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GENERALITIES ON A DELAYED SPATIOTEMPORAL
HOST-PATHOGEN INFECTION MODEL WITH DISTINCT
DISPERSAL RATES

SALIH DJiLALT

Abstract. We propose a general model to investigate the effect of the distinct dispersal coefficients
infected and susceptible hosts in the pathogen dynamics. The mathematical challenge lies in the fact
that the investigated model is partially degenerate and the solution map is not compact. The spatial
heterogeneity of the model parameters and the distinct diffusion coefficients induce infection in the
low-risk regions. In fact, as infection dispersal increases, the reproduction of the pathogen particles
decreases. The dynamics of the investigated model is governed by the value of the basic reproduction
number Ry. If Ry < 1, then the pathogen particles extinct, and for Ry > 1 the pathogen particles
persist, and there is at least one positive steady state. The asymptotic profile of the positive steady
state is shown in the case when one or both diffusion coefficients for the host tends to zero or infinity.
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1. INTRODUCTION

The recent studies show that there is an increased focus on the study of the behavior of partially degenerate
reaction-diffusion systems, e.g. [1-7], and references therein, due to the mathematical challenges and the practical
applications. The degenerate reaction-diffusion systems are formed by partial differential equation and ordinary
differential equation (ODE) or delayed differential equation (DDE). The degeneration appears in a system of
reaction-diffusion equations when some of the dispersal coefficients are equal to zero in some (or all) locations
in a bounded domain. In this case, the solution map becomes noncompact, which generates some mathematical
challenges in showing the existence of a compact attractor and identifying the basic reproduction number. To
overcome these challenges, it is possible to employ the generalized Krein-Ruthman Theorem [8], and Kuratowski
measure of non-compactness [9]. There are numerous researches that investigate the reaction-diffusion host—
pathogen interaction, and we discuss some of them. In [10], the authors considered a viral infection with virus
diffusion only, where the global asymptotic stability of the virus-free steady state (VFSS) for Ry < 1 and
the global stability of the unique positive steady state for Ry > 1, similar results proved for more generalized
systems, e.g. [1, 3, 5], and references therein. Recently, Y. WU and X. Zou [11] provided a mathematical analysis
of a degenerate host—pathogen reaction-diffusion system, for the investigated model is given in the following
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structure

agt/l = dlAW1 + al(x) - ﬂ(fE)W1W3 - bl(x)Wl, HAS Q, t > 0,

OWa — dy AW, + B() Wy Wy — b (z)Wa, reQ, t>0, (11)
o5 = az(2)Ws — by ()W, reQ, t>0,

with Neumann boundary condition

oW, oW,
on  On

=0, z€0Q, t>0, (1.2)

where Q C R” (n is the dimension) is a bounded domain with smooth boundary, and n in the outward normal
direction vector to 9Q. Wi (t, z), Wa(t,x), Ws(t,x) are respectively the concentration of the susceptible host,
infected host, pathogen particles at time ¢ and location x. aq(z) is the recruitment of the susceptible host.
B(x) is the transmission rate. b;(z), ¢ = 1,2,3 are respectively the mortality coefficients for the susceptible
host, infected host, and pathogen particles. as(z) is the production coefficient of the pathogens particles from
the infected hosts. Suppose that all parameters are positive Holder continuous functions on Q. The Neumann
boundary condition represent that the studied population are in an isolated habitat 2. The authors proved
the well-posedness of the solution and the existence of a globally connected attractor. The main difficulty of
to show that the semiflow is point dissipative (for definition see [12]), where the distinct diffusion coefficients
play a substantial role increasing the difficulty in the model temporal analysis. The basic reproduction number
is also identified with its threshold role, where for Ry < 1 the pathogen constructing a super solution for the
pathogen and infected hosts that tend to zero. The uniform persistence is also provided for Ry > 1 by applying
the results of [13], Theorem 1.3.2. Moreover, the asymptotic profile of the positive steady state is shown as one
of the dispersal rates dy or dy tends to zero. Recently, different approaches have been considered in modelling
pathogen spread in hosts, we cite a few, [14-16], and references therein.

