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Abstract. In the paper we examine solutions to a model of cell movement governed
by the chemotaxis phenomenon derived in [14] and established via macroscopic limits
of corresponding microscopic cell-based models with extended cell representations. The
model is given by two PDEs for the density of cells and the concentration of a chemical.
To avoid singularities in cell density, the aggregating force of chemotaxis phenomenon is
attenuated by a density dependent diffusion of cells, which grows to infinity with density
tending to a certain critical value. In this paper we recover the quasi-periodic structures
provided by this model by means of (local in time) expansion of the solution into a basis
of eigenfunctions of the linearized system. Both planar and spherical geometries are
considered.
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1. Introduction

In [14], a model of cell motility due to diffusion and chemotaxis phenomenon was derived via
macroscopic limit of appropriate microscopic system describing stochastic motion of cells. This
macroscopic model is governed by two partial differential equations of cell density and chemical
concentration. In this model, nonlinear diffusion equation is derived from microscopic dynamics,
and the diffusion coefficient, preventing collapse of cellular density, depends on cellular volume
fraction.
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The nonlinear spatially two-dimensional diffusion equation for the evolution of cellular density
p(r, t) proposed in [14] has the form:

∂tp(r, t) = D∇r · (Γ (φ)∇rp(r, t))− χ0∇r · [p(r, t)∇rc(r, t)] (1.1)

where r = (x, y) is a vector of spatial coordinates and

Γ (φ) =
1 + φ

1− φ+ φln(φ)
. (1.2)

This nonlinear diffusion equation is coupled with equation for the evolution of the chemical field
c(r, t):

∂tc(r, t) = Dc∇2
r
c(r, t) + ãp(r, t)− γc(r, t). (1.3)

In equation (1.1), φ is the local volume fraction occupied by cells. It is assumed that cells are

fluctuating rectangles and φ = L
(0)
x L

(0)
y p(r, t), where L

(0)
x , L

(0)
y are average length and width of a

cell. Thus system (1.1) and (1.3) can be written in an equivalent way:

∂tφ(r, t) = D∇r · (Γ (φ(r, t))∇rφ(r, t))− χ0∇r · [φ(r, t)∇rc(r, t)], (1.4)

∂tc(r, t) = Dc∇2
r
c(r, t) + aφ(r, t)− γc(r, t) (1.5)

where

a =
ã

L
(0)
x L

(0)
y

. (1.6)

Equations (1.4)-(1.5) are considered in a set Ω × (0, T ), where Ω ⊂ IR2 and T > 0. It is supple-
mented by the no-flux boundary conditions

∂φ

∂n
(r, t) = 0,

∂c

∂n
(r, t) = 0 for (r, t) ∈ ∂Ω × (0, T ) (1.7)

where ∂Ω is the boundary of the domain Ω and n is the unit outward normal to ∂Ω. Initial
conditions are

φ(r, 0) = φ0(r), c(r, 0) = c0(r). (1.8)

In equation (1.4), D is the diffusion coefficient for a motion of an isolated cell, χ0 defines strength
of chemotactic interactions with

χ0 = D µβL(0)
x L(0)

y (1.9)

where (−µ) is an effective chemical potential, β = 1/T is the inverse effective temperature T of
the cellular shape fluctuations, and

L(0)
x = LTx

− Jcm/λx, L
(0)
y = LTy

− Jcm/λy. (1.10)
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LTx(y)
are the target values of L

(0)
x(y) and λx, λy are suitable Lagrange multipliers. Jcm is the

binding energy per unit length (see [14]).

In equation (1.5), Dc is the diffusion coefficient of the chemical c, ã is its production rate, and
γ is the decay rate.

The global in time existence of solutions to this system and some of their properties have been
considered in [1].

System (1.4)-(1.5) can be used for description of biological phenomena, like formation of open
network structures in limb cell cultures [5,6] and vasculogenesis [9,10], where a population of cells
interact directly and via diffusible factors. These processes are crucial in embryo development.
Aggregating mechanisms in limb cells lead to the formation of chondrogenetic structures, whereas
vasculogenesis leads to the formation of blood vessels in the embryo. In [14], examples of ap-
plications of system (1.4)-(1.5) were analyzed numerically. In particular, an interim pattern for
relatively small times has been obtained numerically starting from random initial data (see Figure
6 in [14]). Such patterns may be transient as a solution to system (1.4)-(1.5), i.e. it may exist for
some time and then disappear, or it may be unstable. However, in this paper we are not interested
in the asymptotic behaviour of this local in time pattern. Such an approach may be justified by the
fact that many biological systems pass through the weakly non-stable states (transient patterns),
which can be stabilized by another kind of phenomenon (not taken into account in the considered
model).

The specific aim of our study is to recover the quasi-periodic structures provided by the model
(1.4)-(1.5) by using their expansion in terms of eigenfunctions of the linearized system. The
symbolic program in Mathematica is used for calculating such expansion. We will be interested
both in the planar and in the spherical case. The spherical case may correspond to the process
of angiogenesis on the surface of the tumour region. It may also refer to the process of receptor
clusterization in the phenomenon of immune cell activation.

