous setting, the

analogous conjecture is

Conjecture 1.4. [Falconer distance conjecture] Let E ⊂ [0, 1]
d

be such that its Hausdorff dimension
satisfies dimH(E) > s0. Then the Lebesgue measure of ∆(E) is positive (i.e. L1(∆(E)) > 0.) More
precisely, Falconer’s conjecture is that s0 = d

2 .

Once again taking E to be a set built on an appropriately scaled version of the integer lattice shows
that it is possible for ∆(E) to have Lebesgue measure 0 if the Hausdorff dimension of E is any number
less than d

2 .
See e.g. [11] for a thorough description of Erdös’ conjecture and related problems. Both conjectures

have attracted substantial and deep work. The Erdös distance conjecture in the plane has recently been
proved by Guth and Katz ([16]) using a brilliant argument based on the polynomial method. In higher
dimensions, the problem is still wide open. The best result to date for Erdös’ conjecture in d ≥ 3 is due
to Solymosi and Vu [14] (γ close to 2

d −
1
d2 .) An earlier result by Solymosi and Tóth [13], obtained γ = 6

7
in R2.

With respect to Falconer’s conjecture, after results by Falconer [3], Mattila [9], and Bourgain [1]; Wolff
[15] obtained the best result to date in R2, namely s0 = 4

3 , and Erdog̃an [2], in d ≥ 3, proved s0 = d
2 + 1

3 .
Work of Katz and Tao, e.g. [6], suggests a strong connection between Falconer’s Conjecture and the

Kakeya conjecture (that if E ⊂ Rd contains a unit line segment in every direction, then dim(E) = d.)
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A full rigorous connection between Erdős’ and Falconer’s conjectures has so far not been established,
to our knowledge. The connection between the putative sharpness examples in the Erdős and Falconer
distance problems led the first named author and I.  Laba [5] to prove the Erdős distance problem conjec-
ture in the special case of Delone sets (which appear naturally in crystallography and in the context of
spectral sets in Fourier analysis), assuming the Falconer distance conjecture holds (see section 3.) Delone
sets are roughly speaking statistical perturbations of the integer lattice Zd ⊂ Rd (see section 3 for the
precise definition.)

One of the main threads of this paper is to further the understanding of such a “Falconer-to-Erdős
dictionary”, i.e. assuming results of Falconer type, deduce results of Erdős type. In this direction, we
get Theorems 1.5 and 1.6. See section 2 for the precise definitions, but let us briefly note here that,
somewhat roughly, Hausdorff α-adaptability is the equivalent of Hausdorff dimension α for the family of
sets AN , and discrete Hausdorff dimension dimH(AN ) ≥ α is the equivalent of Hausdorff dimension ≥ α
for both AN and all its “sufficiently large” subsets BN . The applications are stronger if one considers
also the Hausdorff α-adaptability of the “large” subsets, which is why we added them to the definition
of discrete Hausdorff dimension.

Theorem 1.5. Suppose that the Falconer distance conjecture holds to the extent that if the Hausdorff
dimension of E ⊂ [0, 1]

d
is greater than s0 (s0 ≥ d

2 ), then the Lebesgue measure of ∆(E) is positive. Let
AN be a family of sets with #(AN ) = N which is Hausdorff α0-adaptable, for some α0 > s0. Assume
also that for any s0 < α < α0, the family CN,α = ([diam(AN )]

−1
AN )

N−
1
α

is a nested family of sets, i.e.
CN+1,α ⊆ CN,α. Then

#∆(AN ) ' N
1
s0 .

We also get another version of Theorem 1.5 under some conditions that are more restrictive than the
condition that dimH(AN ) ≥ α0 (because of a nesting requirement for the “large subsets” of AN .) And
our main Theorem is

Theorem 1.6. Suppose that the Falconer distance conjecture holds to the extent that if a Borel probability
measure µ supported on E ⊂ [0, 1]

d
satisfies that Iα(µ) ≤ C0 < ∞, for some α > s0 ≥ d

2 (see Theorem
2.6 below), then L1(∆(E)) ≥ C = C(α,C0) > 0.

Let AN ⊂ Rd be a family of sets with #(AN ) = N with dimH(AN ) = α0 > s0. Then

#∆(AN ) ' N
1
s0 .

In particular, if the Falconer conjecture is true (with the above quantitative control L1(∆(E)) ≥ C =
C(α,C0) > 0), then the Erdős conjecture is true for any family of sets AN ⊂ Rd with (discrete) Hausdorff
dimension dimH(AN ) > d

2 .

It should be noted however, that all known recent proofs of results pertaining to the Falconer conjecture
actually yield such a quantitative control of the length L1(∆(E)).

Both results essentially state that if the Falconer conjecture holds for dimensions α > s0, then the Erdős
distance conjecture holds for exponent γ = 1

s0
. However the first result (Theorem 1.5 ) assumes the Fal-

coner conjecture as stated, but then has to assume the nesting of the sets CN,α = ([diam(AN )]
−1
AN )

N−
1
α

(which are a fattening by N−
1
α of the sets [diam(AN )]

−1
AN , where given a real number t > 0,

tA = {ta : a ∈ A}.) In turn, the second result (Theorem 1.6) does not assume nesting, but has to
assume a slightly stronger version of the Falconer conjecture, namely that not only the distance set ∆(E)
has positive length, but that there is a quantitative control of the length L1(∆(E)) ≥ C = C(α,C0) > 0.

To better understand the scope of such results, notice first that our Theorem includes the aforemen-
tioned result by the first named author and I.  Laba [5] (quoted below as Theorem 3.2), since we get
that

Theorem 1.7. Delone sets have discrete Hausdorff dimension d in Rd.
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Actually, the class of sets with discrete Hausdorff dimension ≥ α is a pretty large class of sets, since,
given any set E ⊂ Rd, of (continuous, i.e. the usual) Hausdorff dimension α0, then for any α < α0,
we can build a sequence of sets AN which is Hausdorff α-adaptable, and hence has discrete Hausdorff
dimension ≥ α (and which, in a sense to be made precise later, “converges” to (a subset of) E.) This is
the content of

Theorem 1.8. Let E ⊂ [0, 1]d be a compact set so that there exists a Borel probability measure µ sup-
ported on E with Iα(µ) <∞ (see Theorem 2.6), for 0 < α < d. Then there exists a family of Hausdorff α-
adaptable sets ANj ⊂ [0, 1]d, and hence with discrete Hausdorff dimension ≥ α, with #(ANj ) = Nj →∞,
so that, with the notation of (3.2), µANj ⇀ µ0 (weak-∗ convergence) with µ0 a Borel probability measure

supported on K0 satisfying Iα(µ0) <∞, and ANj → K̃0 in the Hausdorff metric, with K0 ⊆ K̃0 ⊆ E.

Regrettably, there is also a class of discrete sets to which the machinery developed does not apply in
order to yield results of Erdős type. More precisely, the machinery does not apply to families of discrete
sets AN with discrete Hausdorff dimension α < d

2 in Rd, since Falconer’s conjecture says nothing about
such dimensions. However, it should be noted that the techniques from geometric combinatorics allow
us to pass from the family of sets AN to a family of subsets BN ⊆ AN , provided that the sets BN are
“sufficiently large” (see section 2 for the precise definitions.) This is why in the definition of discrete
Hausdorff dimension we allow also for families of subsets to be taken into account. This allowance for
families of subsets sometimes gives rise to surprises. Namely, some families of sets AN that are not
Hausdorff α-adaptable for any α > d

2 in Rd (i.e. they would not have discrete Hausdorff dimension > d
2

if the families of subsets were not allowed towards computing the discrete Hausdorff dimension), actually
“hide” inside them small copies of “full dimension” sets, and then the machinery applies to yield for those
sets AN the same kind of Erdős type results one would get if the whole sets AN were “full dimension”
sets (i.e. dimension d in Rd.) Consequently, the class of discrete sets to which the machinery developed
does not apply is smaller than what one might think at first sight. That is the content of the example
stated below as Theorem 4.2.

However, we also found families of sets AN with small Hausdorff dimension (i.e. neither them nor
“hidden” families of sufficiently large subsets BN are Hausdorff α-adaptable for α large). That is the
content of Theorems 4.4 and 4.5 below.

In our opinion, one of the merits of this paper is not so much the techniques we used, which are known
in the areas of geometric combinatorics, potential theory and geometric measure theory, but how these
techniques and these areas are related in ways not known before to yield the results and ideas we present.

