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A COMPUTATIONAL STUDY OF TRANSMISSION DYNAMICS FOR

DENGUE FEVER WITH A FRACTIONAL APPROACH
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Abstract. Fractional derivatives are considered an influential weapon in terms of analysis of infectious
diseases because of their nonlocal nature. The inclusion of the memory effect is the prime advantage
of fractional-order derivatives. The main objective of this article is to investigate the transmission
dynamics of dengue fever, we consider generalized Caputo-type fractional derivative (GCFD) (CDβ,σ

0 )
for alternate representation of dengue fever disease model. We discuss the existence and uniqueness of
the solution of model by using fixed point theory. Further, an adaptive predictor-corrector technique
is utilized to evaluate the considered model numerically.

Mathematics Subject Classification. 26A33, 34A08, 92D30.

Received December 28, 2020. Accepted May 28, 2021.

1. Introduction

Bacteria and viruses are the sources of many infectious diseases that are very dangerous for human health.
In infectious disease, dengue fever is one of the extremely serious diseases which is caused by a virus spread by
mosquitoes, threatening about 2.5 billion people specifically in tropical countries. Southeast Asia is the most
affected region by epidemic dengue fever [37]. This epidemic has seasonal patterns which often seen during and
after monsoon seasons and this can also explain climate change. So, there is a need for a mathematical model
to knowledge about the awareness of dengue fever. In the last few decades, increasingly study on mathematical
models including dengue fever disease (DFD) were found [8, 9, 11, 13, 21, 33, 34, 36].

The investigation of biological models is now becoming a growing area of research, the scientists and
researchers across the globe giving more importance to these models due to their impact on human life. The
biological mathematical models provide a better idea about the disease transmission and impact of disease in
the community. Many studies have been done on the stability theory and the existence and uniqueness results
of biological models [3, 14, 20, 23, 35, 40].
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In this article, we consider a Susceptible-Infected-Recovered (SIR) based DFD model [37]. The integer-order
model represented by three sets of equations is given as:

Ṡ(t) = ν − (ν + αR)S,

Ė(t) = αSR− γE,

Ṙ(t) = λE− (λE + δ)R,

(1.1)

where S is the population of susceptible people, E represents the infected people with dengue virus and R
represents the number of recovered people from dengue virus. The parameters used in model have their own
meaning given as follows: the parameter ν denote the death rate of susceptible people, α denotes the average
number of bites per infected mosquito, γ represents the rate of infection, the rate of recovery after the infection
is represented by λ and the number of deaths among the susceptible mosquito is represented by δ.

The work in this article is based on alternate description of model in frame of GCFD which is given as:

CDβ,σ
0 S(t) = ν − (ν + αR)S,

CDβ,σ
0 E(t) = αSR− γE,

CDβ,σ
0 R(t) = λE− (λE + δ)R,

(1.2)

with S(0) = N1,E(0) = N2, and R(0) = N3 as initial conditions, where 0 < β ≤ 1 and σ > 0. The total popu-
lation is denoted by Np and separated into three subclasses susceptible, infected and recovered people given as
Np = S(t) + E(t) + R(t).

Fractional calculus (FC) is rising as popular field of research in applied mathematics. In recent years, the
development of models with variable order derivatives from different fields is increasing rapidly. The reason
behind this is the competency of FC to capture memory and the hereditary nature of real-world problems. For
application range of FC we refer [2, 5, 15, 16, 24–28, 38, 39]. The non-local nature of fractional derivatives
gives them greater advantages over integer order. In literature different form of fractional derivative are exist in
them the Caputo derivative [7] is most famous and largely used by researchers. Recently, a generalized version
of fractional integral and derivatives are presented in [19, 30], this generalized Caputo-type derivative has been
used in investigation of many physical models [1, 4, 6, 12, 17, 31].

The rest of the article is arranged into many sections, which start with some new novel definitions of fractional
derivative given in Section 2. Existence and uniqueness for the fractional model are discussed via fixed point
theory, in Section 3. A new numerical scheme and its application to considered model is given in Section 4. In
Section 5, simulations are presented graphically. Lastly, the outcomes are given in Section 6.