2. Absence of patterns for small values of µ

First, let us state a nonnegativity lemma. The nonnegativity of solutions to system (1.4)-(1.5)
subject to nonnegative initial data follows from Theorem 1 in [1]. Here, for the reader’s convenience,
we will sketch an independent proof of this fact.

Lemma 2.1. Suppose that φ and c are solutions to system (1.4)-(1.5) of class C2,1
r,t (Ω × (0, T )).

Suppose that φ0(r) ≥ 0 and c0(r) ≥ 0 for all r ∈ Ω. Then φ(r, t) ≥ 0 and c(r, t) ≥ 0 for all
(r, t) ∈ Ω × (0, T ). Moreover,

∂

∂t

∫

Ω

φ(r, t)dr = 0. (2.1)

It means that the volume fraction occupied by cells is conserved in the course of evolution.

Proof. To prove the positivity let us first extend the function Γ for φ < 0 in the space of continuous
functions by assuming that Γ (φ) ≡ Γ (0) = 1 and the derivative of Γ (φ) is continuous. Now, we
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may proceed, e.g. using the method applied in [13] to a model having the similar structure but
differing in the form of the nonlinear diffusion coefficient function. Next, integrating the both
sides of equation (1.4) over the region Ω, applying Gauss-Ostrogradskii’s theorem and using the
zero-flux boundary conditions for φ and c we obtain (2.1). �

In our next step, we will prove that non-constant stationary solutions to system (1.4)-(1.5) exist
only for sufficiently large chemotaxis constant χ0. Thus let us consider the stationary counterpart
of the system (1.4)-(1.5):

D∇r · (Γ (φ(r))∇rφ(r))− χ0∇r · [φ(r)∇rc(r)] = 0, (2.2)

Dc∇2
r
c(r) + aφ(r)− γc(r) = 0. (2.3)

Let χ0 = 0. Then expanding the diffusion term in the first equation and integrating over Ω, we
obtain by means of the non-flux boundary conditions (1.8) that

D

∫

Ω

Γ,φ(φ(r)) (∇rφ(r))
2dr = 0.

Obviously, for φ ∈ (0, 1) and Γ (φ) given by (1.2), Γ,φ(φ) > 0. Hence Eq.(2.2) has no non-constant
solutions with the values in the open interval (0, 1). Consequently, φ ≡ φ0 = const. It follows that
Eq.(2.3) can be written as

Dc∇2
r
p(r)− γp(r) = 0

where p(r) = c(r)−aγ−1φ0. Multiplying the last equation by p(r) and integrating we conclude that
∫

Ω
[Dc(∇rp(r))

2 + γp(r)2]dΩ = 0 implying that p(r) ≡ 0 and consequently that c(r) ≡ aγ−1φ0.

We will prove that for χ0 > 0, but sufficiently small, system (2.2)-(2.3) has also only constant
solutions. To do it, according to Lemma 2.1, we will supplement the system with conditions
expressing the preservation of L1-norm of the component φ. That is to say, we demand that

∫

Ω

φ(r)dr = φ0|Ω|. (2.4)

Lemma 2.2. For all 0 < χ0 < k0 with some k0 > 0 sufficiently small, the only solution to system
(2.2),(2.3),(2.4) is equal to a spatially homogeneous solution (φ, c) ≡ (φ0, aγ

−1φ0).

Proof. To evade technical difficulties we will make a simplifying assumption that Ω has a smooth
boundary of C2+α class with α ∈ (0, 1). The case of ∂Ω having a finite number of singular points
(like a rectangle defined in (3.5) and considered in the sequel) can be treated similarly. We will
use the implicit function theorem. If we decompose φ(x) = ψ(x) + φ0. Then solutions to system
(2.2),(2.3),(2.4) can be viewed as zeros of the mapping:
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M : (ψ, c, λ) →
(

D∇r · (Γ (ψ(r) + φ0)∇rψ(r))− λ2∇r · [(ψ + φ0)(r)∇rc(r)],

Dc∇2
r
c(r) + a(ψ + φ0)(r)− γc(r),

∫

Ω
ψ(r)dr

)

.

This mapping acts from the space (ψ, c, λ) ∋ C2+α
N (Ω) × C2+α

N (Ω) × IR to the space Cα(Ω) ×
Cα(Ω)×IR. Here C2+α

N (Ω) denotes the Banach space of twice continuously differentiable functions
in Ω with α-Hölder continuous second derivatives, satisfying the homogeneous Neumann boundary
conditions (see (1.7)), with the usual ’sup’ norm, Cα(Ω) the Banach space of α-Hölder continuous
functions with the ’sup’ norm, and λ2 stands for χ0. The mapping is well defined in some vicinity
of the point (φ, c, λ) = (φ0, aγ

−1φ0, 0). The Frechet derivative (with respect to (ψ, c)) DM0 at the
point (φ0, aγ

−1φ0, 0) of the mapping M acting on the increments (δψ, δc) has the form:

DM0(δψ, δc) =

(

DΓ (φ0)∇2
r
δψ(r), Dc∇2

r
δc(r) + aδψ(r)− γδc(r),

∫

Ω
δψ(r)dr

)

.