In this research, we investigate a generalized version of the (1.1), by considering a generalized incidence
function of the form G(z, Wi, W3) with some properties on G that will be fixed later. Indeed, recent work
investigate a generalized version of (1.1) as [3] (with the case of the cell-to-cell transmission), where the authors
proved the well-posedness of the solution to the threshold dynamics. However, for Ry > 1, the global dynamics
of the solution are shown for the homogeneous case only, and no asymptotic profile of the positive steady
state, which are difficult to be achieved for the case of the nonlinear incidence function. Based on the best of
our knowledge, other than [3], there are no results on a degenerate reaction-diffusion system with generalized
nonlinear incidence in the case of distinct dispersal rates. Notice that the newly reproduced infected hosts after
a direct contact between a pathogen particle and susceptible host is not instantaneous, this last takes some time
(denoted 7) until the pathogen particles reproduce in the susceptible host, and this host becomes a fully infected
one. This behavior can be modeled by the presence of time delay in the incidence function in the infected host
equation (second equation of (1.1)), see e.g. [17, 18], and references therein. The investigated model is structured
as

O = dy AW, + ay () — Gz, Wi, Ws) — by (z) W7, ceQ, t>0,

OV = dy AW, + e 727Gz, Wi (t — 7,2), Wa(t — 7,2)) — ba(2) W, 2 € Q, t >0, L3)
OF = as(x)Wsa — by ()W, r€Q, t>0,

B =2 =0, 2 Ed, 10,

where e~%7 is the survival rate of the infected host from the original transmission (¢ — 7) until ¢. Also, we

consider that G € C1(Q x Rt x R R¥) is the nonlinear incidence function, which satisfies
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(Hy) G(-,0,-) =0 and G(-,-,0) = 0;

(Hg) 0:G(z,21,29) := %ﬁ’m >0, 1 >0, 22 >0, € Qand iBG(v,71,72) := %ﬁ;’”) >0, z1 >
0, 20 >0, z€Q;

(H3) G is a concave function with respect to the third variable.

To mention that the assumption (H7) implies that there is no transmission in the absence of the susceptible
particles or pathogen particles. (Hz) implies that the incidence function is increasing in both two last parameters.
However, (Hsz) implies that G(z,21,22) < 93G(x,21,0)z2, Vo1 >0, 29 >0, x € . To mention that there
are numerous well known incidence functionals that fulfill the assumptions e.g. (H;), ¢ = 1,2,3 as Holling I-III
incidence function, Beddington-DeAngelis incidence function, ratio-dependent incidence function.

The presence of the time delay generates an additional challenge in showing the asymptotic compactness of
the semiflow, existence of the global compact attractor, and identifying the basic reproduction number (where it
will be discussed in the proof of Lem. 3.1) and determining the global dynamics of the steady states. On the other
hand, the main challenging point is the asymptotic profile of the positive steady state, where the nonlinearity
of the incidence function setting an additional assumption about the incidence function. In literature works,
e.g. [2, 19, 20], and references therein, many authors considered the asymptotic profile for PSS. However, the
bilinear incidence is considered for most part of them, or a specific nonlinear incidence function as in the SIS
epidemic model [19], where the authors considered a ratio-dependent type as an incidence function. Our interest
is to generalize these results, and provide an additional information on the asymptotic profile of the PSS in the
case of the nonlinear incidence. Indeed, we investigate the case when one or both diffusion coefficients dy, ds
tends to infinity or when dy goes to zero.

To show the cited goals, we organize our research in the following structure. In the next section, we prove the
existence of a global solution and show the existence of a connected global attractor, also, we identify the basic
reproduction number, with its susceptibility with respect to the diffusion coefficients. In Section 3, we prove the
global asymptotic stability of the pathogen-free steady state (PFSS) for Ry < 1. In Section 4, we show that the
semiflow is strongly uniformly persistent for Ry > 1, and there exists at least one positive steady state (PSS).
Sections 5 and 6 investigate the global prosperities and the uniqueness of the positive steady state. Indeed, in
Section 5, and by the Lyaponuv approach and Lasalle invariance principle, we investigate the global attraction
of the positive steady state for some particular cases. The asymptotic profile of PSS is shown in Section 6,
where the effect of mobility of the hosts on the PSS, large mobility and small mobility rates are investigated. In
Section 7, we explore the global dynamics of steady states and the asymptotic profile of PSS. A brief discussion
ends the paper.

