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THRESHOLD DYNAMICS FOR A CLASS OF STOCHASTIC SIRS

EPIDEMIC MODELS WITH NONLINEAR INCIDENCE AND

MARKOVIAN SWITCHING

A. El Koufi1,* , A. Bennar1, N. Yousfi1 and M. Pitchaimani2

Abstract. In this paper, we consider a stochastic SIRS epidemic model with nonlinear incidence and
Markovian switching. By using the stochastic calculus background, we establish that the stochastic
threshold Rswt can be used to determine the compartment dynamics of the stochastic system. Some
examples and numerical simulations are presented to confirm the theoretical results established in this
paper.
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1. Introduction and preliminaries

1.1. Introduction

Stochastic calculus generally has been applied in various areas such as economics, physics, biology and
epidemiology. Recently, many classes of stochastic epidemic models have been proposed and studied (see
for example, [3, 5, 8, 22, 24, 30, 31, 33, 35]). In addition, stochastic models give a real vision, analysis and
modelization of infectious diseases compared with the deterministic counterparts [21, 37, 42].

The principal research questions connected with the stochastic modeling and analysis approaches include
the study of the existence of a positive solution in the probabilistic sense, the purpose of the threshold, and
conditions that guaranteed the persistence or extinction of the disease. Numerous works have been realized
in this sense. For example, Zhang et al. [40] introduced the effect of white noise into the deterministic SIQS
epidemic model that was suggested by Hethcote et al. [9]. They proved that the system has a unique positive
global solution, and presented a threshold of the proposed stochastic system that determines the extinction and
persistence of the disease. Zhang et al. [41] proposed a stochastic SIRS epidemic model with media coverage and
saturated incidence rate. They discussed the stochastic endemic dynamics by using suitable Lyapunov functions,
and the ergodic stationary distribution of stochastic model by using the method of Khasminskii [17].

In mathematical epidemiology, the incidence rate of a disease indicates the number of new infectious cases in
the population per unit of time. The most incidence function used in mathematical epidemiological models is
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the bilinear incidence rate (simple mass action) [13, 14]. However, there exist other types of incidence functions
and each one represents a specific role (see, [1, 6, 12, 16, 38]). Many scholars illustrate their interest in the
study of the effect of nonlinear incidence rate in epidemic models. In [8], Han et al. proposed a stochastic
SIR epidemic system with mixed nonlinear incidence rates, they investigated the asymptotic dynamics of the
stochastic system by employing Markov semigroup theory and the Fokker-Planck equation and gave sufficient
conditions for extinction of disease. Rajasekar et al. [31] proposed a stochastic SIR epidemic model with logistic
birth to investigate the threshold of a system that consists of susceptible, infectious and removed individuals.
They demonstrated that the extinction and persistence of the disease in their stochastic model are showed by
the value of the proposed stochastic basic reproduction number. Also they used the Lyapunov function method
to establish sufficient conditions for the existence of a stationary distribution of the positive solutions to the
proposed model. In [33], authors investigated a class of stochastic SIS epidemic models with nonlinear incidence
and periodic coefficients. In [35], Tang et al. proposed a class of stochastic SIRS epidemic models with nonlinear
incidence βf(S)g(I) and given the threshold that determines the extinction and persistence in the mean of the
epidemic disease. In addition, they showed the existence of a unique stationary distribution of the model under
sufficient conditions in the threshold R̃0. In [24], the authors investigated stochastic SIRS epidemic model with
logistic growth and general nonlinear incidence rate p(S, I). By constructing a suitable Lyapunov function they
established sufficient conditions for the existence and uniqueness of an ergodic stationary distribution of the
positive solutions to the stochastic system. In this paper, we consider the following stochastic SIRS epidemic
model with general nonlinear incidence f(S, I,R)

 dS(t) = (A− µS − βf(S, I,R) + δR) dt− σf(S, I,R)dMB(t),
dI(t) = (βf(S, I,R)− (µ+ γ + α)I) dt+ σf(S, I,R)dMB(t),
dR(t) = (γI − (µ+ δ)R) dt,