This mapping is boundedly invertible. According to the theory of elliptic operators, to prove this
fact, it suffices to show that the system

DM0(δψ, δc) = (0, 0, 0)

has only zero solution. Thus multiplying the first equation DΓ (φ0)∇2δψ(r) = 0 by δψ and
integrating, we can conclude that

∫

Ω
(∇ψ)2dΩ = 0. Hence δψ ≡ const and the third equation

implies that δψ ≡ 0. Next, multiplying the second equation by c we obtain
∫

Ω
[Dc(∇rδc)

2 +
γ(δc)2]dΩ = 0, which implies that δc ≡ 0. Now, due to the implicit function theorem, the solution
to system (2.2),(2.3),(2.4) can be obtained as a sequence of successive approximations and it is
easy to prove that all the elements of this sequence are equal to zero. �

3. Eigenfunction expansion in the planar case

In this section we propose an approximate method of tracking the evolution of solutions of the
system (1.4)-(1.5) via expansion of solutions on a basis of orthogonal functions in the region Ω.
This set will be formed by the eigenfunctions corresponding to linearization of the operators at
the right hand sides of equations (1.4)-(1.5). The linearization is done at an appropriately chosen
spatially constant steady state corresponding to the chosen total number of cells. That is to say, for
sufficiently small times we track the evolution of the initial data by means of the series composed
of eigenfunctions corresponding to a spatially constant steady state with coefficients depending on
the initial data and time.
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Due to section 2, possible non-constant stationary patterns can exist only for sufficiently large
values of the parameter χ0. Moreover, to be observed experimentally (or numerically for very
long time scales), these stationary solutions should be stable. In this paper we will be however
be interested in transient patterns, i.e. patterns which are not necessarily stable as solutions to
system (1.4)-(1.5), but may be an onset for patterns stabilized by some other factors not taken
into account in the model of chemotaxis considered here. To be more precise, we are especially
interested in the evolution of a random perturbation of the spatially homogeneous initial data.
Principally our approach is to obtain spatial patterns follows the Turing bifurcation methodology.
In the case of system (1.4)-(1.5), the constant steady states are not isolated, because they are of
the form (φ, c) = (φ0, c0) = (φ0, aγ

−1φ0) for any φ0 > 0, but due to Lemma 2.1 the L1-norm of
the initial data are conserved. To follow the path worked out by the Turing bifurcation theory, let
us start from linearizing system (1.4) -(1.5) around the constant steady state (φ0, c0) and calculate
the eigenvalues and eigenfunctions of the resulting system. The linearized time dependent system
has the form

∂tφ(r, t) = DΓ (φ0)∇2
r
φ− χ0φ0∇2

r
c, (3.1)

∂tc(r, t) = Dc∇2
r
c+ aφ− γc. (3.2)

This system can be written as

ut = D∇2
r
u+Bu (3.3)

where

u =

(

φ
c

)

, D =

[

DΓ (φ0) −χ0φ0
0 Dc

]

, B =

[

0 0
a −γ

]

. (3.4)

Before proceeding, let us specify the spatial region Ω, which we will consider in the planar case.
We thus assume that for some A > 0

Ω := {(x, y) : 0 < x, y < A}. (3.5)

We will seek the solutions of system (3.3) as a linear combination of vector functions of the form

W = E cos(
πkx

A
) cos(

πly

A
) (3.6)

where k, l ∈ IN ∪ {0} and E ∈ IR2 should be appropriately chosen. Let us note that the set
{cos(πkx

A
) cos(πly

A
); k, l ∈ IN∪{0}} forms a complete orthogonal basis of the space L2(Ω) and each

of the functions satisfies no-flux boundary condition in agreement with (1.7) (see also [2]), so they
are good to approximate the solutions to system (1.4)-(1.5). Inserting

u = eλk,lt W(r)

into system (3.3) we obtain the algebraic system:
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λk,lW = −Dz2W+BW (3.7)

where we have defined

z :=

√

π2

A2
(k, l)T :=

√
w (k, l)T . (3.8)

In view of (3.7), two things should be noticed. First, according to this equality, we can interpret
W as the eigenfunction of the linearization of the stationary counterpart of system (1.4)-(1.5)
corresponding to the eigenvalue λk,l of the matrix

M := B−Dz2. (3.9)

Thus, λk,l is a solution to the equation:

det

[−z2DΓ (φ0)− λ z2χ0φ0

a −γ − z2Dc − λ

]

= 0 (3.10)

where z2 = z2. Consequently, we obtain

λ± k,l =: λ±(z
2) =

1

2
{−b±

√

b2 − 4z2c} (3.11)

where
b = γ + (DΓ (φ0) +Dc)z

2,

c = γDΓ (φ0) +DDcΓ (φ0)z
2 − aχ0φ0.