The paper is structured as follows. In section 2 we give the precise basic definitions of the theory of
dimension for discrete sets and prove some of the basic Theorems for the understanding of this theory. In
section 3 we give the applications of this machinery to problems of Erdős and Falconer type. In section
4 we give examples related to the theory.

2. Basic Definitions and Theorems

In view of the classical definitions of Minkowski and Hausdorff dimension, how should we define a notion
of dimension for discrete sets? A first reasonable step is to control the largest scale by replacing a discrete,
one-separated set A of cardinality N by [diam(A)]

−1
A, where diam(A) is the diameter of A and given a

real number t > 0,
tA = {ta : a ∈ A}.

In order to make a connection with the continuous setting, let us now replace [diam(A)]
−1
A by

([diam(A)]
−1
A)δ, where given a set S, Sδ = {x ∈ Rd : d(x, S) ≤ δ} denotes the δ-neighborhood of S. If

we do not want these δ-balls to interact, we may impose a condition that

δ ≤ 1

2

1

diam(A)
.
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A discrete variant of the Minkowski dimension now becomes fairly apparent. If, after this procedure
just described is performed, δ ≈ 1

diam(A) happens to be δ ≈ N− 1
α , α > 0, A should be a set of Minkowski

dimension α (since it is covered by N disjoint balls of radius δ and Nδα ≈ 1 .) At this point the reader
may rightfully point out that

([diam(A)]
−1
A)

N−
1
α

has positive Lebesgue measure. However, its measure goes to 0 as N tends to infinity. The set is, however,
uniformly α dimensional in the following sense.

Definition 2.1. Let EN ⊂ [0, 1]
d

be a family of sets dependent on a parameter N . Suppose that there
exists finite positive constants C, c, independent of N , such that

c ≤ lim inf
δ→0

|(EN )δ|
δd−α

≤ lim sup
δ→0

|(EN )δ|
δd−α

≤ C,

where given a set S, |S| denotes its Lebesgue measure. Then we say that the family EN is uniformly
Minkowski α-dimensional.

For the analogy with the continuous case, see e.g. [10] p.79.

Theorem 2.2. Let the parameter N run over a subsequence of the natural numbers. Let AN ⊂ Rd be a
family of 1-separated finite sets so that the cardinality of AN = #{AN} = N . Assume that

([diam(AN )]
−1
AN ) 1

4diam(AN )
⊂ [0, 1]

d
.

Suppose that

diam(AN ) . N
1
α , i.e. that diam(AN ) ≤ CN 1

α , (2.1)

with C independent of N .

Then ([diam(AN )]
−1
AN ) 1

4CN
− 1
α

is uniformly Minkowski α-dimensional.

Proof. For δ = 1
4CN

− 1
α , we have that

|([diam(AN )]
−1
AN )δ|

δd−α
≈ N (N−

1
α )d

N−
d
α+1

= 1 (2.2)

�

This will lead us to a definition of discrete Minkowski dimension. Before that, let us give the following

Definition 2.3. Let AN ⊂ Rd be a family of 1-separated sets, so that the cardinality of AN = #{AN} =
N . Assume that

([diam(AN )]
−1
AN ) 1

4diam(AN )
⊂ [0, 1]

d
.

We say that AN is adaptable to the discrete Minkowski dimension α > 0 (or Minkowski α-adaptable) if
(2.1) holds.

The essence of the definition, in view of Theorem 2.2 is that as long as the diameters of our discrete
sets are not too large, we can turn them into a set of Minkowski dimension α > 0 in a canonical way.
Since for the discrete Hausdorff dimension (to be defined later) we will allow families of subsets, in order
that certain properties remain consistent with the continuous Minkowski and Hausdorff dimensions, we
will also allow for subsets here.
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Definition 2.4. We define the discrete Minkowski dimension of a family of 1-separated sets AN ⊂ Rd
with #{AN} = N to be

dimM(AN ) = sup{β > 0 : for every ε > 0, there exists a family of sets BN ⊆ AN

and a constant Cε > 0, so that #(BN ) ≥ Cε
Nε

#(AN ),

and so that BN is Minkowski β-adaptable. }

The constant Cε depends on ε and on the sequence {BN}, but not on N . If there are no such β > 0, the
Minkowski dimension of AN is zero.

The situation turns out to be far more fascinating with the Hausdorff dimension. We start out by
reminding the reader of a connection between the Hausdorff dimension and upper bounds on energy
integrals.

Definition 2.5. Given a Borel probability measure µ supported on E ⊂ [0, 1]
d
, the α-energy of µ is

given by

Iα(µ) =

∫ ∫
|x− y|−αdµ(x)dµ(y).

A classical result in geometric measure theory connecting energies and dimension is the following (see
e.g. [10] pp.109-114.)

Theorem 2.6. Let α be the Hausdorff dimension of E ⊂ [0, 1]
d

and let µ be a Borel probability measure
supported on E. Then

α = sup {s > 0 : ∃µ with Is(µ) <∞} .

This leads us to explore the energy integral associated with the Lebesgue measure on ([diam(A)]
−1
A)δ.

Theorem 2.7. Let A ⊂ Rd be a 1-separated set of cardinality N . Let δ < 1
4diam(A) , and let

dµ(x) = N−1δ−d
∑
a∈A

χB

(
δ−1

(
x− a

diam(A)

))
dx, (2.3)

where χB denotes the characteristic function of the ball of radius one centered at the origin.
Then

Iα(µ) = I + II,

where
I ≈ N−1δ−α,

and
II ≈ (diam(A))

α ·N−2
∑
a 6=a′
|a− a′|−α.

Notice that the sum in II is actually a double sum, in a and a′.

Proof. By B(x, r) we denote, as usual, the Euclidean ball of center x and radius r. Then we split the
energy integral in the diagonal and off-diagonal terms as follows

Iα(µ) =
1

N2 δ2d

∑
a,a′∈A

∫ ∫
1

|x− y|α
χB( a

diam(A)
,δ)(x) χB( a′

diam(A)
,δ)(y) dx dy =

=
∑
a∈A

+
∑
a6=a′

= I + II
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And direct calculations and estimates show that

I ≈ 1

N2 δ2d
δd

(∫ δ

0

rd−1

rα
dr

)
N ≈ 1

N δα

and that

II ≈ 1

N2 δ2d

∑
a 6=a′

(diam(A))α

|a− a′|α
δd δd ≈ (diam(A))

α ·N−2
∑
a6=a′
|a− a′|−α

�

This leads us to a definition of Hausdorff α-adaptability.

Definition 2.8. Let AN ⊂ Rd be a family of 1-separated sets in Rd, so that the cardinality of AN =
#{AN} = N . Assume that

([diam(AN )]
−1
AN ) 1

4diam(AN )
⊂ [0, 1]

d
.

We say that AN is Hausdorff α-adaptable if (2.1) holds, that is δ & N−
1
α (with constant independent of

N), and

Iβ(AN ) = N−2
∑
a 6=a′
|a− a′|−β . (diam(AN ))

−β
, (2.4)

(also with constant independent of N , but that could depend on β), for all β < α.

Notice that the inequality ≥ always holds in (2.4). What (2.4) says is that the average of the summands
is actually comparable to the smallest summand.

The requirement that (2.4) holds for all β < α is consistent with the continuous case where, although
there is only one Hausdorff dimension for a set, call it α0, for any 0 < α < α0, there exists a measure µ
so that the energy integral Iα(µ) <∞ (this is a consequence of Frostman’s lemma, see Theorem 2.6.)

Although it is not part of Definition 2.8, later in the paper we will occasionally also work with the
condition

Iα(AN ) = N−2
∑
a6=a′
|a− a′|−α / (diam(AN ))

−α
, (2.5)

where X / Y with the controlling parameter N if for every ε > 0 there exists Cε > 0 such that
X ≤ CεN εY .

Notice that condition δ & N−
1
α is indeed condition (2.1). Indeed, if given a set A of cardinality N

we first rescale it by 1
diam(A) , and then impose the condition that δ ≤ 1

4diam(A) , as summarized in the

expression for µ in equation (2.3), then δ ≈ 1
diam(A) , and (2.1) is equivalent to the condition δ & N−

1
α ,

which is equivalent to saying that the diagonal term I in Theorem 2.7 is bounded.

As with Minkowski dimension, when we allow for α-adaptability of large subsets, we get the definition
of Hausdorff dimension.