(1.1)

where S(t), I(t) and R(t) denote the number of susceptible, infected and recovered individuals at time t,
respectively. A denotes the recruitment rate of the susceptible class, µ represents the natural death rate of S,
I and R class, γ is the recovery rate of infectious individuals, δ means that the rate of the loss of immunity
for recovered individuals, α is the disease-related death rate of infectious individuals, the transmission of the
infection is modeled by a nonlinear incidence rate βf(S, I,R), where β represents the transmission rate between S
and I. In addition, MB(t) is the independent standard Brownian motion defined on a complete probability space
(Ω,F , {F}t≥0,P) with a filtration {F}t≥0 satisfying the usual conditions, and σ is the intensity of stochastic
perturbation.

The function f(S, I,R) satisfies the following hypotheses. Let

Ξ =
{

(S, I,R) ∈ R3
+ | S > 0, I ≥ 0, R ≥ 0

}
.

(As1) f is nonnegative and twice continuously differentiable for any (S, I,R) ∈ Ξ, and monotonically increas-
ing with respect to S and monotonically decreasing with respect to R.

(As2) f(S, 0, 0) = 0 and f(S,I,R)
I ≤ ∂f(mS ,0,0)

∂I for all (S, I,R) ∈ Ξ, moreover ∂f(mS ,0,0)
∂I > 0.

The basic reproduction number R0 of the corresponding deterministic system of (1) is defined as follows:

R0 =
∂f(mS , 0, 0)

∂I

β

µ+ γ + α

where mS = A
µ . The value of the basic reproduction number R0 indicates the extinction or persistence of the

disease. It also describes the dynamic behaviors of the deterministic model.
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The stochastic model (1.1) has been addressed by Riffat et al. in [32]. They discussed the asymptotic properties
of the solution according to the following stochastic threshold value:

R̃0 = R0 −
(
∂f(mS , 0, 0)

∂I

)2
σ2

2(µ+ γ + α)
.

Other environmental noise can be introduced in the epidemics models named color noise or telegraph noise [15,
18, 29] and can be illustrated like a switching between two or more regimes of environment which change through
factors such as socio-cultural factors, changes in climate and nutrition. Often the switching among different
environments is memoryless and the waiting time for the next switching follows an exponential distribution
[2, 39]. Therefore the regime-switching can be modelled by a continuous time Markov chain {r(t)}t>0 with
values in a finite state space I = {1, 2, . . . , N}. In [19] Lan et al. explored the dynamics of a stochastic SIRS
epidemic model with non-monotone incidence rate and Markovian switching. They addressed the threshold value
of the disease that determines persistence and extinction of the disease and using the Markov semigroups theory
they proved that the densities of the distributions of the solution can converge in L1 to an invariant density. Phu
et al. in [28] studied the longtime dynamics of a stochastic SIS epidemic model with general incidence functional
response under regime-switching. They attained a sufficient and almost necessary condition for the extinction
and persistence of the epidemic system and discussed the rate of all convergence of the solution. Motivated by
the above works, in this paper, we propose the following stochastic SIRS epidemic model with both white noise
and telegraph noise perturbations and nonlinear incidence: dS(t) = (A(r(t))− µ(r(t))S − β(r(t))f(S, I,R) + δ(r(t))R) dt− σ(r(t))f(S, I,R)dMB(t),

dI(t) = (β(r(t))f(S, I,R)− (µ(r(t)) + γ(r(t)) + α(r(t)))I) dt+ σ(r(t))f(S, I,R)dMB(t),
dR(t) = (γ(r(t))I − (µ(r(t)) + δ(r(t)))R) dt,