(3.12)

It is easy to note that, independently of z2 ≥ 0, the right hand side of (3.11) is real for positive
values of the parameters appearing in Eq.(3.10). It is also seen from the above expressions that
the ’−’ branch is strictly negative if γ > 0. Next, given the other parameters, the ’+’ branch can
contain eigenvalues with positive real part if only c < 0 for some values of z2, i.e. if the chemotaxis
parameter χ0 is sufficiently large. Moreover, the eigenvalues with positive real part are real. Thus,
λ+(z

2) > 0 if and only if

z2 ∈
(

0,
aχ0φ0 − γDΓ (φ0)

DDcΓ (φ0)

)

(3.13)

which, due to (1.9), is equivalent to

z2 ∈
(

0,
ãµβφ0 − γΓ (φ0)

DcΓ (φ0)

)

. (3.14)

Consequently, because the smallest positive value of z2 is equal to w, the above condition implies
that there exists at least one positive eigenvalue, if
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χ0 >
DΓ (φ0)(γ +Dcw)

aφ0

which, due to (1.6) and (1.9), can be written as

µ >
Γ (φ0)(γ +Dcw)

aL
(0)
x L

(0)
y βφ0

=
Γ (φ0)(γ +Dcw)

ãβφ0
. (3.15)

The above relations are illustrated in Figure 1. It is shown there for the set of parameters
given by (3.18), the ’+’ branch of eigenvalues comprises positive values (right panel), whereas if
µ = 0.005 (instead of µ = 0.1), the two branches of eigenvalues are negative (left panel). The value
of the right hand side of inequality (3.15) approximately equals to 0.0072.

Having the eigenvalues λ±(z
2), we can calculate the corresponding eigenvectors of M:

E = E(λ± k,l) = E(λ±(z
2)) := E±(z

2).

It can be checked that we can normalize the eigenvectors by supposing that E± 1(z
2) = 1. Suppose

that at time t = 0 we change the constant steady state by a spatially non-uniform perturbation
ω(r). One can expect that, at least for some choices of ω(r) the constant steady state may evolve
to a solution exhibiting features of a spatial pattern. It is obvious that, locally in time, this may
be the case, if the expansion of the function ω on the basis of eigenfunctions of the linearized
system contains non-zero contribution from the eigenfunctions assigned to positive eigenvalues of
this system. To be more precise, let

ω(r) =

(

ωφ(r)

ωc(r)

)

∼=
∑

(k,l)∈M+

c+ k,lW+ k,l(r) +
∑

(k,l)∈M
−

c− k,lW− k,l(r) (3.16)

where

W± k,l(r) := E±(z
2) cos(

πkx

A
) cos(

πly

A
),

and M± are given sets of pairs (k, l) such that k, l ∈ IN ∩ {0} and (k, l) 6= (0, 0). We thus assume
that if

U := {(k, l) : λ+ k,l > 0},
and

C := {(k, l) : ck,l 6= 0},
then

U ∩ C 6= ∅.
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In (3.16) we assume that the right hand side converges in an appropriate norm. To simplify the
problem of convergence we will assume that

M+,M− are finite sets.

Such a cut off may be justified biologically by the nonzero size of the cells. As it is seen, in (3.16) we
do not take into account the eigenvector corresponding to λ = 0, because this would be equivalent
just to changing the constant spatially uniform state of the (linearized) system. The evolution of
the initial data in (3.16) is given by the formula:

(

φ(r, t)

c(r, t)

)

∼=
(

φ0

c0

)

+

∑

(k,l)∈M+
c+ k,le

λ+ k,l t W+ k,l(r) +
∑

(k,l)∈M
−

c− k,le
λ
− k,l t W− k,l(r).

(3.17)

Of course, the pattern may be transient as a solution to the nonlinear system (1.4)-(1.5), i.e.
it may exist for some time and then disappear, or it may be unstable. However, here we are not
interested in the asymptotic in time behaviour of this local in time pattern. The justification of
such an approach may be of a heuristic type. Thus, many biological systems pass through the
weakly nonstable states (patterns), which give rise to another kind of phenomenon (not taken
into account in the considered model). It seems that the vasculogenesis process is just such a
phenomenon: after the formation of the preliminary pattern of endothelial precursor cells, other
interactions come into being (e.g. mechanical ones), which stabilize the obtained structure.

Here, we present the result of the above sketched method of calculations for the values of
parameters chosen in the reference [14]. To be more precise we refer to Figure 6 in this paper. The
parameters are taken as follows:

D = 1/16, A = 100, ã = 3.0, L0
x = L0

y := L0 = 0.6− 0.002/1.5,

β = 15, µ = 0.1, Dc = 0.5, φ0 = 0.54, γ = 0.014.
(3.18)

Hence, due to (1.9) we have χ0 = 0.0336. The value of φ0 = 0.54 is implied by the fact that in
Figure 6 in [14], 15000 cells were considered. The average volume of each of the cells is equal to
0.62 = 0.36. As we assume that the cells are uniformly distributed inside the considered region,
we conclude that the local volume fraction occupied by cells is equal to 1500 ∗ 0.36/1002 = 0.54.
Next, it is assumed that this steady state has been perturbed by 5%. The condition has been used
in our simulations. As a result, for t = 60, we obtain a spatial distribution of volume fraction
of cells coinciding with the distribution presented in Figure 6 in [14]. It is worthwhile to notice
that, contrary to our symbolic approach, Figure 6 in [14] has been obtained by strictly numerical
simulations. Next, in recovering transient structures, it is very important to take into account
the whole set of eigenfunctions corresponding to both positive and negative eigenvalues of the
linearized problem (3.1)-(3.2), because for small times all of these functions may play a significant
role in pattern formation.
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Apart from appropriate ratio of diffusion coefficients, it seems that the main problem in applying
the Turing instability methodology to biological models, is to choose properly the perturbation of
the initial spatially homogeneous state of the system. We are interested first of all in the time
evolution of cell density, which is crucial from the point of view of the developing embryo. We thus
perturb the system from its spatially homogeneous state (φ0, c0) by a nonuniform perturbation of
the cell density ω(x, y). To guarantee the sufficient randomness of this perturbation we divide the
spatial region Ω = {(x, y) : x ∈ (0, A), y ∈ (0, A)} into smaller 1002 squares Sij , 1 ≤ i, j ≤ 100,
with sides parallel to x and y axes of length equal to 1. For each of these squares we choose a
random number rij from the interval [−1, 1] and define ωφ as a piecewise continuous function