Definition 2.9. We define the discrete Hausdorff dimension of a family of 1-separated sets AN ⊂ Rd
with #{AN} = N to be

dimH(AN ) = sup{β > 0 : for every ε > 0, there exists a family of sets BN ⊆ AN

and a constant Cε > 0, so that #(BN ) ≥ Cε
Nε

#(AN ),

and so that BN is Hausdorff β-adaptable. }
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The constant Cε depends on ε and on the sequence {BN}, but not on N (and hence, the constant in
(2.4) ends up depending on ε and on β but not on N when we compute the discrete Hausdorff dimension,
since we have to check (2.4) for all the possible BN .) If there are no such β > 0, the Hausdorff dimension
of AN is zero.

Notice also that if the condition δ & N−
1
α is satisfied for a certain α0 > 0, then it is satisfied for all

0 < α < α0 (see Theorem 2.10 below.) As a consequence, among the possible values of α for which the
diagonal term I in Theorem 2.7 is bounded, when looking for the α for which AN is Hausdorff α-adaptable
(if it exists), we look for the α that makes the off-diagonal term II in Theorem 2.7 bounded. Considering
these observations for all possible families of “large subsets” BN , we get that also in the discrete setting,
dimH(AN ) ≤ dimM(AN ). (It is in order to get this property that, given that we wanted to allow for
“large subsets” BN in the definition of discrete Hausdorff dimension, we also allowed for them in the
definition of discrete Minkowski dimension.)

Theorem 2.10. Let AN ⊂ Rd be a family of 1-separated sets in Rd, so that #AN = N . If AN is adapt-
able to the discrete Minkowski dimension α0, then AN is adaptable to the discrete Minkowski dimension
α, for any 0 ≤ α < α0. If AN is Hausdorff α0-adaptable, then AN is Hausdorff α-adaptable, for any
0 ≤ α < α0.

Proof. Condition (2.1) is equivalent, as we have seen, to δ & N−
1
α , for δ the minimum separation between

two points in AN , after AN has been rescaled to have diameter ≈ 1. Notice now that α → N−
1
α is an

increasing function of α.

Notice also that II ≈ (diam(A))
α ·N−2

∑
a 6=a′
|a− a′|−α =

1

N2

∑
a 6=a′

(
max |a− a′|
|a− a′|

)α
, (in Theorem 2.7),

and that for b > 1, the function x→ bx is increasing and positive, hence so is the last term in the previous
equation.

�

Our next Theorem is also related to the statement in the continuous case that for a set E ⊂ Rd,
dimH(E) ≤ dimM(E). In the sense that, although we already know that in the discrete setting, the
Minkowski dimension is larger than the Hausdorff dimension, it might look as if this is so only because
of the “artificial” constraint of imposing condition (2.1) as part of Definition 2.8. Theorem 2.11 below
shows that it is not such an “artificial” requirement.

Theorem 2.11. Let AN ⊂ Rd be a family of 1-separated sets in Rd, so that #AN = N . If equation
(2.4) is satisfied for a given α > 0, (i.e. the control of the off-diagonal term in the energy integral), then
equation (2.1) is satisfied in the same sense for the same α > 0, at least by a subset of AN of size N

2
(i.e. the control of the diagonal term in the energy integral, or equivalently, the Minkowski dimension
estimate.) An analogous statement holds with condition (2.5) instead of condition (2.4).

More precisely,

(a) If

Iα(AN ) =
1

N2

∑
a 6=a′
|a− a′|−α . 1,

then, after rescaling to the unit cube in Rd, and perhaps removing a subset of size at most N
2 , the

minimum separation between points δ satisfies δ & N−
1
α .

(b) If

Iα(AN ) =
1

N2

∑
a 6=a′
|a− a′|−α / 1,

then, after rescaling to the unit cube in Rd, and perhaps removing a subset of size at most N
2 , the

minimum separation between points δ satisfies δ ' N−
1
α .
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Proof. First rescale AN to have diameter 1. Then, in order to prove case (a), we (essentially) want to
prove that if

Iα(AN ) =
1

N2

∑
a6=a′
|a− a′|−α . 1, (2.6)

then the minimum separation between points δ satisfies δ & N−
1
α .

Notice first that if (2.6) is satisfied by AN , then it is also satisfied (with slightly different constants)
by any subset B ⊂ AN with #(B) ≥ N

2 (but the constants are the same for all such B.) So, let us

fix a small ε > 0, and assume it is not true that δ ≥ εN−
1
α for AN . Then there exist a, a′ ∈ AN

such that |a − a′| ≤ εN−
1
α . Remove a′ from AN , let the resulting set be B1, and let us say that a′

no longer relates to a. If B1 satisfies δ & (N − 1)−
1
α , stop since we are done. Otherwise, by the same

reasoning, remove another point from B1 thus yielding the set B2. Continue in this manner for N
2

steps. If we have stopped at or before N
2 steps, we are done. If that is not the case, then, if we denote

E = {(a, a′) : a′ no longer relates to a}, so that #(E) = N
2 , then going back to the original set AN ,

1

N2

∑
a6=a′
|a− a′|−α ≥ 1

N2

∑
(a,a′)∈E

|a− a′|−α ≥ 1

N2

N

2

N

εα
=

1

2εα
.

Now letting ε→ 0, gives the desired contradiction.

The proof for case (b) is completely analogous.

�

3. Applications of α-adaptability to the Erdős-Falconer distance problem

As we mentioned in the Introduction, the Erdős distance conjecture in geometric combinatorics says that
if A ⊂ Rd, d ≥ 2, then

#∆(A) ' (#A)
2
d ,

where

∆(A) = {|a− a′| : a, a′ ∈ A},

with

|x|2 = x21 + x22 + · · ·+ x2d.

Taking A = [0, N
1
d ]
d
∩ Zd shows that one cannot in general do better. In the continuous setting, the

Falconer distance conjecture says that if the Hausdorff dimension of E ⊂ [0, 1]
d

is larger than d
2 , then

the Lebesgue measure of ∆(E) is positive. Once again taking A to be a set built on an appropriately
scaled version of the integer lattice shows that it is possible for ∆(E) to have Lebesgue measure 0 if the
Hausdorff dimension of E is any number less than d

2 . The connection between the putative sharpness
examples in the two problems eventually led the first named author and I.  Laba [5] to prove the following
result connecting the Erdős and Falconer distance conjectures in the special case of Delone sets.

Definition 3.1. We say that A ⊂ Rd is Delone if there exist C, c > 0 such that A is c-separated and
every cube of side-length C contains at least one point of A.

For the purposes of this paper, we may prune and scale A such that for every m ∈ Zd, m + [0, 1]
d

contains exactly one point of A.
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Theorem 3.2. [5] Let A be a Delone set and define Aq = A∩ [0, q]
d
. Suppose that the Falconer distance

conjecture holds to the extent that if the Hausdorff dimension of E ⊂ [0, 1]
d

is greater than s0 (s0 ≥ d
2 ),

then the Lebesgue measure of ∆(E) is positive. Then

#∆(Aq) ' q
d
s0 .

In particular, if s0 = d
2 , as conjectured, then we see that the Falconer conjecture implies the Erdős

conjecture in the context of Delone sets.
Let us now prove that Delone sets are Hausdorff d-adaptable, i.e. Theorem 1.7.

Theorem 3.3. Delone sets have discrete Hausdorff dimension d in Rd.

Proof. Let A be a Delone set in Rd, and rescale it so that it is 1-separated. Consider AN = A ∩ [0, LN ]d

so that #(AN ) = N . Then LN ≈ N
1
d , since every cube of sidelength C contains at least one point of A.

Consequently, diam(AN ) . N
1
d , which is condition (2.1).

Notice that condition (2.4) is scale invariant. Then, since AN is 1-separated, and since each point
a ∈ A contributes the same amount to Iα(AN ), up to comparability constants, and that amount can be
calculated, again up to comparability constants by an integral which is computed by changing to polar
coordinates, we get that for 0 < α < d,

N−2
∑
a6=a′
|a− a′|−α ≈ 1

N2
N

∫ LN

1

rd−1−α dr ≈ 1

N

(
N

1
d

)d−α
= N

−α
d ≈ [diam(AN )]−α

hence A (or AN ) is Hausdorff α-adaptable, for 0 < α ≤ d, and thus, dimH(A) = d.
As a curiosity, notice that for α = d, we already know that condition (2.1) is satisfied, but also condition

(2.5) is satisfied:

N−2
∑
a 6=a′
|a− a′|−d ≈ 1

N2
N

∫ LN

1

r−1 dr ≈ 1

N
[log(N)] /

1

N
≈ (diam(AN ))

−d

�

Notice that, for a 1-separated set AN ⊂ Rd of cardinality N , the minimum diameter of A among
such sets, is precisely comparable to N

1
d (attained when all points are packed roughly in a lattice, i.e.

precisely in the case of a Delone set.) This simple remark proves that the discrete Hausdorff dimension
(and Minkowski dimension) of such a set is always ≤ d, as in the continuous case.