(1.2)

where A(i), µ(i), β(i), δ(i), γ(i), α(i) and σ(i) are all positive constants for any i ∈ I.
It is important to note that our stochastic system (1.2) includes and improves many stochastic models existing

in the literature. For example, the stochastic model with Beddington-DeAngelis incidence presented by Lin et al.
[20], when A(i) = µ(i) and f(S, I,R) = β(i)SI/1 + α1(i)S + α2(i)I. The stochastic switched model proposed
by Han and Zhao in [7], when A = µ, α = 0 and the infection transmission process is modeled by the bilinear
incidence rate (also called the incidence in mass action). The stochastic system addressed by Tuong et al. [36],
when A = Kµ (where K is a carrying capacity) and f(S, I,R) = f(S, I). The stochastic models presented in
[33], when the switches between two or more regimes of environment are neglected and f(S, I,R) = f(S)g(I),
and in [32], when the regime-switching is not considered.

This work aims at studying the asymptotic properties of the proposed stochastic switched epidemic model
(1.2) and at giving a threshold that determines the extinction and the persistence of the disease and which
coincides with the threshold of the corresponding deterministic model in absence of white and colored noise.
The organization of this paper is as follows: In Section 2, the sufficient conditions on the extinction of the
disease in the model (1.2) with probability one are affirmed and proved. In Section 3, the sufficient conditions
on the persistence of the disease in the system (1.2) with probability one are stated and proved. In Section 4,
numerical simulations are displayed to confirm the theoretical study of this paper.

1.2. Preliminaries

Let {r(t)}t>0 be a right-continuous Markov chain on the probability space (Ω,F , {F}t≥0,P) taking values in
a finite-state space i ∈ I with the generator Φ = (φuv)1≤u,v≤N given, for ∆t > 0, by

P (r(t+ ∆t) = v | r(t) = u) =

{
φuv∆t+ o(∆t) if u 6= v,
1 + φuu∆t+ o(∆t) if u = v.
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Here, φuv is the transition rate from u to v and φuv ≥ 0 if u 6= v, while

φuu = −
∑
u6=v

φuv.

Assume Markov chain is irreducible r(·) and independent of the Brownian motion MB(·). Hence, there exists
a unique stationary distribution π = (π1, . . . , πN ) of r(t) such that

πΦ = 0,

and

N∑
i=1

πi = 1, πi > 0, i ∈ I.

For any vector l = (l (1) , . . . , l (N))
T

, let l̂ = mini∈I {l (i)} and ľ = maxi∈I {l (i)}.
Let

Λ =

{
(S, I,R) ∈ R3

+ : S + I +R ≤ Ǎ

µ̂
, mS

}
.

By using the same technique as in [26], we can easily proved, for X(0) = (S(0), I(0), R(0)) ∈ Λ, that there is a
unique solution (S(t), I(t), R(t)) to system (1.2) on t ≥ 0, and the solution will remain in Λ with probability 1.

We consider the following stochastic system

dζ(t) = f(t, ζ(t), r(t))dt+ g(t, ζ(t), r(t))dB(t), (1.3)

where B(t) is a d-dimensional standard Wiener processes defined on a complete probability space
(Ω,F , {Ft}t≥0,P). Denote by C1,2(Rd× S;R+) the family of all nonnegative functions H defined on Rd× S such
that they are continuously twice differentiable in ζ and one differentiable in t. The operator L [25] associated
with (1.3) is defined as follows:

LH(ζ, i) = Ht(t, ζ, i) +Hζ(t, ζ, i)f(t, ζ, i) +
1

2
gT (t, ζ, i)Hζ,ζ(t, ζ, i)g(t, ζ, i)

+
∑
j∈S

φijH(t, ζ, j),

where Hζ and Hζ,ζ represents the gradient and Hessian of H, and T is the transpose of a matrix.

Remark 1.1. Under (As1) and (As2), we have

∂f(0, I, R)

∂I
=
∂f(0, I, R)

∂R
=
∂f(S, 0, R)

∂S
=
∂f(S, 0, R)

∂R
, for all (S, I,R) ∈ Ξ.

In addition, ∂f(S,0,R)
∂I is nondecreasing with respect to S and nonincreasing with respect to R.