ωφ(x, y) = w rijH(Sij) (3.19)

where H(Sij) denotes the characteristic function of the square Sij and w is an appropriate scaling
coefficient determining the magnitude of the perturbation. The same procedure can be applied to
define the function ωc(x, y).

To calculate the Fourier expansion coefficients, first let us note that

∫ A

0

∫ A

0

[

cos(
πk1x

A
) cos(

πl1y

A
)
][

cos(
πk2x

A
) cos(

πl2y

A
)
]

dxdy = δk1k2
δl1l2

A2

4
. (3.20)

Due to the assumed normalization of the eigenvectors E±, the normalized Fourier coefficients
c− k,l, c+ k,l satisfy the system

c− k,l + c+ k,l =
4

A2

∫ A

0

∫ A

0

ωφ(x, y)cos(
πkx

A
) cos(

πly

A
)dxdy, (3.21)

c− k,lE−2(z
2) + c+ k,lE+2(z

2) =
4

A2

∫ A

0

∫ A

0

ωc(x, y)cos(
πkx

A
) cos(

πly

A
)dxdy. (3.22)

This system has always a unique solution (c− k,l, c+ k,l), because the vectors E−(z
2) and E+(z

2)
are linearly independent. In fact, E−2(z

2) < 0 and E+2(z
2) > 0.

Normalization and subtracting of the constant perturbation

To compare our approach with numerical simulations in [14], we take into account the fact
that the initial spatially homogeneous stationary state was perturbed randomly by 5% (as it is
stated in [14]). By adding a random number from the interval [0, 1], we, on average, perturb
the constant steady state φ0 by ± 0.5, so to perturb it by 5% in every square Sij , we must take
w = 0.05 · φ0 · 0.5−1 = 0.1φ0 (see (3.19)). Finally, as is said above, in our approach we do not
take into account the constant component of the perturbation functions, so we exclude it from our
numerical code presented in Appendix B.
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4. Transient Turing-like patterns on a sphere

In this section we will study the model of chemotaxis governed by system (1.4)-(1.5) on a sphere.
Such a model may describe e.g., the onset of angiogenesis on the surface of a tumour volume
or behaviour of receptors on the cell membrane, and in the context of Turing bifurcation their
local aggregation. In the coordinates (θ, η) and with r being the radius of the sphere, the system
governing the evolution of φ(θ, η, t) and c(θ, η, t) has the following form

∂φ

∂t
=

D

r2 sin θ

∂

∂θ

(

sin(θ)Γ (φ)
∂φ

∂θ

)

+
D

r2 sin θ

∂

∂η

(

Γ (φ)
∂φ

∂η

)

+
χ0

r2 sin θ

∂

∂θ

(

sin(θ)φ
∂c

∂θ

)

+
χ0

r2 sin θ

∂

∂η

(

φ
∂c

∂η

)

,

(4.1)

∂c

∂t
=

Dc

r2 sin θ

∂

∂θ

(

sin(θ)
∂c

∂θ

)

+
Dc

r2 sin θ

∂2c

∂η2
+ aφ− γc. (4.2)

Linearizing system (1.4)-(1.5) around a spatially homogeneous steady state (φ0, c0) = (φ0,
γ
a
φ0),

we arrive at the following system:

∂φ

∂t
=
D

r2
Γ (φ)∆Sφ− χ0φ0

r2
φ∆Bc, (4.3)

∂c

∂t
=
Dc

r2
∆Sc+ aφ− γc (4.4)

where ∆S is the Laplace-Beltrami operator on the unit sphere (i.e. for r = 1):

∆S :=
1

sin θ

∂

∂θ

(

sin(θ)
∂

∂θ

)

+
1

sin θ

∂2

∂η2
.

Let us recall the real eigenfunctions of this operator. These are so called real spherical harmonics
denoted by YLm, where L is a nonnegative integer and m ∈ {−L, . . . , 0, . . . , L}. For fixed L, the
functions YLm, m ∈ {−L, . . . , 0, . . . , L}, span the (2L+ 1)-dimensional subspace of eigenfunctions
corresponding to the eigenvalue (−L(L+ 1)), i.e.

∆SYLm(θ, η) = −L(L+ 1)YLm(θ, η). (4.5)

Every function YLm is an appropriate linear combination of the standard (complex) functions Y m
L

and Y
(−m)
L . It can be assumed that, under proper normalization, the orthonormality condition is

satisfied:

∫ π

0

∫ 2π

0

YL1m1
(θ, η)YL2m2

(θ, η) sin θ dη dθ = δL1L2
δm1m2

.