We now prove Theorem 1.5.

Theorem 3.4. Suppose that the Falconer distance conjecture holds to the extent that if the Hausdorff
dimension of E ⊂ [0, 1]

d
is greater than s0 (s0 ≥ d

2 ), then the Lebesgue measure of ∆(E) is positive.

(a) Let AN be a family of sets with #(AN ) = N which is Hausdorff α0-adaptable, for some α0 > s0.
Assume also that for any s0 < α < α0, the family CN,α = ([diam(AN )]

−1
AN )

N−
1
α

is a nested family
of sets, i.e. CN+1,α ⊆ CN,α. Then

#∆(AN ) ' N
1
s0 .

(b) Let AN be a family of sets with #(AN ) = N . Assume also that for any α with s0 < α < α0, and
for every ε̃ > 0 there exists a family of subsets BN ⊆ AN and a constant Cε̃ > 0 (which depends
on ε̃, on α, and on the sequence {BN}, but not on N), so that #(BN ) ≥ Cε̃

N ε̃
#(AN ) , and BN is

Hausdorff α-adaptable, and the family CN,α = ([diam(BN )]
−1
BN )

(#(BN ))−
1
α

is a nested family of

sets, i.e. CN+1,α ⊆ CN,α. Then

#∆(AN ) ' N
1
s0 .
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Proof. Let us first prove part (a). Let us assume, for a contradiction, that # (∆(AN )) is not ' N
1
s0 , i.e.

that there exists an ε > 0 and a subsequence ANj with

#
(
∆(ANj )

)
< N

1
s0
−ε

j . (3.1)

Take now an α > s0 but so close to s0 that 1
s0
− ε < 1

α (which we can do by Theorem 2.10.) Recall
now from (2.3) that, associated to each AN , we have the probability measure

dµAN (x) =
c

N
δ−d

∑
a∈A

χB

(
δ−1

(
x− a

diam(A)

))
dx, (3.2)

where χB denotes the characteristic function of the ball of radius one centered at the origin, and c is an
absolute constant that does not depend on N (it actually only depends on the volume of the unit ball in
Rd.) We pick δ ≈ N− 1

α .
If we call the support of µAN , supp(µAN ) = KN ⊂ [−1, 2]d, by the Blaschke selection theorem (see

e.g. [4] p.37), there is a further subsequence of the KNj , which we will keep calling KNj for simplicity, so

that KNj → K̃0, with convergence in the Hausdorff metric. There is a further subsequence of the family
of sets ANj , which again we keep calling ANj , so that the measures µANj converge weakly (using the

measure-theoretic terminology, in functional analysis the term would be weak-∗ convergent). So we have
that µANj ⇀ µ0.

Then we claim that

K0 := supp(µ0) ⊆ K̃0, (3.3)

although equality need not hold. In order to prove (3.3), let x0 ∈ supp(µ0). Then, for every η > 0,
µ0(B(x0, η)) > 0, where B(x0, η) denotes the open ball of center x0 and radius η. Then (see e.g. [10]
p.19),

lim inf
Nj→∞

µANj (B(x0, η)) ≥ µ0(B(x0, η)) > 0,

so for any Nj sufficiently large, there is a point aNj ,x0
∈ ANj ∩B

(
x0, η +N

− 1
α

j

)
. Taking η → 0 and

Nj →∞, we have that supp(µANj ) ⊃ ANj 3 aNj ,x0 → x0, and hence x0 ∈ K̃0.
On the other hand, since the family AN is Hausdorff α-adaptable, by Theorem 2.7, the energy integrals

Iα(µANj ) ≤ C < ∞ (with C independent of Nj .) A well-known lemma in potential theory then yields
that

Iα(µ0) ≤ C <∞. (3.4)

For the convenience of the reader, we now sketch the main ideas in the proof of the aforementioned
lemma. If µm ⇀ µ0, then µm × µm ⇀ µ0 × µ0 (a consequence of the Stone-Weierstrass theorem). Use

µm × µm ⇀ µ0 × µ0 for each one of the continuous kernels kα,n(x, y) = min
{

1
|x−y|α , n

}
, and apply the

monotone convergence theorem.
As a consequence of (3.4) and Theorem 2.6, recalling K0 := supp(µ0), then we have that dimH(K0) ≥

α > s0 ≥ d
2 . Hence, Falconer’s conjecture implies that

L1(∆(K0)) > 0. (3.5)

Recalling KNj := supp(µANj ), it follows from the fact that KNj → K̃0 in the Hausdorff metric, that

∆(KNj ) → ∆(K̃0) in the Hausdorff metric. To see this, note that if FN → F in the Hausdorff metric,
then for every δ > 0, for a sufficiently large N , we have that (FN )δ ⊇ F and that (F )δ ⊇ FN , so the
same relations hold when taking ∆. Now note that ∆(Aδ) = (∆(A))2δ .
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Recall now that α > s0 was taken so close to s0 that 1
s0
− ε < 1

α . Due to the nesting of (ANj )δj , where

δj = N
− 1

α
j , we have that

(
∆(ANj )

)
2δj
⊇ ∆(K̃0), and then

L1
{(
∆(ANj )

)
2δj

}
≥ L1

{
∆(K̃0)

}
≥ L1 {∆(K0)} (3.6)

but L1
{(
∆(ANj )

)
2δj

}
. N

1
s0
−ε

j ·N−
1
α

j → 0, which proves that L1 {∆(K0)} = 0, a contradiction with

(3.5).
With respect to part (b), let us remark that because of the nesting property of the family BN , the

statement is assuming something actually stronger than saying that dimH(AN ) ≥ α0. The proof of part
(b) is the same as that of part (a), only substituting AN for BN , and N for Cε̃N

1−ε̃ (analogously for
Nj .) Then the proof of part (a) yields

#(AN ) ≥ #(BN ) ≥ Cε̃N (1−ε̃) 1
s0

and since this holds for every ε̃ > 0, the result follows.
�

Remark 3.5. As a curiosity, in order to see that equality need not hold in (3.3), take M points uniformly
distributed in [0, 1]× [ 12 , 1], and take M2 points uniformly distributed in [0, 1]× {0}. Let N = M +M2

and let AN be the union of those points. Then it is easy to see that the points on [0, 1] × {0} outweigh
substantially the points in [0, 1]× [ 12 , 1], to the point that for any weakly convergent subsequence µANj ⇀

µ0, we have that supp(µ0) = [0, 1]×{0} ( [0, 1]×[ 12 , 1] = K̃0. This curiosity highlights the fact that in the
machinery being developed in this paper, it is important not only what set the sequence AN approaches,
but also how it approaches it, in the sense of with what weights it approaches it.

We also get another “translation theorem” from Falconer to Erdős, without the assumption that the
sets are nested, but with an extra assumption in the form of a slightly stronger version of the Falconer
conjecture, namely that not only the distance set ∆(E) has positive length, but that there is a quantitative
control of the length L1(∆(E)) ≥ C = C(α,C0) > 0 (see below for the meaning of these parameters.)
However, as we noted in the Introduction, all known recent proofs of results pertaining to the Falconer
conjecture actually yield such a quantitative control of the length. We prove it in a slightly more general
form than Theorem 1.6.

Theorem 3.6.(a) Suppose that the Falconer distance conjecture holds to the extent that if a Borel prob-

ability measure µ supported on E ⊂ [0, 1]
d

satisfies that Iα(µ) ≤ C0 <∞, for some α > s0 ≥ d
2 (recall

Theorem 2.6), then L1(∆(E)) ≥ C = C(α,C0) > 0.
Let AN ⊂ Rd be a family of sets with #(AN ) = N with dimH(AN ) = α0 > s0. Then

#∆(AN ) ' N
1
s0 .

(Slightly) more generally, let AN ⊂ Rd be a family of sets with #(AN ) = N such that, for every ε̃ > 0,
there exists a family of subsets BN ⊆ AN and a constant Cε̃ (which may depend on ε̃, and the sequence
{BN}, but not on N), with #(BN ) ≥ Cε̃

N ε̃
#(AN ), so that BN satisfies equation (2.4) for some α0 > s0

(with constant that may depend on α0, ε̃, and the sequence {BN}, but not on N .) Then

#∆(AN ) ' N
1
s0 .