2. PRELIMINARIES
We let C = C(Q,R), and C, = C([-7,0] x ,R), for all 7 > 0. Define X := C, x C x C,, equipped with the
supreme norm, and X7 is its positive cone. We let h € C be a positive function, and denote

h = max{h(x); = € Q}, h=min{h(z); z € Q}.

For any 7 >0, ¢ > 0, x € Q, we let W, ,(t,z) = W;(t + 7, ), and for simplicity we write W; instead W;(t,z),
i=1,2,3, and W, , instead W, -(¢t,z) i=1,2,3.

2.1. Well-posedness

At first, we shall show the existence and uniqueness of a positive solution of (1.3) through the following
theorem

Theorem 2.1. Letting W (t,z; Wy), be the solution of the system (1.3) with the corresponding to the initial
condition Wo = (Wig, Wag, Wag). If Wy € XT then the system (1.3) admits a unique positive solution on [0,Tg) x
Q. Provided that Ty > 0 and satisfies either lim SUP, _, 7 IW]lx = o0 or Ty = +00.
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Proof. The system (1.3) can be expressed in the following abstract form

SW (1, Wo) = AWt Wo) + Z(W (2,5 W), (2.1)

with A defined on D(A) C X by

di AW (¢, -)
AW = dQAWQ(t,') ,

and F': X — X defined as

a1(-) = G(, Wi(t,-), Ws(t,-)) — bi(. )W, )
FW = | e WG Wit —7,), Walt — 7)) — ba(IWa(t, ) |
az(-)Wal(t,-) — bs(-)Wal(t,-)

with W € X™. Clearly, by the assumption on G we deduce that .# is Fréchet differentiable on X. Also, & is the
infinitesimal generator of the strongly continuous semigroup {e*” }i>0 in X. Then, by applying [21], Proposition
4.16, we ensure the existence of a unique solution W (¢, -; Wy) on [0, Tp), with either lim SUp;_, - IW|lx = o0 or
T() = +o00.

In the following, we shall show that W;(¢,z) > 0, = 1,2,3, for all t € (0,Tp) and = € Q. Clearly, .7 is twice
differential and continuous, therefore by applying Theorem 7.3.1 and Corollary 7.3.2 in [22], we deduce the
positivity of the solution. O

The next theorem shows that the solution is globally defined.

Theorem 2.2. For Wy = (Wi, Wag, Wao) € XT, then (1.3) has a unique global solution that defined on Q x
[0, 4+00).

Proof. Let W = (W1, Wa, W3) be the solution of (1.3) for the data Wy = (W1, Wao, W) € X*. The standard
comparison principle implies that Wi (¢, z) < Wi (z,t), and W7 is the unique solution of the problem

Wi iy AW, + ay () — by (1) Wy, 2 € Q, €0,

o =0, red, t>0, (2.2)
W1(0,z) = Wio(0, z), reQ, t>0.

Clearly, (2.2) has a unique positive steady state denoted V' (x) which is globally asymptotically stable. Therefore,
we deduce that

lim sup W1 (¢, z) < limsup Wi (¢, 2) = V(z), uniformly for = € Q. (2.3)

t—+oo t——+oo

Thus, the boundedness of W7 next to (2.3) implies the existence of a positive constant denoted D; that depends
on the initial data verifying

Wil < Dy, t>0. (2.4)
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Let {T5(t) }+>0 be the semigroup generated by the generator doA —ba(+) in C' with Neumann boundary condition,
hence,