Similarly to the planar case, let
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W±Lm(θ, η) := E±LmYLm(θ, η) (4.6)

where E±Lm ∈ IR2 are to be determined by demanding that W±Lm(θ, η) constitute eigenfunctions
of the linearization of the stationary counterpart of system (4.3)-(4.4). We are looking for solutions
to system (4.3)-(4.4) in the following form:

(

φ(θ, η, t)

c(θ, η, t)

)

=
∑

(L,m)∈M+
c+L,me

λ+Lmt W+Lm(θ, η)+

∑

(L,m)∈M
−

c−L,me
λ
−Lmt W−Lm(θ, η).

(4.7)

As in the planar case, λ+Lm and λ−Lm denote the eigenvalues corresponding to the eigenvectors
E+Lm and E−Lm of the matrix M defined below (see (4.8)). Thus putting the right hand side of
(4.6) into (4.3)-(4.4), we obtain by means of (4.5):

λ±LmE±Lm = −D
L(L+ 1)

r2
E±Lm +BE±Lm

where the matrices D and B are defined in (3.4). It follows that if

M := B−D
L(L+ 1)

r2
, (4.8)

then λ±Lm must satisfy the equation det(M− λI) = 0, i.e.

det









−L(L+ 1)

r2
DΓ (φ0)− λ

L(L+ 1)

r2
χ0φ0

a −γ − L(L+ 1)

r2
Dc − λ









= 0. (4.9)

Having the eigenvalues λ±Lm of the matrix M, we are able to find the corresponding eigenvectors
E±Lm. Let us note that the eigenvalues λ±Lm (as well as the eigenvectors E±Lm) depend, in fact,
only on the integer L. Thus

λ±L(−L) = λ±L(−L+1) = . . . = λ±L(L−1) = λ±LL =: λ±L.

Moreover, if the volume fraction φ0 in both of the analyzed cases is the same, then by identifying
L(L+ 1)

r2
with z2, we can repeat the analysis of the planar case. To be more precise, if the units

of length are given by the equality

L(L+ 1)

r2
∼= π2

A2
(k2 + l2), (4.10)

then we have the approximate correspondence λ±L
∼= λ±k,l.
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It is obvious that the dominating spatial frequency in the transient patterns should depend
both on the area of the sphere as well as on the number and size of the cells living on its surface.
On one hand, due to (4.10), it follows from the analysis of the planar case that the number of
possible positive eigenvalues increase with r2 (because in the planar case the eigenvalues depend
only on z2). On the other hand, from the biological point of view, the spatial frequency of the
initial perturbation is bounded from above by the size of cells, because in a region having an area
corresponding to the area of the average cell, we have either single cell or no cell.

Let us consider early stages of tumour angiogenesis. Suppose that the boundary of a ball-shaped
tumour has an area equal to 2.8 cm2. This implies that around 1500000 endothelial cells of the
average area about 100 µm2 occupying 0.54 volume fraction are distributed on the boundary of
the tumour region. Assuming that the size of the cells in [14] corresponds to 0.6-1.2 µm, we can
conclude that A2 corresponds to the area of 100-400 µm2. It follows from (4.10) that in this case
the number of pattern maxima is at least 700 times bigger than in the case analyzed in [14], which,
due to the right panel of Figure 1 (and Figure 6 in [14]) is a huge number. This proves that
the considered angiogenetic structure can be extremely complicated. Let us also note that, if we
assume that the presented model of chemotaxis holds also in this case, then, due to (3.14), the
maximal value of L(L+ 1) (equivalent to k2 + l2 in the planar geometry) does not depend on D.
This seems important in view of the fact that the motility of cells may be very low in some tissues.

Let us finally check, if we can use the above model, to consider the problem of receptor clus-
terization on the surface of immune B cells [11, 12]. In this case we should, however, adapt the
assumptions concerning the volume fraction of the agglomerated objects, which are now receptor
proteins. Let us consider the B cell as a ball of radius equal to 6µm. Suppose that the number of
B cells receptors (BCRs) on its membrane is of the order of 105 [17]. Suppose further that the area
occupied by a single BCR on the membrane (corresponding to more or less to the cross sectional
area of BCR proteins) equals approximately 100 nm2 := (L0 µm)2. It follows that the volume
fraction is approximately equal to φ0 = 105 · 102 (4π · 36 · 106)−1 = 0.022. Hence Γ (φ0) ≈ 1.14. To
obtain reasonable number of receptor clusters, we will use the following set of parameters:

D = 1/16, r = 6, ã = 3.0, L0 = 10 · 10−3,

β = 15, µ = 0.1 · 200, Dc = 0.1, φ0 = 0.022, γ = 0.014.
(4.11)

The changes with respect to the set (3.18), are implied by the geometry (the values of r−2

corresponding to π2/A2, L0 corresponding to the linear size of the objects), as well as by biochemical
assumptions. To be more precise, we decreased the value of Dc to 0.1µm2/s, because the diffusion
of proteins on the membrane is extremely small, and increased 200 times the absolute value of
the effective chemical potential µ. We should keep in mind that the last change may not have
a straightforward biological interpretation and has been introduced ’ad hoc’ to compensate the
decrease of the volume fraction φ0 with respect to the planar case.