(b) Assume the Falconer distance conjecture holds to the extent that for any Borel probability measure µ

supported on E ⊂ [0, 1]
d

that satisfies that Iα(µ) / 1, for some α > s0 ≥ d
2 , then L1(∆(E)) ≥ C =

C(α,C0) > 0.
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Let AN ⊂ Rd be a family of sets with #(AN ) = N such that, for every ε̃ > 0, there exists a family of
subsets BN ⊆ AN and a constant Cε̃ (which may depend on ε̃, and the sequence {BN}, but not on N),
with #(BN ) ≥ Cε̃

N ε̃
#(AN ), so that BN satisfies equation (2.5) for some α0 > s0 (with constant that

may depend on α0, ε̃, and the sequence {BN}, but not on N .) Then

#∆(AN ) ' N
1
s0 .

Proof. Fix ε̃ > 0. Regarding part (a), with the same notation as in (3.2), by Theorems 2.10 and 2.11, if

necessary after removing a subset of size at most #(BN )
2 from BN (but we will keep calling the resulting

set BN ), we get Iα(µBN ) ≤ C ′ · C0 < ∞ for any α ≤ α0 (where C ′ is an absolute constant.) Hence, for
δα = (#(BN ))−

1
α , we have that L1(∆((BN )δα)) ≥ C = C(α,C0) > 0.

Then the number of different Euclidean distances determined by AN satisfies

#∆(AN ) ≥ #∆(BN ) &
C

δα
= C [#(BN )]

− 1
α & N

(1−ε̃)
(

1
s0
−ε
)
,

for any ε > 0 (by taking α as close as we want to s0.) Now send both ε and ε̃ to zero.
The proof for part (b) is analogous.

�

4. Examples

Our next Theorem (mentioned in the Introduction as Theorem 1.8) shows that there are plenty of cases
to which our machinery applies (and also plenty of them to which it does not apply, at least directly, in
the sense that a priori it is possible to find a “sufficiently large” subset inside the following examples to
which our machinery could be applied to calculate distances, as in the example from Theorem 4.2 below.)

Theorem 4.1. Let E ⊂ [0, 1]d be a compact set with diameter diam(E) ≈ 1, so that there exists a Borel
probability measure µ supported on E with Iα(µ) < ∞ (see Theorem 2.6), for 0 < α < d. Then there
exists a family of Hausdorff α-adaptable sets ANj ⊂ [0, 1]d, with #(ANj ) = Nj → ∞, so that, with the
notation of (3.2), µANj ⇀ µ0 (weak-∗ convergence) with µ0 a Borel probability measure supported on K0

satisfying Iα(µ0) <∞, and ANj → K̃0 in the Hausdorff metric, with K0 ⊆ K̃0 ⊆ E.

Proof. A possible approach to this Theorem is to discretize the construction of the Frostman measure.
However, this Theorem is essentially already known in the literature as the Fekete-Szegő theorem (see
[12]) or transfinite diameter (see also [8].)

For the convenience of the reader, we recall the construction of the transfinite diameter and the proof
that it equals the Riesz capacity, following [8], since we will need some elements of it.

Let Cα(E) = sup{Iα(µ)−1 : µ is a Radon probability measure with supp(µ) ⊆ E}, denote the Riesz
capacity of order α of E. From the hypotheses, Cα(E) > 0.

Consider the function

Fα(x1, . . . , xN ) =
1(
N
2

) ∑
i<j

1

|xi − xj |α
(4.1)

defined on E × · · · × E.
Since E is compact, Fα(x1, . . . , xN ) achieves its minimum value on E at certain points xi = ξ

(N)
i . Let

us define

D
(α)
N =

(
N

2

)∑
i<j

1∣∣∣ξ(N)
i − ξ(N)

j

∣∣∣α
−1 (4.2)

In order to compare the sum in D
(α)
N with N elements and the N possible sums for the subsets of

N − 1 elements, notice that
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∑
i<j

1∣∣∣ξ(N)
i − ξ(N)

j

∣∣∣α =
1

N − 2

N∑
k=1

(k)∑
i<j

1∣∣∣ξ(N)
i − ξ(N)

j

∣∣∣α
where

(k)∑
denotes the sum in which the terms for i = k and j = k have been omitted. But

(k)∑
i<j

1∣∣∣ξ(N)
i − ξ(N)

j

∣∣∣α ≥
(
N − 1

2

)
1

D
(α)
N−1

,

and consequently (
N
2

)
D

(α)
N

=
∑
i<j

1∣∣∣ξ(N)
i − ξ(N)

j

∣∣∣α ≥ N

N − 2

(
N − 1

2

)
1

D
(α)
N−1

=

(
N
2

)
D

(α)
N−1

.

Therefore we get that

D
(α)
N−1 ≥ D

(α)
N , (4.3)

and hence D(α)(E) := lim
N→∞

D
(α)
N exists (it is called the transfinite diameter of order α of E.)

Integrating the inequality (
N
2

)
D

(α)
N

≤
∑
i<j

1

|xi − xj |α

against dν(x1) . . . dν(xN ), where ν is the equilibrium distribution on E (in particular, by definition, a
probability measure), gives

D(α)(E) ≥ Cα(E). (4.4)

Consider the measure νN =
1

N

N∑
i=1

δ
ξ
(N)
i

, where δa is the Dirac delta measure at the point a.

This measure has infinite α-energy Iα, but if we use the truncated kernel

kα,n(x, y) = min

{
1

|x− y|α
, n

}
then ∫

E×E
kα,n(x, y)dνN (x)dνN (y) ≤ 1

N2

∑
i6=j

1∣∣∣ξ(N)
i − ξ(N)

j

∣∣∣α +
n

N
=

2

N2

(
N
2

)
D

(α)
N

+
n

N
(4.5)

Since kα,n(x, y) is a continuous function, fixing n, by weak-∗ compactness of measures, we may assume,
passing to a subsequence, that νN ⇀ ν0. Then we obtain∫

E×E
kα,n(x, y)dν0(x)dν0(y) ≤ 1

D(α)(E)
(4.6)

Now applying the monotone convergence theorem gives Iα(ν0) ≤ 1
D(α)(E)

. Hence, using (4.4), we get

Iα(ν0) ≤ 1

D(α)(E)
≤ 1

Cα(E)
= Iα(ν),

so that, by the uniqueness of the equilibrium distribution, ν0 = ν and
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D(α)(E) = Cα(E). (4.7)

Consider now the family of sets BN =
{
ξ
(N)
i

}N
i=1

and the associated measures µBN , as in (3.2).

By the minimizing property of the BN , we have that diam(BN ) ≈ 1. If this were not the case, then
diam(BN ) << 1, and by moving one of the points in BN as far as possible from the others (so that the
diameter gets comparable to 1), we would decrease the value in (4.1). Notice that we are not stating that

all points ξ
(N)
i ∈ ∂E, where ∂E is the boundary of E. This last statement is, in general, false. More

precisely, if α > d− 2 in Rd, the equilibrium distribution is in general not concentrated on ∂E (see e.g.
[8] p.163.)

Since diam(BN ) ≈ 1, by Theorem 2.7 and (4.2), the off-diagonal term II in Iα(µBN ) is ≈ 1

D
(α)
N

, with

absolute constants. By Theorem 2.11, and again Theorem 2.7, there exists a family of sets AN with
AN ⊆ BN , and N

2 ≤ #(AN ) ≤ N , with Iα(µAN ) . Iα(µBN ), again with absolute constants, since the
sum in the term II for Iα(µAN ) has less terms than the corresponding sum for µBN .

By (4.3) and (4.7), Iα(µAN ) . Iα(ν) = 1
Cα(E) , again with absolute constants, so that the family AN is

Hausdorff α-adaptable. Note that the assumption α > 0 immediately implies that #(E) =∞. By taking

successive subsequences, we can assume that for a sequence of Nj → ∞, ANj → K̃0 in the Hausdorff
metric, and µANj ⇀ µ0 in weak-∗ convergence. Then, as in (3.4), Iα(µ0) <∞. If we call K0 = supp(µ0),

then, as in (3.3), K0 ⊆ K̃0. Also, since ANj ⊆ BNj ⊆ E, we have that K̃0 ⊆ E.
�

Our next Theorem gives an example of a family of sets AN ⊂ Rd which is not Hausdorff α-adaptable
for any α > 0, and hence the machinery developed so far would seem not to apply at first sight in
terms of producing Erdős type results assuming Falconer type results (if we had not introduced the
considerations on large subsets of such families.) However, a closer look at the family of sets shows that
the aforementioned machinery can indeed be applied, since indeed dimH(AN ) = d.