Lemma 1.2. Suppose that (As1) and (As2) hold. For all u > v > 0, define

D =
{

(S, I,R) ∈ R3
+ | v ≤ S + I +R ≤ u

}
.



THRESHOLD DYNAMICS FOR A CLASS OF STOCHASTIC SIRS EPIDEMIC MODELS 5

Then

max
(S,I,R)∈D

{
f(S, I,R)

S
,
f(S, I,R)

I

}
<∞,

max
(S,I,R)∈D

{∣∣∣∣1I ∂f(S, I,R)

∂I
− f(S, I,R)

I2

∣∣∣∣ , ∣∣∣∣1I ∂f(S, I,R)

∂S

∣∣∣∣} <∞.

2. Extinction

In this section, we are interested in the extinction of the disease. Next, we define the threshold of our stochastic
system (1.2) by

Rswt =

∑N
i=0 πiβ(i)∂f(mS ,0,0)

∂I∑N
i=0 πi

[
µ(i) + λ(i) + α(i) + σ2(i)

2

(
∂f(mS ,0,0)

∂I

)2
] .

Theorem 2.1. Let (S(t), I(t), R(t)) be a solution of the epidemic model (1.2) along with initial value
(S(0), I(0), R(0)) ∈ Λ. If

Rswt < 1, and
∂f(mS , 0, 0)

∂I
≤ β(i)

σ2(i)
for all i ∈ I,

then

lim
t→∞

I(t) = 0, lim
t→∞

R(t) = 0 a.s.

Namely, the epidemic infection dies out from the population with probability one.

Proof. Appling Itô’s formula on ln I(t), we obtain

d ln I(t) =

[
β(r)

f(S, I,R)

I
− (µ(r) + λ(r) + α(r))− σ2(r)

2

(
f(S, I,R)

I

)2
]

dt

+σ(r)
f(S, I,R)

I
dMB(t)

= Γ

(
f(S, I,R)

I

)
dt+ σ(r)

f(S, I,R)

I
dMB(t),

with Γ (z) = −(µ(i) + λ(i) + α(i)) + β(i)z − σ2(i)
2 z2, for i ∈ I. Note that, for any i ∈ I the function Γ in

monotone increasing for z ∈ [0, β(i)/σ2(i)]. Using the condition σ2 ≤ β/∂f(mS , 0, 0)/∂I and the fact that
f(S,I,R)

I ≤ ∂f(mS ,0,0)
∂I , we have

Γ (z) ≤ Γ

(
∂f(mS , 0, 0)

∂I

)
.
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Then,

d ln I(t) =

[
β(r)

∂f(mS , 0, 0)

∂I
− (µ(r) + λ(r) + α(r))− σ2(r)

2

(
∂f(mS , 0, 0)

∂I

)2
]

dt

+σ(r)
f(S, I,R)

I
dMB(t)

, R(r)dt+ σ(r)
f(S, I,R)

I
dMB(t). (2.1)

Integrating both sides of (2.1) from 0 to t and then dividing by t, we get

ln I(t)

t
=

ln I(0)

t
+

1

t

∫ t

0

R(r(τ))dτ +
1

t

∫ t

0

σ(r(τ))
f(S(τ), I(τ), R(τ))

I(τ)
dMB(τ).

(2.2)

Using the ergodicity of Markov chain r(t), we have

lim sup
t→∞

1

t

∫ t

0

R(r(τ))dτ =

N∑
i=0

πiR(i). (2.3)

Taking the superior limit on both sides of (2.2), using the strong law of large numbers for local martingales and
(2.3), we obtain

lim sup
t→∞

ln I(t)

t
≤

N∑
i=0

πiR(i)

,
N∑
i=0

πi

[
µ(i) + λ(i) + α(i) +

σ2(i)

2

(
∂f(mS , 0, 0)

∂I

)2
]

[Rswt − 1], a.s.