2. Primary preliminaries

In this section, first we briefly review some novel definition fractional integral and derivative [22, 29, 32].

Definition 2.1. The Riemann-Liouville fractional integral of a function Φ(t) and order β is defined as:

0Iβ(Φ(t)) =
1

Γ(β)

∫ t

0

(t− η)β−1Φ(η)dη, (2.1)

where Γ(.) is known as gamma function.

Definition 2.2. Let the function Φ(t) be real and differentiable function of order β ∈ [0, 1), then Caputo
derivative is defined as:

C
0 DβΦ(t) = Im−βDmΦ(t) =

1

Γ(m− β)

∫ t

0

(t− η)m−β−1Φm(η)dη. (2.2)
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Now, we briefly present some key definitions of generalized fractional operators that we will use in this work,
given in [18, 19, 30].

Definition 2.3. For β ∈ (m − 1,m], where m belongs to natural number, the generalized fractional integral

Iβ,σa+ , of a function Φ(t), is defined by (if integral exist)

Iβ,σa+ (Φ(t)) =
σ1−β

Γ(β)

∫ t

a

ησ−1(tσ − ησ)β−1Φ(η)dη, t > a, (2.3)

where σ > 0 and a ≥ 0.

Definition 2.4. For β ∈ (m − 1,m], where m belongs to natural number and σ > 0, a ≥ 0, the generalized
Caputo-type fractional derivative of variable order β of a function Φ(t) is defined as:

CDβ,σ
a+ Φ(t) =

σβ−m+1

Γ(m− β)

∫ t

a

ησ−1(tσ − ησ)m−β−1
(
η1−σ d

dη

)m
Φ(η)dη, t > a. (2.4)

3. Existence and uniqueness of solution

Here, we will examine the existence and uniqueness of solution of the fractional model (1.2), by powerful tool
fixed-point theory. Now, we consider DFD system in view of definition (2.3), we obtain

S(t)− S(0) = Iβ,σ0+ {ν − [ν + αR]S},
E(t)− E(0) = Iβ,σ0+ {αSR− γE},
R(t)− R(0) = Iβ,σ0+ {λE− [λE + δ]R}.

(3.1)

For simplicity we consider following kernel

V1(t, S) = ν − [ν + αR]S,
V2(t,E) = αSR− γE,
V3(t,R) = λE− [λE + δ]R.

(3.2)

Thus

S(t)− S(0) = σ1−β

Γ(β)

∫ t
0
ησ−1(tσ − ησ)β−1V1(η, S)dη,

E(t)− E(0) = σ1−β

Γ(β)

∫ t
0
ησ−1(tσ − ησ)β−1V2(η,E)dη,

R(t)− R(0) = σ1−β

Γ(β)

∫ t
0
ησ−1(tσ − ησ)β−1V3(η,R)dη.

(3.3)

Theorem 3.1. The kernels V1,V2 and V3 satisfy the Lipschitz condition and contraction, if holds the following
inequality

0 ≤ Ω1,Ω2,Ω3 < 1.

Proof. Let S and S1 are the two functions for the kernel V1, then we have

‖V1(t, S)−V1(t, S1)‖ = ‖ − (ν + αR)(S− S1)‖, (3.4)
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by property of norm, we have

‖V1(t, S)−V1(t, S1)‖ ≤
(
ν + α||R‖

)
‖S− S1‖,

≤
(
ν + αd3

)
‖S− S1‖,

≤ Ω1‖S− S1‖.
(3.5)

We assume Ω1 = ν + αd3 < 1. Here, we note that ‖S‖ ≤ d1, ‖E‖ ≤ d2 and ‖R‖ ≤ d3 is the bounded function.
Thus, we have

‖V1(t, S)−V1(t, S1)‖ ≤ Ω1‖S− S1‖. (3.6)

Hence, the kernel V1 satisfy the Lipschitz condition, and if 0 ≤ Ω < 1 then it is contraction for V1. Similarly,
the following inequality for remaining kernels can be obtained

‖V2(t,E)−V2(t,E1)‖ ≤ Ω2‖E− E1‖,
‖V3(t,R)−V3(t,R1)‖ ≤ Ω3‖R− R1‖.