Theorem 4.2. There exists a family of 1-separated sets AN ⊂ R2, with #(AN ) = N , which is Minkowski
1-adaptable, but is not Hausdorff α-adaptable, for any α > 0. However dimH(AN ) = 2 and hence,
if the Falconer distance conjecture is true, then the family AN satisfies the Erdős distance conjecture
#∆(AN ) ' N , i.e. for any ε > 0, there exists a constant Cε > 0, such that

#∆(AN ) ≥ CεN1−ε.

Proof. For large M , let BM = { 1n : n = 1, . . . ,M}, and let AN = BM × BM , with N = M2. Rescale by

M2, so that the x and y coordinates of the points in the rescaled AN (let us call it ÃN ) are precisely

M2, M
2

2 , M
2

3 , . . . , M2

M−1 ,M . Then the minimum distance δ between two points in ÃN is δ = M2

M−1−M ≈ 1.

Since diam(ÃN ) =
√

2(M2 −M) ≈M2 = N , then AN is Minkowski 1-adaptable.
Now, since equation (2.4) is scale invariant, consider the interactions between points of the form

a = ( 1
p ,

1
l ) ∈ AN with points of the form a′ = ( 1

n ,
1
k ) ∈ AN , under the restrictions that M

10 ≤ l, p ≤ 2M
10 ,

n ≥ M
2 , and 2M

10 ≤ k ≤
3M
10 .

Consider the angle β determined by a′, a, and the point (0, 1l ). Then 0 ≤ β ≤ β0, where β0 is the angle

determined by
(

1
M
2

, 1
3M
10

)
,
(

1
2M
10

, 1
M
10

)
, and

(
0, 1

M
10

)
. Hence, tan(β0) = 20

9 , and for 0 ≤ β ≤ β0, cos(β) ≥
cos(β0) ≈ 0.41, i.e. an absolute constant. Hence, if Pa,a′ = ( 1

n ,
1
l ), we have that |a−a′| ≈ |a−Pa,a′ | with

universal constants that only depend on cos(β0) ≈ 0.41.
As a consequence, if we fix a, and sum over all the described a′, since there are ≈ M possible values

for k, and since n > p > 0∑
a′ : a6=a′

1

|a− a′|α
≈M

∑
n≥M2

1

| 1p −
1
n |
α = Mpα

∑
n≥M2

nα

(n− p)α
≥Mpα

M

2
≈M2pα.
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If we now sum over l, but keeping p fixed, since there are ≈M such l, we get∑
l

∑
a′ : a6=a′

1

|a− a′|α
&M3pα.

And now, summing over p,

∑
a,a′ : a 6=a′

1

|a− a′|α
&M3

2M
10∑

p=M
10

pα &M4+α,

since

2M
10∑

p=M
10

pα ≈
∫ 2M

10

M
10

xα dx ≈M1+α.

Since N = M2, and diam(AN ) ≈ 1, then for the whole set AN we have that

II ≈ (diam(AN ))
α ·N−2

∑
a 6=a′
|a− a′|−α &Mα

which is not bounded for any α > 0.
Although we do not need it, let us mention that a reasoning very similar to the one just done gives

the upper bound
∑

a,a′∈AN
a 6=a′

|a− a′|−α .M4+α, so that, indeed,
∑

a,a′∈AN
a6=a′

|a− a′|−α ≈M4+α. More precisely,

consider a = ( 1
p ,

1
l ) ∈ AN , and consider the lines that form an angle of π4 with the coordinate axes through

a, i.e., the lines La,1 ≡ x − y = 1
p −

1
l , and La,2 ≡ x + y = 1

p + 1
l . These lines divide the whole plane

(and in particular the set AN ) into 4 sectors, denoted N,S,E,W (for North, South, East and West) in
the obvious way. Let us consider a point a′ = ( 1

n ,
1
k ) ∈ AN which is, say, in the W sector for a (denoted

W (a)). Define Pa(a′) = ( 1
n ,

1
l ), i.e. the projection of a′ onto the line parallel to the coordinate axes in

W (a). Again by trigonometry, with universal constants, |a− a′| ≈ |a− Pa(a′)|. For a fixed n, there are
at most ≈ M such points a′ ∈ W (a). The same reasoning applied to the other sectors for a shows that
for a fixed a = ( 1

p ,
1
l ) ∈ AN , the interactions of a with all other points a′ is bounded by M times the

interactions between a and all other points a′ in the same row or column as a = ( 1
p ,

1
l ), i.e.

∑
a′ : a 6=a′

1

|a− a′|α
.M


∑

a′ : a 6=a′
a′=( 1

p ,
1
k )

1

|a− a′|α
+

∑
a′ : a 6=a′
a′=( 1

n ,
1
l )

1

|a− a′|α


Let us focus on the interactions between a = ( 1

p ,
1
l ) ∈ AN and other points in its same row (the

reasoning for the same column is symmetric.)

∑
n 6=p

1≤n≤p

1

| 1p −
1
n |α

= pα
∑
n 6=p

1≤n≤p

nα

|n− p|α
= pα


p
2−1∑
n=1

+

p−1∑
n= p

2

+

2p∑
n=p+1

+

M∑
n=2p+1

 =

= pα{I + II + III + IV }

with the understanding that some of this sums may contain no summands (e.g. IV = 0 if p ≥ M
2 .)

Regarding I, if p > 3, say, (otherwise the estimates we give are trivially true), since n
p−n is increasing

in n,

I =
1

(p− 1)α
+

2α

(p− 2)α
+ · · ·+

(p2 − 1)α

(p2 + 1)α
≤ p

2

{
(p2 )α

(p2 )α

}
≤ p ≤M.
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Also,

II =

(
p− 1

1

)α
+

(
p− 2

2

)α
+ · · ·+

( p
2
p
2

)α
≤ pα

{
1 +

1

2α
+

1

3α
+ · · ·+ 1(

p
2

)α
}
≈

≈ pα
∫ p

2

1

1

xα
dx ≈ p ≤M.

Regarding III, if p > 3, say, (otherwise the estimates we give are trivially true),

III =

(
p+ 1

1

)α
+

(
p+ 2

2

)α
+ · · ·+

(
2p

p

)α
≤ (2p)α

{
1 +

1

2α
+

1

3α
+ · · ·+ 1

pα

}
.

. pα
∫ p

1

1

xα
dx ≈ p ≤M.

And finally for IV , since n
n−p is a decreasing function of n, assuming 2p < M (otherwise IV = 0),

IV =

(
2p+ 1

p+ 1

)α
+ · · ·+

(
M

M − p

)α
≤ (M − 2p)

(
2p

p

)α
.M

Now note that there are M possible choices for points a with first coordinate 1
p , so, summing over

them, and taking into account that

M∑
p=1

pα ≈
∫ M

1

xαdx ≈M1+α, and doing the same reasoning for the

interactions of a with its column, we finally get∑
a,a′∈AN
a 6=a′

|a− a′|−α .M4+α.

With respect to the number of Euclidean distances determined by the family of sets AN and its
Hausdorff dimension, let us fix ε > 0. Consider the set DM,ε =

{
1
n : n = M −M1− ε4 + 1, . . . ,M

}
. Notice

that M −M1− ε4 > M
2 for sufficiently large M , so that the distances between any two consecutive points

in DM,ε are all comparable with absolute constants to 1
M2 . Hence, the set CN,ε = DM,ε ×DM,ε ⊂ AN

has cardinality N1− ε2 , since M2 = N , and is a Delone set. Consequently, dimH(AN ) = 2 and, if we
assume the Falconer distance conjecture, by Theorem 3.2 we get that

#∆(AN ) ≥ #∆(CN,ε) ' Cε N
1− ε2 ≥ C ′ε N1−ε.

�

Remark 4.3. When we define Hausdorff α-adaptability and Minkowski α-adaptability in the discrete
setting, it is clear that some sets will have “lower dimension” than they should for a “stupid” reason.
Namely, if we pick e.g. a 1-separated Delone set AN ⊂ [0, N

1
d ]d with #(AN ) = N and add to it a few

points very far away (which are also 1-separated among themselves), calling the resulting set SN , then
the cardinality has essentially not changed at all, but the diameter has increased enormously, so that
(2.1) is no longer satisfied with α = d, but is only satisfied for much smaller values of α. Similarly, for
Hausdorff α-adaptability, the interaction of the added points a′ ∈ SN \ AN among themselves and with
the points in AN is very small, but again the diameter has increased enormously, so (2.4) would no longer
be satisfied with α = d, but would only be satisfied for much smaller values of α.