Since Rswt < 1, we conclude that

lim sup
t→∞

ln I(t)

t
< 0, a.s.

which implies that

lim
t→∞

I(t) = 0, a.s. (2.4)

Therefore, let Θ̄ = {ω ∈ Ω : limt→∞ I(t) = 0}, then (2.4) implies P(Θ̄) = 1. Hence, for any ω ∈ Θ̄ and any
constant ε > 0, there exists a constant Cωε > 0 such that

Iω(t) ≤ ε, for all t > Cωε . (2.5)

From (2.5) and the third equation of system (1.2), we obtain

dRω(t) ≤
[
γ̌Iω(t)−

(
µ̂+ δ̂

)
Rω(t)

]
dt
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≤
[
γ̌ε−

(
µ̂+ δ̂

)
Rω(t)

]
dt,

for all ω ∈ Θ̄, t > Cωε .
Therefore, using the comparison theorem we get

lim sup
t→∞

Rω(t) ≤ γ̌ε

µ̂+ δ̂
, for all ω ∈ Θ̄.

We see that Rω(t) > 0 for all ω in Θ̄ and t > 0, by arbitrariness of ε, we get

lim
t→∞

Rω(t) = 0, ω ∈ Θ̄.

We have P(Θ̄) = 1, thus we get

lim
t→∞

R(t) = 0, a.s.

This completes the proof.

Remark 2.2. Noting that the number Rswt is smaller than R0. This means that the disease in the stochastic
model (1.2) with Markov switch will go extinct with probability one but the disease in the corresponding
deterministic model persists.

3. Persistence of the disease

In the following, we propose sufficient conditions for the persistence in mean of disease in model (1.2). Then,
we have the following result.

Theorem 3.1. Assume that (As1) and (As2) hold. If Rswt > 1, then for any given initial value
(S(0), I(0), R(0)) ∈ Λ, the solution of (1.2) satisfies

lim inf
t→∞

1

t

∫ t

0

S(s)ds ≥ W3[Rswt − 1] a.s.

lim inf
t→∞

1

t

∫ t

0

I(s)ds ≥ W1[Rswt − 1] a.s.

lim inf
t→∞

1

t

∫ t

0

R(s)ds ≥ W2[Rswt − 1] a.s.

where Wi, (i = 1, 2, 3) are positive constants.

Proof. First, applying the generalized Itô’s formula on the function Ψ(I, i) = ln I + ξ(i), we have

dΨ =

[
β(i)

f(S, I,R)

I
− (µ(i) + λ(i) + α(i))− σ2(i)

2

(
f(S, I,R)

I

)2

+

N∑
k=1

φikξ(k)

]
dt+ σ(i)

f(S, I,R)

I
dMB(t).
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From (As1), we get

dΨ ≥

[
β(i)

f(S, I,R)

I
− (µ(i) + λ(i) + α(i))− σ2(i)

2

(
∂f(mS , 0, 0)

∂I

)2

+

N∑
k=1

φikξ(k)

]
dt+ σ(i)

f(S, I,R)

I
dMB(t),

then

dΨ ≥

[
β(i)

∂f(mS , 0, 0)

∂I
− (µ(i) + λ(i) + α(i))− σ2(i)

2

(
∂f(mS , 0, 0)

∂I

)2

+

N∑
k=1

φikξ(k)

]
dt+ β(i)

(
f(S, I,R)

I
− f(mS , I, R)

I
+
f(mS , I, R)

I

−∂f(mS , 0, R)

∂I
+
∂f(mS , 0, R)

∂I
− ∂f(mS , 0, 0)

∂I

)
dt+ σ(i)

f(S, I,R)

I
dMB(t).