(3.7)

Now, we give the recursive formula by using equation (3.3), which is given as

Sn(t) = S(0) + σ1−β

Γ(β)

∫ t

0

ησ−1(tσ − ησ)β−1V1(η,Sn−1)dη,

En(t) = E(0) + σ1−β

Γ(β)

∫ t

0

ησ−1(tσ − ησ)β−1V2(η,En−1)dη,

Rn(t) = R(0) + σ1−β

Γ(β)

∫ t

0

ησ−1(tσ − ησ)β−1V3(η,Rn−1)dη,

(3.8)

with the initial conditions

S(t0) = S(0), E(t0) = E(0), R(t0) = R(0).

Through difference between successive terms, we have following expression

θn(t) = Sn(t)− Sn−1(t) = σ1−β

Γ(β)

∫ t

0

ησ−1(tσ − ησ)β−1
(
V1(η,Sn−1)−V1(η,Sn−2)

)
dη,

φn(t) = En(t)− En−1(t) = σ1−β

Γ(β)

∫ t

0

ησ−1(tσ − ησ)β−1
(
V2(η,En−1)−V2(η,En−2)

)
dη,

ψn(t) = Rn(t)− Rn−1(t) = σ1−β

Γ(β)

∫ t

0

ησ−1(tσ − ησ)β−1
(
V3(η,Rn−1)−V3(η,Rn−2)

)
dη.

(3.9)

It is clear that

Sn(t) =

n∑
i=1

θi(t), En(t) =

n∑
i=1

φi(t), Rn(t) =

n∑
i=1

ψi(t).

Performing the norm on equation (3.9) and using the triangular inequality, we get

‖θn(t)‖ =‖Sn(t)− Sn−1(t)‖

≤ σ1−β

Γ(β)

∥∥∥∥∫ t

0

ησ−1(tσ − ησ)β−1
(
V1(η,Sn−1)−V1(η,Sn−2)

)
dη

∥∥∥∥ . (3.10)
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As earlier we have shown that the kernel satisfies Lipschitz condition, we obtain

‖Sn(t)− Sn−1(t)‖ ≤ Ω1σ
1−β

Γ(β)

∫ t

0

ησ−1(tσ − ησ)β−1‖Sn−1 − Sn−2‖dη. (3.11)

Thus we have

‖θn(t)‖ ≤ Ω1σ
1−β

Γ(β)

∫ t

0

ησ−1(tσ − ησ)β−1‖θn−1(η)‖dη. (3.12)

Similarly, we can obtain the expression for

‖φn(t)‖ ≤ Ω2σ
1−β

Γ(β)

∫ t

0

ησ−1(tσ − ησ)β−1‖φn−1(η)‖dη,

‖ψn(t)‖ ≤ Ω3σ
1−β

Γ(β)

∫ t

0

ησ−1(tσ − ησ)β−1‖ψn−1(η)‖dη.
(3.13)

Theorem 3.2. The solution of the system exist, if there exist tσmax such that

( tσmax

σ

)β Ω1

Γ(1 + β)
< 1.

Proof. As we know that the S(t),E(t),R(t) are the bounded functions and kernels hold the Lipschitz condition.
The following succeeding relations can be obtained using equations (3.12) and (3.13) given as:

‖θn(t)‖ ≤ ‖S0‖
[(

tσmax

σ

)β
Ω1

Γ(1+β)

]n
,

‖φn(t)‖ ≤ ‖E0‖
[(

tσmax

σ

)β
Ω2

Γ(1+β)

]n
,

‖ψn(t)‖ ≤ ‖R0‖
[(

tσmax

σ

)β
Ω3

Γ(1+β)

]n
.

(3.14)

Therefore, the solution of the model exists and is smooth. To prove that the above functions are the solutions
of the system, we consider that

S(t)− S(0) = Sn(t)− Cn(t),
E(t)− E(0) = En(t)− Fn(t),
R(t)− R(0) = Rn(t)− Zn(t).