For the above set of parameters, according to inequality (3.14), we obtain the maximal value
of L(L + 1) for which λ+L > 0 to be equal approximately to 6230 and the value of L(L + 1)
corresponding to the largest λ+L to be equal to 1600 (see, the right panel of Figure 3). So,
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in principle, we can obtain over 6000 receptor clusters. This is in a qualitative agreement with
the references [7, 8, 16], where clusters of 10-20 receptors were considered as characteristic active
’quants’ of receptors capable to activate stably a B cell.

The process of receptors clustering is often more complicated and may be also connected with
some external factors. For example, the B cell clusters can be formed by receptor cross-linking due
to binding of polyvalent ligands recruited from the solution [4]. Similarly, the receptor clusters can
be formed by a B cell contact with an antigen-presenting cell (APC) loaded with antigens. In this
case even monovalent ligands are also capable to initiate BCR signaling if presented on APC [3,15].
Nonetheless, it seems that the diffusion of receptors together with their tendency to aggregate due
to some attractive interactions mediated by other agents, is the main ingredient in the process of
their pattern formation. On the other hand, even if the receptors are completely immobile, they
can create active regions via their interaction with cytosolic kinase molecules. Such a model was
studied in [11, 12]. In principle, a similar method can be used to study the formation of Turing
patterns in this volume-surface case.

5. Conclusions

In the paper, we studied the behaviour of solutions to the system partial differential equations
derived in [14] and obtained by taking the macroscopic limits in a stochastic model taking into
account cell diffusion and cell-cell interaction mediated by auxiliary molecules. The model is ded-
icated principally to description of bacterial structures formed due to chemotactic attraction, but
its generality allows us to extend its validity to other cellular phenomena consisting in spatial
pattern formation. Such processes play crucial role in cellular biology. On one hand, they are a
background of morphogenesis, on the other hand they may be an onset, e.g. of angiogenesis leading
to creation of an alimentary system of cancer cell population. Our approach is in the spirit of the
Turing bifurcation theory, but specifically we concentrated on transient spatial structures. Such
structures exist for some time, but may be not stable from the mathematical point of view. How-
ever, biologically, such structures can be stabilized by some other factors, which are not considered
explicitly in the mathematical model. To track the formation of transient patterns, we considered
the expansion of initial perturbation into eigenfunctions corresponding both to positive, as well
as negative eigenvalues of the linearized system. The patterns obtained by the above procedure
are very similar to the spatial patterns obtained in [14] via numerical simulations. Due to the
large number of eigenfunctions used in the expansion of the solution, we used the Mathematica
package to carry out the calculations. Using analogous analysis we considered the same system
of equations, but in the spherical geometry. In this way we can describe spatial patterns on the
boundary of cells or boundaries of various three dimensional multi-cellular structures. In the pa-
per, we studied the formation of angiogenetic network of a ball-shaped tumour. In Appendix B we
provide a Mathematica code used in the analysis of spatial patterns in the planar case.
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Appendix

A. Figures
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Figure 1. Left panel: The two branches of eigenvalues as a function of (k2+ l2) for µ = 0.005

and other parameters as in (3.18). Both of the branches are negative for (k2 + l2) > 0. Right

panel: The ’+’ branch of eigenvalues as a function of (k2 + l2) for all the parameters as in (3.18)

(in particular µ = 0.1).

Figure 2. Early vascular network formation at t = 60 obtained via the Mathematica code

presented in the Appendix. The lightest colour corresponds to φ ∼= 0.7 and the darkest to

φ ∼= 0.4. Left and right panel: the flat colour map corresponding to Figure 6 in [14] for two

different stochastic perturbation described in the text.
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Figure 3. Left panel: A graphical presentation of the function YLm with L = 24 and m =

19. Right panel: The ’+’ branch of eigenvalues λ+Lm = λ+L as a function of L(L + 1) for all

the parameters as in (4.11) (in particular µ = 0.1 · 200).

B. Mathematica code

Here we insert a Mathematica code with commands realizing the successive steps of the procedure
leading to obtain Figure 2. The procedure is described in section 3.

We will make the following change of denotations:

D → d, Dc → S, L0 → L, ã→ a, χ0 → h, β → b, φ0 → u, γ → gamma, µ→ m,

λ− →W1, λ+ →W2, E− → V 1, E+ → V 2, c− k,l →
4

A2
B1(k, l), c+ k,l →

4

A2
B2(k, l).