By the Lagrange’s mean value theorem, we get

f(S(t), I(t), R(t))

I(t)
− f(mS , I(t), R(t))

I(t)
+
f(mS , I(t), R(t))

I(t)
− ∂f(mS , 0, R(t))

∂I

+
∂f(mS , 0, R(t))

∂I
− ∂f(mS , 0, 0)

∂I

=
1

I(t)

∂f($1(t), I(t), R(t))

∂S
(S(t)−mS) +

[
1

$2(t)

∂f(mS , $2(t), R(t))

∂I

−f(mS , $2(t), R(t))

$2
2(t)

]
I(t) +

∂2f(mS , 0, $3(t))

∂I∂R
R(t),

with $1(t) ∈ (S(t),mS), $2(t) ∈ (0, I(t)) and $3(t) ∈ (0, R(t)). Then

dΨ ≥

[
β(i)

∂f(mS , 0, 0)

∂I
− (µ(i) + λ(i) + α(i))− σ2(i)

2

(
∂f(mS , 0, 0)

∂I

)2

+

N∑
k=1

φikξ(k) + β(i)
1

I(t)
× ∂f($1(t), I(t), R(t))

∂S
(S(t)−mS)

+β(i)
∂f(mS ,$2(t),R(t))

∂I $2(t)− f(mS , $2(t), R(t))

$2
2(t)

I(t)

+β(i)
∂2f(mS , 0, $3(t))

∂I∂R
R(t)

]
dt+ σ(i)

f(S, I,R)

I
dMB(t).

By virtue of Lemma 1.2, since ($1(t), I(t), R(t)) ∈ Λ, (mS , $2(t), R(t)) ∈ Λ and (mS , 0, $3(t)) ∈ Λ a.s. for all
t ≥ 0, we have

1

I(t)

∂f($1(t), I(t), R(t))

∂S
≤ C1,

∂2f(mS , 0, $3(t))

∂I∂R
≥ −C2 a.s.



THRESHOLD DYNAMICS FOR A CLASS OF STOCHASTIC SIRS EPIDEMIC MODELS 9

∂f(mS ,$2(t),R(t))
∂I $2(t)− f(mS , $2(t), R(t))

$2
2(t)

≥ −C3 a.s.

where

C1 = max

{∣∣∣∣1I ∂f(S, I,R)

∂S

∣∣∣∣} <∞, C2 = max

{∣∣∣∣∂2f(mS , 0, R)

∂I∂R

∣∣∣∣} <∞,

C3 = max

{∣∣∣∣∣
∂f(mS ,I,R)

∂I $2(t)− f(mS , I, R)

$2
2(t)

∣∣∣∣∣
}
<∞.

From the inequalities above we obtain

dΨ ≥

[
β(i)

∂f(mS , 0, 0)

∂I
− (µ(i) + λ(i) + α(i))− σ2(i)

2

(
∂f(mS , 0, 0)

∂I

)2

+

N∑
k=1

φikξ(k)

]
dt− β̌ [C1(mS − S) + C2I + C3R] dt

+σ(i)
f(S, I,R)

I
dMB(t)

=

[
R̄∗(i) +

N∑
k=1

φikξ(k)

]
dt− β̌ [C1(mS − S) + C2I + C3R] dt

+σ(i)
f(S, I,R)

I
dMB(t). (3.1)

Since the generator matrix Φ is irreducible, for R̄∗ = (R̄∗(1), R̄∗(2), ..., R̄∗(N)) such that R̄∗(i) =

β(i)∂f(mS ,0,0)
∂I − (µ(i) + λ(i) + α(i))− σ2(i)

2

(
∂f(mS ,0,0)

∂I

)2

, there exists ξ = (ξ(1), ξ(2), ..., ξ(N)) solution of the

Poisson system

Φξ = −R̄∗ +

N∑
i=1

πiR̄
∗(i)


1
1
.
.
1

 .

Then,

R̄∗(i) +

N∑
k=1

φikξ(k) =

N∑
i=1

πiR̄
∗(i)

=

N∑
i=0

πi

[
µ(i) + λ(i) + α(i) +

σ2(i)

2

(
∂f(mS , 0, 0)

∂I

)2
]

[Rswt − 1].
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On the other hand from the system (1.2), we have

dS + dI +
δ̂

µ̌+ δ̌
dR =

[
A(r)− µ(r)S −

(
µ(r) + α(r) + γ(r)− δ̂γ(r)