(3.15)

Here, the aim is to show that when n → ∞ the term ‖Cn(t)‖ goes to zero. Now, considering the norm and
Lipschitz condition for the kernel V1, we get

‖Cn(t)‖ ≤
∥∥∥∥σ1−β

Γ(β)

∫ t

0

ησ−1(tσ − ησ)β−1
(
V1(η,S)−V1(η,Sn−1)

)
dη

∥∥∥∥ .
≤ σ1−β

Γ(β)

∫ t

0

ησ−1(tσ − ησ)β−1 ‖V1(η,S)−V1(η,Sn−1)‖ dη.

≤
(
tσ

σ

)β Ω1

Γ(1+β)‖S− Sn−1‖.

(3.16)
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Repeating the same process, we obtain

‖Cn(t)‖ ≤ ‖S(0)‖
[( tσ

σ

)β 1

Γ(1 + β)

]n+1

Ωn1 M, (3.17)

at tmax, we have

‖Cn(t)‖ ≤ ‖S(0)‖
[( tσmax

σ

)β 1

Γ(1 + β)

]n+1

Ωn1 M. (3.18)

Apply the limit on equation (3.18), when limit n → ∞, we obtain ‖Cn(t)‖ → 0. Similarly, we can establish
‖Fn(t)‖ → 0, and ‖Zn(t)‖ → 0.

Another significant aspect is to establish the uniqueness of solutions of the model. To show the solution is
unique, we assume that S1(t),E1(t) and R1(t), be another solutions of the model (1.2), then

S(t)− S1(t) =
σ1−β

Γ(β)

∫ t

0

ησ−1(tσ − ησ)β−1
(
V1(η,S)−V1(η,S1)

)
dη. (3.19)

Using norm on equation (3.19), we get

‖S(t)− S1(t)‖ ≤ σ1−β

Γ(β)

∫ t

0

ησ−1(tσ − ησ)β−1‖V1(η,S)−V1(η,S1)‖dη, (3.20)

because the kernel satisfies the Lipschitz condition, we get

‖S(t)− S1(t)‖ ≤
( tσ
σ

)β Ω1

Γ(1 + β)
‖S(t)− S1(t)‖, (3.21)

‖S(t)− S1(t)‖
[
1−

( tσ
σ

)β Ω1

Γ(1 + β)

]
≤ 0, (3.22)

‖S(t)− S1(t)‖ = 0,=⇒ S(t) = S1(t). (3.23)

Thus, we achieved the uniqueness of the system solution. In similar manner, we can prove that

E(t) = E1(t), R(t) = R1(t). (3.24)

4. Numerical technique

Numerical techniques are taken for solutions when all the existing analytical technique are fails. Numerical
schemes are considered as best tool for biological model solutions modelled with fractional operators. Here,
we describe the new adaptive predictor-corrector (P-C) method proposed in [30], this method is extension of
predictor-corrector method proposed in [10]. Let’s consider an initial value problem of the form{

Dβ,σ
a+ Φ(t) = f(t,Φ(t)), t ∈ [0, T ],

Φn(a) = Φn0 , n = 0, 1, . . . , dβe, (4.1)
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where β ∈ (m − 1,m], a ≥ 0 and σ > 0 and Φ ∈ Cm([a,T]). The equation (4.1) is equivalent, using ([30],
Thm. 3) to Volterra integral equation

Φ(t) = v(t) +
σ1−β

Γ(β)

∫ t

a

ησ−1(tσ − ησ)β−1f(η,Φ(η))dη, (4.2)

where, v(t) =

m−1∑
k=0

1

σkk!
(tσ − aσ)k

[(
y1−σ d

dy

)k
Φ(y)

]∣∣
y=a

.