Since our aim is to apply all this machinery to the Erdős distance conjecture, where we can always
substitute a set of cardinality N by subsets of cardinality N1−ε, for all ε > 0 sufficiently small, it is
only natural that we should allow for such small outliers (meaning SN \ AN ) to be removed from the
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set. However, intuition here is likely to be misleading, since, for large N , N1−ε is much smaller than any
constant fraction of M (i.e. fractions of the type M

1000 ), so we are allowing to throw out “most” of the set.
So what seemingly is the behaviour of “most” of the set, suddenly is completely irrelevant. The example
from Theorem 4.2 highlights this point, in what we believe to be a counter-intuitive instance.

A consequence of the example from Theorem 4.2 is that a family of sets which is not Hausdorff α-
adaptable in Rd for any α > 0, can contain a family of subsets which is Hausdorff α-adaptable for much
larger α, even α = d, i.e. “full” dimension! Admittedly, this is most disturbing from the viewpoint
of a “robust” theory of dimension per se and is not at all analogous to the continuous case. In order
to fix this “inconsistency” we needed to allow for “large subsets” in the definition of discrete Hausdorff
dimension. However, this is indeed an advantage for the applications of the machinery to the Erdős
distance conjecture (which is a main point of the machinery), as we have seen in the example from
Theorem 4.2, since we may verify the Erdős distance conjecture for a family of sets via such a “most
disturbing” family of subsets.

We will now construct a family of 1-separated finite sets AN ⊂ Rd, with #(AN ) = N so that they are
not Hausdorff α-adaptable for any α ≥ 1 in the plane. However, we do not want the family AN to be
not Hausdorff α-adaptable for any α ≥ 1 for the “simple” aforementioned reason that most of the set is
Hausdorff α-adaptable for some α ≥ 1, but there is a small cluster (or even a single point) located very
far away from the rest of the set which makes the diameter of the set huge without essentially increasing
the cardinality of the main cluster of the set. Since for the Erdős distance problem we are allowed to
remove from a set of cardinality N subsets of cardinality N − N1−ε, for ε > 0 arbitrarily small, the
example should be such that no subsets BN of these AN with #(BN ) ≈ N1−ε, for ε > 0 very small, are
Hausdorff α-adaptable for any α ≥ 1. In other words, we want that dimH(AN ) ≤ 1.

Theorem 4.4. There exists a family a family of 1-separated finite sets AN ⊂ Rd, with cardinality of
AN = #{AN} = N , so that

([diam(AN )]
−1
AN ) 1

4diam(AN )
⊂ [0, 1]

d

is a family of nested sets, but the family AN is not Hausdorff α-adaptable for any α ≥ d
2 . Moreover,

given any ε > 0 sufficiently small, if we consider any family BN ⊂ AN with #(BN ) ≥ CεN1−ε, then the
family BN is also not Hausdorff α-adaptable for any α ≥ d

2 . In other words, dimH(AN ) ≤ d
2 .

Proof. The philosophy is to mimic the construction of a Cantor set C of small Hausdorff dimension d0,
and observe that any subset of C has Hausdorff dimension ≤ d0. However, while this philosophy (of
subsets having smaller Hausdorff dimension than the original set) works for the example we are about to
construct (due to self-similarity), we already saw that it fails completely in the general case (see Theorem
4.2.) For simplicity we perform the construction in the plane.

For the construction of the Cantor set, we follow the notation and setup in [10]. Let 0 < λ < 1
2 .

Denote I0,1 = [0, 1], and let I1,1 and I1,2 be the intervals [0, λ] and [1−λ, 1] respectively. For each already
given interval, continue the process of selecting two subintervals. If the intervals Ik−1,1, . . . , Ik−1,2k−1 have
already been defined, then define Ik,1, . . . , Ik,2k by deleting from the middle of each Ik−1,j an interval of
length (1− 2λ) diam(Ik−1,j) = (1− 2λ)λk−1. Thus, length(Ik,j) = λk.

Then define C1(λ) =

∞⋂
k=0

2k⋃
j=1

Ik,j , and C(λ) = C1(λ)×C1(λ). Then C(λ) satisfies the open set condition

and dimH(C(λ)) = log(4)

log( 1
λ )

, which suggests that we should look for λ < 1
4 .

Consider now the previous construction up to step (or generation) M , for large M , i.e. k = M . Place
a point in the center of each of the N = 4M squares (or at any other distinguished point of the squares,
but the same distinguished point for all squares, i.e. the center, the upper left corner, etc.), and set that

to be ÃN . Then the minimum distance among two points in ÃN is δ = (1− λ)λM−1. Hence, in order to

make the set 1-separated, we define AN = 1
δ ÃN . Consequently, diam(AN ) ≈ 1

λM−1 .
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Then

([diam(AN )]
−1
AN ) 1

4diam(AN )
⊂ [0, 1]

d

is a family of nested sets as long as λ is sufficiently small (elementary calculations yield that λ / 0.1329 . . .
is enough, although if we had considered 1

2diam(AN ) instead of 1
4diam(AN ) a larger λ would also have

worked.)

Then (2.1) is satisfied by AN if and only if diam(AN ) ≈ 1
λM−1 . 4

M
α , which is turn is true iff(

4
1
αλ
)M

1
λ & 1, which is false for α ≥ 1, since for such α,

(
4

1
αλ
)M
→ 0 as M (and hence N) → ∞

(recall that λ < 1
4 .)

Now given ε > 0 very small, consider a corresponding family BN ⊂ AN with #(BN ) ≥ CεN
1−ε. Fix

α ≥ 1. Since AN does not satisfy (2.1), we have that diam(AN ) >> N
1
α . In order to have any chance of

BN satisfying (2.1), the diameter of BN should be much smaller than that of AN . Let us think in terms
of starting with AN and removing successively points in order to get to BN . There are only 2 procedures
to reduce the diameter of AN in a substantial way by removing points from AN .

The first such procedure (let us call it P1) to reduce the diameter of AN in a substantial way by
removing points from AN is to at least remove 3 of the 4 squares of the form I1,j × I1,k and all their
children. Let us call the operation of removing the 3 siblings of a given square of sidelength 2−k (and all
their descendants), an operation P (for pruning) at scale k. In that manner (i.e. after an operation P at
scale k = 1), the diameter of AN gets reduced by a factor of λ, and the number of points changes from
N to N

4 . (Otherwise, if any two points contained in two different squares of the form I1,j × I1,k survive,
the diameter of the subset of AN thus chosen is comparable to that of AN .)

So, if there is any hope of BN satisfying (2.1), then BN should be obtained from AN by performing
an operation P at scale k = 1, and then performing another operation P at scale k = 2 on the surviving
squares, and so on until a generation k = L, and then possibly removing some more points, (but not an
operation of type P at generation L + 1.) Since on the right hand side of (2.1) we have the number of
points of the set in question, and unless we remove 3 squares (and their children) out of 4 from a given
generation (i.e. we perform an operation of type P), the diameter does not decrease substantially, the
best possible case given that we already performed operations P at scales 1 through L and we are not
performing any further operations P, is not to remove any further points at all from the surviving squares
after those consecutive L operations P, in order to maximize the right hand side, once the diameter of
BN is essentially fixed after those L operations. This reasoning describes the candidate for BN with best
chances of satisfying (2.1), let us call it B̃N , in the sense that if any BN with the required conditions

satisfies (2.1), then so does B̃N . However, B̃N = AÑ , for some large Ñ (that can be calculated explicitly,

since Ñ = #(BN )), so B̃N does not satisfy (2.1), by the reasoning done for the sets AN .

The reader may care to check that, indeed, for any α ≥ 1, the bound for Iα(AN ) in equation (2.4) is
not satisfied, nor is it satisfied for any BN as in the statement of the Theorem.

There is however, a second procedure (let us call it P2) to reduce the diameter of AN in a substantial
way by removing points from AN . Namely, leaving the diameter of AN as it is, but increasing the
minimum separation of the points, so that the resulting set, when rescaled to be 1-separated, has smaller
diameter.

The reader may rightfully point out that indeed these two procedures (P1 and P2) could be combined.
We will deal with that possibility momentarily. Let us focus for the time being on P2. If we leave
the diameter of AN untouched, but we want to increase the minimum separation between points in a
substantial way, the only way to do that is to prune at the smallest scale and then move upwards in
the scales. I.e. for each group of sibling squares at scale k, remove 3 of the 4 siblings. Let us call this
operation an operation P ′ at scale k. After such an operation P ′ at scale M , the minimum separation
between points in AN gets increased by a factor of 1

λ , and the number of points changes from N to N
4 .