Walt, ) = To(t)Wag +/O To(t — 5)e=P" G-, Wi (s — 7,-), Wa(s — 7,-))ds, .
t 2.5

Wg(t, ) = e_b3tW30 + ag/ E)_bia(t_s)I/VQ(S7 )dS
0

Let A > 0 is the principal eigenvalue of dyA — ba(-) with Neumann boundary condition. From (Hs), and
using (2.4), we have ||G(z, W1, W3)|| < ||G(x, D1,W3)||. Using (Hsz) on the previous inequality, we obtain
HG([Ea W17W3)|| < ||82G(I‘,D1,0)||||W3|| Therefore,

t
[Wa(t, )| < e |[Waol| + Lle*b‘”/ e AWy (s — 7,)||ds,
70 (2.6)
[W3(t, )| < e~ ||[Waol| + ||az||/ e B Wy (s, -)|ds,
0

with Ly = ||0.G(z, D1,0)||. From (2.6), we obtain
t S—T
[Wa(t, )| < e |[Waol| + Lle_b‘”/ e_A(t_s){e_b?’(s_ﬂ||VV30|| + Hf12||/ e\ A G ')||d0}d8
0 0

—)‘t\|W20||+L1e b4T||W3O||/ A(t—s) 7b3(s T)ds

+Ly[1Blle " [z / A=) / eIy (o, )| dods,
0

< ¢ Waol| + Lie— b4T||W30||/ ~ba(s=7) g 4 [ye—ba7||gs||e~ MHE! / / 5627 [T (0, | dsdo,
0
_/\tHW20||+Lle_b4T b3T||W30||/ baédS‘i_Lle b4T||a2||e ()\-‘rbs)t/ bsaHW H/ )\édeO’
0
t
—byT b3T
< [|Waol| + Lo T2y | 4 Lae el o bt / o257 |[Wa(o, )||do,
- 0

< Dy +D2e_b*3t/ 7| Wy(a,)||do,
0

b47- by

with Dy = ||[Wal| + 22 [[Wso|, and Dy = w Gronwall’s inequality implies that

|Wa(t,)|| < DieP2t, t>0. (2.7)
Substituting (2.7) into the second inequality of (2.4), we get

az|| Dy
loalDs e

[Ws(t, )l < [Waoll + t>0. (2.8)

Therefore, the solution is globally defined. O
Motivated by [11], we have the following result
Theorem 2.3. We let Wy = (Wig, Wag, Wag) € XT, then the solution of (1.3) is point dissipative.

Proof. We show this result step by step as follows
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Step 1:

Step 2:

Step 3:

S. DJILALI

There exist a positive constant Mg > 0, such that Wi (¢, ) satisfy

limsup [|[W1(t, )|| < M.

t——+oo
From the proof of Theorem 2.2, we have W, (t,z) < Wi (x,t), with W) is the unique solution of the
problem (2.2), and therefore Wy (¢, -) is ultimately bounded.

There exists a positive constant M7 > 0 such that

limsup(||[Willx + [Wzll) < M.
t——+oo
By integrating the two sides of the first equation of (1.3), we get

9/Wldx:/aldx—/G(x,Wl,Wg)dx—/bl(ac)Wldx. (2.9)
ot Jo Q % Q

Recall that Ws » = Wa(t + 7, ). Then, the second equation of (1.3) implies

Q/ Wg,de:/e_b“G(x,Wl,WQ)—/bg(x)Wg’Tdm. (2.10)
ot Jq Q Q
From (2.9) and (2.10), we get

o (Wi +eWo,)da = / aldx—/bl(x)Wlda:—ebU/bz(x)Wz,de,
Q Q Q Q

< |Qfla]) — m / (W1 + 7 Wy )da,
Q

with m = min,cq{b1(x),e* ba(z)}, and || is the volume of Q. Then, variation of constant formula
implies that there exists a positive constant M; > 0, verifying

limsup(||[Wi |1 + [|[Wa||1) < M.
t——+oo

For any p > 1, there exists M, > 0 such that

limsup(||[Wllp + [[Wallp) < M,.
t—+oo

At first, for any integer & > 0, we show the result for p = 2¥ by induction. Notice that for k = 0 is
proved in Step 2. Assume that the claim is true for £ — 1. That means there exists Myx—1 > 0 verifying

1imsup(HW2||2k—1 + ||W3||2k—1) < Mok-1.
t——+o0

The second equation of (1.3) can be rewritten as

8VV2,‘F

5 = dgAWQ,T + e_b4TG(l‘, Wy, Wg) — bg(l‘)Wgﬂ—. (2.11)
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Multiplying (2.11) by W;iﬁl, and integrating the resulting equation, we get