The first step of our method, according to the hypothesis that the function Φ such that a unique solution exists
on some interval [a, T], the interval [a, T] divided into N unequal subinterval {[tn, tn+1], n = 0, 1, . . . ,N− 1},
using mesh points {

t0 = a,

tn+1 = (tσn + ~)
1
σ , n = 0, 1, . . . ,N− 1,

(4.3)

where ~ = (Tσ−aσ)
N and N is a natural number. Now, we are going to develop the approximations Φn, n =

0, 1, 2, . . . , N, to solve equation (4.1). The basic step, assuming that we have already calculated the approxima-
tions Φ` ≈ Φ(t`), ` = 1, 2, . . . , n, is that we want to get the approximate solution Φn+1 ≈ Φ(tn + 1) with the
integral equation

Φ(tn+1) = v(tn+1) +
σ1−β

Γ(β)

∫ tn+1

a

ησ−1(tσn+1 − ησ)β−1f(η,Φ(η))dη. (4.4)

Making the substitution

µ = ησ, (4.5)

we get,

Φ(tn+1) = v(tn+1) +
σ−β

Γ(β)

∫ tσn+1

aσ
(tσn+1 − µ)β−1f(µ1/σ,Φ(µ1/σ))dµ, (4.6)

then

Φ(tn+1) = v(tn+1) +
σ−β

Γ(β)

n∑
`=0

∫ tσ`+1

tσ`

(tσn+1 − µ)β−1f(µ1/σ,Φ(µ1/σ))dµ. (4.7)

Next, if we use the trapezoidal quadrature formula with respect to the weight function (tσn+1 − .)β−1 to

approximate the integrals on the right-hand side of equation (4.7) replacing the function f(µ1/σ,Φ1/σ) by its
piecewise linear interpolant with nodes chosen at the tσ` (` = 0, 1, . . . , n+ 1), then we get

∫ tσ`+1

tσ`

(tσn+1 − µ)β−1f(µ1/σ,Φ(µ1/σ))dµ

≈ ~β

β(β + 1)

{(
(n− `)β+1 − (n− `− β)(n− `+ 1)β

)
f(t`,Φ(t`))

+
(
(n− `+ 1)β+1 − (n− `+ β + 1)(n− `)β

)
f(t`+1,Φ(t`+1))

}
,

(4.8)
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with the help of equations (4.7) and (4.8), we obtain the corrector formula for Φ(tn+1), {n = 0, 1, . . . ,N− 1},

Φ(tn+1) ≈ v(tn+1) +
σ−β~β

Γ(β + 2)

n∑
`=0

∆`,n+1f(t`,Φ(t`)) +
σ−β~β

Γ(β + 2)
f(tn+1,Φ(tn+1)), (4.9)

where the weights ∆`,n+1 is defined as:

∆`,n+1 =

{
nβ+1 − (n− β)(n+ 1)β , if ` = 0,
(n− `+ 2)β+1 + (n− `)β+1 − 2(n− `+ 1)β+1, if 1 ≤ ` ≤ n. (4.10)

The final step of our method is to replace the quantity Φ(tn+1) present on the right side of the equation (4.9)
with the quantity ΦP(tn+1) is called predictor value which can be obtained by using one-step Adams-Bashforth
method to the equation (4.6). For this, the function f(µ1/σ,Φ(µ1/σ)) is replaced by f(tj ,Φ(tj)) in equation (4.7)
at each integral, we get

ΦP(tn+1) ≈ v(tn+1) +
σ−β

Γ(β)

n∑
`=0

∫ tσ`+1

tσ`

(tσn+1 − µ)β−1f(t`,Φ(t`))dµ,

= v(tn+1) +
σ−β~β

Γ(β + 1)

n∑
`=0

[(n+ 1− `)β − (n− `)β ]f(t`,Φ(t`)).