As with P1, by a similar reasoning, the candidates for BN with best chances of satisfying (2.1) (let us
call any of them (BN )′) are the result of performing consecutively L operations P ′ and not removing any
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further point from AN . Notice now that, after rescaling, except for the fact that the points chosen in any
of the squares are not the center of the squares (or the same distinguished point in each of the squares),
any such (BN )′ = AN ′ , for some large N ′ (again with N ′ = #(BN )), actually, N ′ = 4M−L.

However it is immaterial where we place the actual points of a given set (BN )′ inside each square of
generation M − L in the Cantor set, provided we place one point per square of generation M − L. To
be sure, let us denote any two squares of generation M − L in the Cantor set by Q and Q′. Then for
any pair of points x, y ∈ Q and any pair of points x′, y′ ∈ Q′, we have that |x − y| ≈ |x′ − y′|, with
comparability constants that only depend on λ and not on Q or Q′. Hence, if any statement regarding
Hausdorff or Minkowski α-adaptability (or dimension) of the type ≥,≤,= (something) is true for any
particular (BN )′, it is simultaneously true for all such (BN )′ and for AN ′ . So the reasoning for P2 gets
reduced to the reasoning for P1.

In a similar fashion, combining procedures P1 and P2 would yield (up to allocation of points inside
each square of the smallest surviving generation) another rescaled version of AN and the same conclusion
applies.

�

The example from Theorem 4.4 can be worsened to “Hausdorff dimension 0” as our next Theorem
shows.

Theorem 4.5. There exists a family of sets AN ⊆ [0, 1]d, with #(AN ) = N , so that (AN )δN is a nested
family of sets for some δN > 0, but so that it is not Hausdorff α-adaptable for any α > 0. Moreover, for
any α > 0, and for any family of subsets BN ⊆ AN with #(BN ) ≥ CεN1−ε, for sufficiently small ε, BN
is not Hausdorff α-adaptable. In other words, dimH(AN ) = 0.

Proof. The idea is to build a Cantor type set with decreasing proportions of “surviving intervals” as the
number of generation increases. For simplicity we perform the construction in the plane. The construction
and the proof is very similar to that of Theorem 4.4.

We somewhat follow the notation and setup in [10]. Let 0 < λ < 1
4 . Denote I0,1 = [0, 1], and let

I1,1 and I1,2 be the intervals [0, λ] and [1 − λ, 1] respectively. For each already given interval, continue
the process of selecting two subintervals. If the intervals Ik−1,1, . . . , Ik−1,2k−1 have already been defined,
then define Ik,1, . . . , Ik,2k by keeping from each Ik−1,j two intervals of length fk := λ

2k−1 times the length
of Ik−1,j with the same endpoints as Ik−1,j (the notation fk stands for “factor at scale k”.) Thus,

length(Ik,j) = λk

2
k(k−1)

2

. Notice that fk decreases as k increases.

Then define C1(λ) =

∞⋂
k=0

2k⋃
j=1

Ik,j , and C(λ) = C1(λ)× C1(λ).

Since at stage M of the previous construction there are N = 4M squares of sidelength λM

2
M(M−1)

2

, an

easy calculation yields that dimH C(λ) = 0. Let us take a point in each of the aforementioned N = 4M

squares and let the resulting set be ÃN .
Let us briefly remark that it is immediate from the continuous case calculations that ÃN is not

Hausdorff α-adaptable for any α > 0. Namely, fix α > 0 and take CN :=
(
ÃN

)
N−

1
α

. Then, as in the

proof of Theorem 3.4, CN → C(λ) in the Hausdorff metric, and then if ÃN were Hausdorff α-adaptable,
the energy integral Iα(µAN ) ≤ C < ∞ for all N . By taking a subsequence, we could assume that
µAN ⇀ µ0, in the sense of weak-∗ convergence, and then supp(µ0) ⊆ C(λ). Then Iα(µ0) ≤ C, so that
dimH (C(λ)) ≥ dimH (supp(µ0)) ≥ α, which would be a contradiction. However we prefer to do direct
calculations in order to show that (2.5) is also not satisfied.

The minimum separation between points in the set ÃN is ≈
(

1− 4λ

2M

)
λM−1

2
(M−1)(M−2)

2

, so in order to

make the set ÃN 1-separated, we have to rescale by the inverse of the minimum separation between points
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which is

≈ 2
(M−1)(M−2)

2

λM−1
= diam(AN ),

denoting by AN such a rescaling of ÃN .

If the family of sets AN were Hausdorff α-adaptable, for some α > 0, then we would need that
diam(AN ) . N

1
α = 4

M
α , by (2.1). But this is equivalent to

2
(M−1)(M−2)

2 ≤ C4
M
α λM−1,

which in turn, taking logarithms, is equivalent to

(M − 1)(M − 2)

2
≤ 2M

α
+ C1M + C2

for some constants C1, C2, which is impossible if M →∞, for any α > 0.

Now fix ε > 0 sufficiently small and assume we have a sequence of subsets BN ⊂ AN with #(BN ) ≥
CεN

1−ε. Let us fix some α > 0. If the family BN has any chance of being Hausdorff α-adaptable, then
the diameter of BN should be considerably smaller (after rescaling BN to be 1-separated) than that of
AN , since by the proof of AN not being Hausdorff α-adaptable, we know that diam(AN ) >> N

1
α . Let

us again think in terms of removing points from AN in order to get to BN . As in Theorem 4.4, there are
only 2 procedures to substantially reduce the diameter of the resulting set starting from AN .

The first procedure (P1), consists again of removing 3 of the 4 squares of the form I1,j × I1,k and all
their children (i.e. performing an operation P at scale k = 1), and then repeating the same operation
with 3 of the 4 surviving squares of generation 2, and so on, repeating the operation P exactly for the first
L scales. Once this operation has been performed exactly L times, the diameters of the possible subsets
BN (i.e. if no further operation P is performed) are all comparable, and hence the BN with best possible
chances is the one with most points, i.e. the set with no further points removed after those L operations
P. Since each operation P divides the number of points by 4, we have that N

4L
= #(BN ) ≥ CεN1−ε.

The second procedure (P2), consists again of removing of removing 3 of the 4 siblings for each group
of sibling squares at scale k (let us again call this operation an operation P ′ at scale k), starting from
the smallest scale and moving up in the scales. Each operation P ′ divides the number of points by 4,
as with operation P. However, since in our present case the factors fk are not constant (as they were in
Theorem 4.4), but they are decreasing in k, now the operation P ′ is substantially more efficient than the
operation P in terms of reducing the diameter of the set in question (after rescaling the set so that it is
1-separated.)

Consequently, the candidate for BN with best chances of being Hausdorff α-adaptable (let us call it
(BN )′) is the result of performing the procedure P2 from the smallest scale, moving up the scales, exactly
L times and not removing any further point from AN . But, after rescaling so that (BN )′ becomes 1-
separated, as in Theorem 4.4, (BN )′ = AN ′ for a certain large N ′ (N ′ = 4M−L), except for the location of
the points inside each of the squares of the smallest scale (those of generation M−L). As in Theorem 4.4,
the location of the points inside each of the squares of generation M − L is immaterial for Minkowski or
Hausdorff α-adaptability (or dimension) purposes, so we can assume without loss of generality that (BN )′

is really = AN ′ , which we already know is not Hausdorff α-adaptable. So we get that dimH(AN ) = 0.

�

As a concluding remark, notice that this paper highlights, among other things, that the notion of
Hausdorff dimension (even in the continuous case) contains much more information than just the size of
the sets, since, after all, all the families of sets we described have the same size (namely N .) Hausdorff
dimension is more about “electrostatics” (how different charges are positioned relatively to one another)
than about size. (The case of R3 and α = 1 is indeed classical electrostatics and the energy integral we
considered is the energy of the system of charges.)
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[13] J. Solymosi, Cs. D. Tóth. Distinct distances in the plane. The Micha Sharir birthday issue. Discrete Comput. Geom.,
25 (2001), no. 4, 629-634.

[14] J. Solymosi, V. Vu. Near optimal bound for the distinct distances problem in high dimensions. Combinatorica , 28
(2008), no. 1, 113-125.

[15] T. Wolff. Decay of circular means of Fourier transforms of measures. Internat. Math. Res. Notices, (1999), no. 10,
547-567.

[16] L. Guth, N. Katz. On the Erdös distinct distance problem in the plane. Preprint, 2011.

169