= / Cde=dy [ WETIAW de+ e [ W2, Wi, Wa)de — [ ba(a)W2ida, (2.12)
2k ot o 7 o 7 Q ’

Using (Hs), we obtain

k_ Cbar k_ k
Qk 5 / " da < dy /Q W3 T AW, pda+e /Q W3 105G (2, W1, 0)Wadz — /Q by(x)W3 da, (2.13)
Note that

[t A < [ SWESIW de = —@4 <) [ (VR e,
Q

2k1

= / IVW. |2d$7

with Ey = 222’1% Therefore, (2.13) becomes

oF at/W dxg—dQEk/ |VW227]:1|2dx—|—e_b“/ Wg_’;—laga(x,wl,o)wgdx—/ by (z) W2 dx.
Q o 7 Q '

(2.14)
From the first step, there exists tg > 0, and My > 0 such that W; < My for ¢ > tyg. For t > tg, we
obtain

W210,G (e, Wh, 0)Wadz < ||05G (xr, Mo, 0)| / W2 Wada, for t > to, (2.15)
Q Q

Applying Young’s inequality to separate the term Wikleg, we get
k_ _
W3, W < 51(W2 Ye 4+ O, (Wa)4,

withp~t+¢ 1 =1,and C., = (e1p)~ #q~L. Choosing ¢ = 2*, then p =
later. Hence,

Qk 7, and £1 will be determined

W2 Wy < ey W2, + Co, Wi (2.16)

Substituting (2.15), (2.16) into (2.14), we obtain

10 / W2hde < —dyEy / VW2 2 + (105G (2 Mo, 0) Jey / W2 da
Q Q Q

(2.17)
o705 G, My, 0)[|C, / W2 de — by / W2 da.
Q Q

Recall the interpolation inequality: for any ¢ > 0 (will be determined later), there exists C. > 0
satisfying

[[ull3 < ellVull3 + Cellull}, for any u € WH2(Q).
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We let u = Wi’:l, then

/|VWQT 2dx<—f/W22’;d +(/ w2 1dx> . (2.18)

Substituting (2.18) into (2.17), we obtain

ik*/ W2 de < dQEk(— */ d -I—( W;i ldx> >+e—b4r||63G(ﬂc,Mo7O)|51/ Wi’idx
Q

e 04 e Mo 0)C, [ WEd
Q
Doing some simplifications and using the induction assumption, we get

L,Cg/ w3 de < doEyS=ME ., + <— Ldy By, + e7247(|05G (2, My, 0)||e1 —b2> / W;’idx

. Q (2.19)

e b4T||83G(x,M0,O)||Csl/W§ dz.
Q

Next, we multiply both sides of the third equation of (1.3) by Wg?k*l, and integrating the resulting
equation on 2, we get

o at/w3 dxf/aQWQ IWdef/ngWS dz,

< ||a2||/wg “Wada — by [ W2 da.
Q

(2.20)

Again, by using Young’s inequality on W§k71W277, with ¢ = 2F, and p =
1

2k 7, then for any 3 > 0,

we have C,, = (52p)_%q’ , which satisfies the inequality
W2 Wy < eaW2' 4+ L, W2 (2.21)

Substituting (2.21) into (2.20), we get

i,ﬁ/ W2 de < <||a2|52—b3>/W3 dz + [asl|C., [ W2 da. (2.22)
Q

By the continuity of Wy with respect to ¢, and by the first equation of (2.5), we have W3 > 0 for all
Wy > 0, therefore, there exists a positive constant M that depends only on 7 such that

Wa(t,z) < MWy . (t,z),

therefore, (2.22) becomes

1 m/ W2 dz < <||a2||52—b3)/W3 dx—|—|\a2||C€2M/ W2 da. (2.23)
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Adding (2.20), and (2.23), we get

R /Q(W;i + W )de < do By S M2,
+( laz||Ce, M — Ldo By, + 7847 ||05G (2, Mo, 0)|[e1 b2> / Wg’;dx
Q