(4.11)

Therefore, the adaptive P-C technique, for calculating the approximation Φn+1 ≈ Φ(tn+1) is fully described by
the formula

Φn+1 ≈ v(tn+1) +
σ−β~β

Γ(β + 2)

n∑
`=0

∆`,n+1f(t`,Φ`) +
σ−β~β

Γ(β + 2)
f(tn+1,Φ

P
n+1), (4.12)

where Φ` ≈ Φ(t`), ` = 0, 1, . . . , n, and the predicted value ΦP
n+1 ≈ ΦP(tn+1) can be determined as expressed in

equation (4.11). When σ = 1, the adaptive P-C technique is reduced to P-C technique given in [10].
Now, we apply the above adaptive P-C approach on DFD model (1.2). Taking the iterative solution form

given in equation (4.12), approximations Sn+1,En+1 and Rn+1 are defined as:

Sn+1 ≈ S(0) +
σ−β~β

Γ(β + 2)

n∑
`=0

∆`,n+1G1(t`,S`,E`,R`)

+
σ−β~β

Γ(β + 2)
G1(tn+1,S

P
n+1,E

P
n+1,R

P
n+1),

En+1 ≈ E(0) +
σ−β~β

Γ(β + 2)

n∑
`=0

∆`,n+1G2(t`,S`,E`,R`)

+
σ−β~β

Γ(β + 2)
G2(tn+1,S

P
n+1,E

P
n+1,R

P
n+1),

Rn+1 ≈ R(0) +
σ−β~β

Γ(β + 2)

n∑
`=0

∆`,n+1G3(t`,S`,E`,R`)

+
σ−β~β

Γ(β + 2)
G3(tn+1,S

P
n+1,E

P
n+1,R

P
n+1),

(4.13)
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where ~ = Tσ

N , and SP
n+1,E

P
n+1 and RP

n+1 are defined as:

SP
n+1 ≈ S(0) +

σ−β~β

Γ(β + 1)

n∑
`=0

Θ`,n+1G1(t`,S`,E`,R`),

EP
n+1 ≈ E(0) +

σ−β~β

Γ(β + 1)

n∑
`=0

Θ`,n+1G2(t`,S`,E`,R`),

RP
n+1 ≈ R(0) +

σ−β~β

Γ(β + 1)

n∑
`=0

Θ`,n+1G3(t`,S`,E`,R`),

(4.14)

where Θ`,n+1 = [(n+ 1− `)β − (n− `)β ], and G1,G2 and G3 are given as:

G1(t, S,E,R) := ν − (ν + αR)S,
G2(t, S,E,R) := αSR− γE,
G3(t, S,E,R) := λE− (λE + δ)R.

(4.15)

5. Numerical results and discussion

In previous subsection, as we obtained the solution form of model (1.2). Now, we have presented the obtained
numerical results via plots. In computation, all the parameters data are taken from [21], which are given as:

ν = 0.0045, α = 0.006, γ = 0.333, λ = 0.375, δ = 0.02941.

Total population Np = 5071126, using this the initial values are defined as

S(0) = N1 =
5070822

5071126
= 0.9999400528,

E(0) = N2 =
304

5071126
= 0.0000599472, R(0) = N3 = 0.1.

Figure 1. The dynamics of susceptible population at arbitrary β and σ = 1.1 for DFD
model (1.2).
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Figure 2. The dynamics of infected population at arbitrary β and σ = 1.1 for DFD model (1.2).

Figure 3. The dynamics of recovered population at arbitrary β and σ = 1.1 for DFD
model (1.2).

All the plots Figures 1–6 are display the transmission dynamics of dengue fever in various subclasses, when
T = 60 days and N = 600 for various values of the orders β and σ.

6. Conclusion

In this article, we analyzed an arbitrary order DFD model using generalized Caputo derivative. The existence
of model and its uniqueness have been investigated with fixed point theory. Further, a new adaptive P-C
algorithm was implemented for the solution of the DFD model. The simulations were presented at various
fractional-order through graphics. The presented graphics show that the results depend on the fractional-
order parameters β and σ. Finally, we can say the considered generalized fractional operator provides a better
explanation of the system dynamics and can be applied for the analysis of other infectious diseases model.
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Figure 4. The dynamics of susceptible population at arbitrary σ and β = 0.99 for DFD
model (1.2).

Figure 5. The dynamics of infected population at arbitrary σ and β = 0.99 for DFD
model (1.2).

Figure 6. The dynamics of recovered population at arbitrary σ and β = 0.99 for DFD
model (1.2).
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