µ̌+ δ̌

)
I

]
dt

≥

[
Â− µ̌S −

(
µ̌+ α̌+ γ̌ − δ̂γ̂

µ̌+ δ̌

)
I

]
dt,

integrating from 0 to t and dividing by t, we obtain

S(t) + I(t)

t
− S(0) + I(0)

t
+

δ̂

µ̌+ δ̌

R(t)−R(0)

t

≥ Â− µ̌1

t

∫ t

0

S(s)ds−

(
µ̌+ α̌+ γ̌ − δ̂γ̂

µ̌+ δ̌

)
1

t

∫ t

0

I(s)ds,

Therefore,

−
(
mS −

1

t

∫ t

0

S(s)ds

)
≥ − Ǎ

Âµ̂

(
µ̌+ α̌+ γ̌ − δ̂γ̂

µ̌+ δ̌

)
1

t

∫ t

0

I(s)ds− Ǎχ(t)

Âµ̂
, (3.2)

where χ(t) = S(t)+I(t)
t − S(0)+I(0)

t + δ̂
µ̌+δ̌

R(t)−R(0)
t . And we have

1

t

∫ t

0

R(s)ds ≤ γ̌

µ̂+ δ̂

1

t

∫ t

0

I(s)ds− R(t)−R(0)

(µ̂+ δ̂)t
. (3.3)

An integration on both sides of (3.1) and dividing by t, from (3.2) and (3.3) we obtain

Ψ(t)−Ψ(0)

t
≥

N∑
i=0

πi

[
µ(i) + λ(i) + α(i) +

σ2(i)

2

(
∂f(mS , 0, 0)

∂I

)2
]

[Rswt − 1]

−β̌C1
Ǎ

Âµ̂

(
µ̌+ α̌+ γ̌ − δ̂γ̂

µ̌+ δ̌

)
1

t

∫ t

0

I(s)ds− β̌C1
Ǎ

Âµ̂
χ(t)

−β̌C2
1

t

∫ t

0

I(s)ds− β̌C3
γ̌

µ̂+ δ̂

1

t

∫ t

0

I(s)ds+ β̌C3
R(t)−R(0)

(µ̂+ δ̂)t

+
1

t

∫ t

0

σ(r(s))
f(S(s), I(s), R(s))

I
dMB(s).

This implies that

Ψ(t)−Ψ(0)

t
≥

N∑
i=0

πi

[
µ(i) + λ(i) + α(i) +

σ2(i)

2

(
∂f(mS , 0, 0)

∂I

)2
]

[Rswt − 1]

−β̌

[
C1

Ǎ

Âµ̂

(
µ̌+ α̌+ γ̌ − δ̂γ̂

µ̌+ δ̌

)
+ C2 + C3

γ̌

µ̂+ δ̂

]
1

t

∫ t

0

I(s)ds+ Θ(t),
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where

Θ(t) = −β̌C1
Ǎ

Âµ̂
χ(t) + β̌C3

R(t)−R(0)

(µ̂+ δ̂)t
+

1

t

∫ t

0

σ(r(s))
f(S(s), I(s), R(s))

I
dMB(s).

The large number theorem for local martingales and from (As2) we have

lim
t→∞

Θ(t) = 0 a.s.

Additionally, we have

lim
t→∞

Ψ(t)−Ψ(0)

t
= 0, a.s.

Hence

lim inf
t→∞

1

t

∫ t

0

I(s)ds ≥ W1[Rswt − 1] a.s.

From the third equation of system (1.2), we can show that

1

t

∫ t

0

R(s)ds ≥ γ̌

µ̂+ δ̂

1

t

∫ t

0

I(s)ds− R(t)−R(0)

(µ̂+ δ̂)t
. (3.4)

As t→∞, we have

lim
t→∞

R(t)−R(0)

t
= 0 a.s.

Taking the inferior limit on both sides of (3.4), we obtain

lim inf
t→∞

1

t

∫ t

0

R(s)ds ≥ γ̌W1

µ̂+ δ̂
[Rswt − 1]

, W2[Rswt − 1].