(A.1)

(* We read in the values of the parameters.*)

d = 1/16; G = d*(1+u)/(1-u+u*Log[u]); A = 100; w = Pi2/A2; a = 3.0; L = 0.6 - 0.002/1.5;
S = 0.5; m = 0.1; b = 15; h = d*m*b*L2; u = 0.54; gamma = 0.014;

(* We create a matrix MZ (see (3.9)), and compute its eigenvalues.*)

MZ = {{ - Z*G, Z*h*u }, {a/L2, -gamma-S*Z }}; WZ = Eigenvalues[MZ]

(*We plot the real and imaginary parts of the first and second eigenvalues. *)

Plot[{Re[WZ[[1]]],Re[WZ[[2]]]},{Z,0,10}]

Plot[{Im[WZ[[1]]],Im[WZ[[2]]]},{Z,0,10}]

(* We create the matrix M with Z from the matrix MZ by replacing Z with w(k2 + l2) and
compute its eigenvalues.*)
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M = {{ - w*(k2+l2)*G, w*(k2+l2)*h*u }, {a/L2, -gamma-S*w*(k2+l2) }}; W = Eigenvalues[M]

(* We table the real parts of the second and first eigenvalues for different values of k and l,
where 0 ≤ k, l ≤ 30. This choice is dictated by the fact that for k2 + l2 > 900 the values of λ+ are
negative and relatively large in their absolute value (see right panel of Figure 1). *)

TW1 =Table[{{k,l},Re[W[[1]]]},{k,0,30},{l,0,30}];

TW2 =Table[{{k,l},Re[W[[2]]]},{k,0,30},{l,0,30}];

(* We calculate the eigenvectors V 1(k2 + l2) corresponding to the eigenvalues W1(k2 + l2),
and the eigenvectors V 2(k2 + l2) corresponding to the eigenvalues W2(k2 + l2) (confer (A.1)). In
defining the eigenvectors corresponding to the eigenvalue W1 we resign from the normalization
condition V 11 = 1 and replace them by the vectors {0,1}, every time their second component
exceeds 1012. *)

TV1 = Table[ If [Abs[a/L2/(gamma + w*(k2 + l2) S + W[[1]])] > 1012, {{k, l}, {0, 1}}, {{k, l},
{1, a/L2/(gamma + w*(k2 + l2) S + W[[1]])}}], {k, 0, 30}, {l, 0, 30}];
TV2 = Table[{{k, l}, {1, a/L2/(gamma + w*(k2 + l2) S + W[[2]])}}, {k, 0, 30}, {l, 0, 30}];

(* We define the piecewise continuous unnormalized function ωφ(x, y) : A×A→ IR by choosing
randomly real numbers within the range {−1, 1} in the small unit squares corresponding to i, j,
where 0 ≤ i, j ≤ 99. *)

TFR=Table[{{i,j}, Random[Real,{-1,1}]},{i,0,99},{j,0,99}];

(* Likewise, we define the piecewise continuous unnormalized function ωc(x, y) : A×A→ IR. *)

TCR=Table[{{i,j}, Random[Real,{-1,1}]},{i,0,99},{j,0,99}];

(* We calculate the coefficients of expansion of the initial data ωφ(x, y) in the basis of functions
cos(πkx

A
) cos(πly

A
) by computing approximate values of the integrals on the right hand sides of

(3.21) and (3.22). *)

TF=Table[{{k,l},Sum[TFR[[i]][[j]][[2]]*Cos[0.5+TFR[[i]][[j]][[1]]

[[1]]*Pi*k/100]*Cos[0.5+T[[i]][[j]][[1]][[2]]*Pi*l/100],

{i,1,100},{j,1,100}]},{k,0,30},{l,0,30}];

TC=Table[{{k,l},Sum[TCR[[i]][[j]][[2]]*Cos[0.5+T[[i]][[j]][[1]]

[[1]]*Pi*k/100]*Cos[0.5+TCR[[i]][[j]][[1]][[2]]*Pi*l/100],

{i,1,100},{j,1,100}]},{k,0,30},{l,0,30}];

(* We solve system (3.21)-(3.22) to calculate the coefficients B1 and B2 determining the coeffi-
cients c− k,l and c+ k,l (see (A.1). *)
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TCoeff = Table[{{k,l},

B1 = B1H/.{Solve[{TF[[k]][[l]][[2]],TC[[k]][[l]][[2]]} = =

B1H*TV1[[k]][[l]][[2]] + B2H*TV2[[k]][[l]][[2]],{B1H,B2H}][[1]][[1]]},

B2 = B2H/.{Solve[{TF[[k]][[l]][[2]],TC[[k]][[l]][[2]]} = =

B1H *TV1[[k]][[l]][[2]] + B2H*TV2[[k]][[l]][[2]],{B1H,B2H}][[1]][[2]]}},

{k,1,31}, {l,1,31}];

(* We make the contour plot of the resulting pattern according to (3.17) and the remarks
following (3.17) concerning the normalization and subtraction of the constant component. *)

FR =0.1*0.54*(50)^(-2)*(Sum[(TCoeff[[k]][[l]][[3]]*

Exp[60*TW2[[k]][[l]][[2]]] +

TCoeff[[k]][[l]][[2]]*Exp[60*TW1[[k]][[l]][[2]]])*

Cos[TF[[k]][[l]][[1]][[1]]*Pi x/100]*

Cos[TF[[k]][[l]][[1]][[2]]*Pi*y/100]*(1-1/2*KroneckerDelta[k,l]),

{k,1,31}, {l,1,31}]-

1/2*(TCoeff[[1]][[1]][[3]]*Exp[60*TW2[[1]][[1]][[2]]] +

TCoeff[[1]][[1]][[2]]*Exp[60*TW1[[1]][[1]][[2]]]));

%\end{lstlisting}

CP =ContourPlot[FR+0.54,{x,0,100},{y,0,100},PlotPoints->100,

PlotRange->All,ColorFunction->"LakeColors"]
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