Similarly, we can show that

lim inf
t→∞

1

t

∫ t

0

S(s)ds ≥ Â+ δ̂W2

µ̌+ β̌QS
[Rswt − 1]

, W3[Rswt − 1],

where QS = maxΛ

{
f(S,I,R)

S

}
.

4. Applications

Using the Milsteins Higher Order Method given in [10], the analytical contributions for the stochastic model
described in this paper are confirmed numerically. Next, we assume r(t) is a right-continuous Markov chain
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Figure 1. Trajectories of stochastic system for case I, and Markov chain r(t).

taking values in a finite state space I = {1, 2} with the generator

Φ =

(
−1 1
2 −2

)
.

Then the stationary distribution of r(t) is displayed by

π = (π1, π2) = (2/3, 1/3) .

We consider the following nonlinear incidence rate satisfied the assumptions in this paper

f(S, I,R) =
βSI

1 + α1S + α2I + α3SI
,

where α1, α2, α3 are constants. Notice that the incidence above combines many general forms existing in the
literature (see, [4, 5, 11, 27, 34]). Then, we let the parameter values in model (1.2) as follows:
A(1) = 0.2, A(2) = 0.25, β(1) = 0.54, β(2) = 0.56, µ(1) = 0.12, µ(2) = 0.12, γ(1) = 0.13, γ(2) =

0.13, α(1) = 0.11, α(2) = 0.21, δ(1) = 0.11, δ(2) = 0.13, α1(1) = 0.1, α1(2) = 0.1, α2(1) = 0.1, α2(2) =
0.1, α3(1) = 0.1, α3(2) = 0.1.

Also, we assume that the initial value of model (1.2) is (0.6, 0.3, 0.2) ∈ Λ× I. Then, let’s treat the following
two illustrations cases of simulation

(I) In this case we choose σ(1) = 0.77, σ(2) = 0.75. Simple compilation leads to Rswt = 0.4016. By Theo-
rem 2.1. we conclude that the disease in model (1.2) goes extinct. The computer simulation given in Figure 1.
shown this result.

(II) We choose the white noise values such that σ(1) = 0.27, σ(2) = 0.25. By computing, we find that
Rswt = 1.0706 > 1. From the computers simulations given in Figure 2, we can see that the diseases in model (1.2)
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Figure 2. Trajectories of stochastic system for case II, and Markov chain r(t).

persist in the human population. Therefore, according to the cases above the large intensity of white noise will
complete the disease towards extinction.

5. Conclusion

The spreading of infectious disease presents a more big problem that involves a high loss of economies of many
countries. In addition, a large number of individuals in the world die from infectious diseases. For these reasons,
many specialists have developed mathematical models to interpret and proposed the directions for decreasing
the epidemic diffusion. Firstly, many authors were interested in the proposition of deterministic models. But,
these models presented some limitations due to the ignoring of environmental fluctuations. Therefore, a new
generation of epidemic models integrating the randomness properties that describe the manners of distribution
of infectious diseases has developed.

The present paper investigates a class of stochastic switched SIRS epidemic model with general nonlinear
incidence. Using the stochastic Lyapunov approach, sufficient conditions are established to guarantee the extinc-
tion or persistence of epidemic disease by introducing an appropriate stochastic threshold value Rswt. Precisely,
we obtain the following result:

– Let assumptions (As1) and (As2) hold, if

Rswt =

∑N
i=0 πiβ(i)∂f(mS ,0,0)

∂I∑N
i=0 πi

[
µ(i) + λ(i) + α(i) + σ2(i)

2

(
∂f(mS ,0,0)

∂I

)2
] < 1,

then epidemic infection dies out with probability one, if Rswt > 1 the epidemic disease persists in the
population.

This shows that the large white noise is beneficial to control infectious disease. The stochastic system (1.2) has
not taken into account the impact of some brusque and sudden phenomena as tsunami, earthquakes, pandemic,
etc., to taken into account these phenomena, we propose to apply a jumps process on the model (1.2) in our
future work.
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