=+ |a2||52—bg+e—b4r|83G(x,M0,0)|CEI>/ngdx.
Q

(2.24)
Choose ¢ sufficiently small in such a way

ool Coy BT — s By + e~ [105G , Mo, O)lfer — b <0,
and fix 1, C;, sufficiently small such that
|lazle2 — b3 + €747 ||0sG(z, My, 0)||C:, < 0.
Let
C5 = min { —||ag||Cey M + %dzEk —e 47||93G (, My, 0)||e1 + ba, —||az||e2 + bz — e ™47 ||03G (2, My, 0)||CEI} > 0.
Thus, (2.24) becomes
L2 /Q(Wi’; + W3 e < do By M2, — Cy /Q(Wi’i + W2 )da. (2.25)

Then, there exists a positive constant My, > 0 satisfies

lim sup(||Wallgx + [[W3l|gr) < M.
t—+o0

For any p > 1, and from the continuous embedding L?(Q)) C LP(f2), ¢ > p > 1, we have

lim sup(||Wal, + [[Wsllp) < My,
t——4o0

with M, is a positive constant independent on the initial conditions.
Step 4: There exists M., > 0 such that

limsup([[Wi]| + [W2])) < Meo. (2.26)
t—+oo

The proof used in this step is similar to proof of [11], Lemma 2.4. We let p > %, and % <a<l,

then Y, is the fractional power space with graph norm continuously embedded in C. Also, there exists
M, > 0 such that

My

t(l

AT ()] <

)
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for all ¢ > 0. To prove (2.26), we need only to show that

1imsup(HW1||y + HW2||Y) < My . (227)
t—+o0

Furthermore, My is a positive constant independent of the initial data. From the previous steps, we
fix n > 0, then there exists t,, > 0 sufficiently large such that

Wit )l < Mo+, [[Walt,)llp < (M +0)7, [Wa(t, )l < (Mp +n)7,

for all ¢ > t,, +n. By the second equation of (1.3), we have for t > ¢,, + 7
t
Walt, ) = To(1)Walt — 1) + / Ty(t — s)o " G(Wi(s — 7, ), Wa(s — 7,-))ds.
t—n

Then, for all t > t,, +n

t
[A*Wa(t, )llp < [[AT2(n)Wa(t —n)llp + / IA*To(t — s)e™ TG (-, Wi(s — 7,-), Wa(s — 7,-))ds],

t—n

t

< MWyt — )l + / JA“Ty(t — $)e™>G (-, My + 1, Wa(s — 7.-))ds]|p.
t—n
t

< Mo || Wyt — 1), +/ ATy (t — s)e " " Wa(s — 7, -)05G(-, Mo + 1,0)||,ds,
t—mn

1 ¢ Ma
%nwzafn)uwHasG(m,Mo+n70>|le*b“<Mp“’)”/ (=5
t—n
< Mo (M, + )7 + ||05G (2, Mo+, 0)[[e=57 (M, + ) Mn' =@,

IN

Then, there exists M, > 0 such that

lim sup ||[Wa(t, -)|] € M.

t——+oo

Replacing this result into the third equation of (1.3), we get

M
timsup W1, )| < <221
t—+00 b3

The proof is completed.

2.2. Compactness

To show this, we apply [12], Theorem 2.4.6. We let ¥(t) :— X, ¢ > 0, be the semiflow associated to the
system (1.3). This means that U(t)Wy := W(t,-, Wy) = (Wi (¢, -, Wo), Wal(t, -, Wo), Ws(t,-, Wp)), t > 0, with
W (t,-,Wy) be the solution of (1.3). The main result is provided in the following theorem

Theorem 2.4. For any Wy € XT, U(t) has a connected global attractor in X .
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Proof. We prove this result through the following claims.

Claim 0.

Claim 1.

Claim 2.

U (t) is point dissipative.

This can be deduce from Theorem 2.3.

U(t) is bounded for any bounded set C C XT.

First, we prove that W (t,-) is bounded for any W, € C. Since W (t,-) < W(t,-), with W (t,-) the
positive solution of (2.2). Then we deduce that there exists a positive constant M, >0 independent
of the initial condition such that W < Ml.

Next, we let Ny = Wy + eb”Wg,T, and by following the procedures in step 2 in the proof of
Theorem 2.3, we obtain

%/Nldx < (9flaal] —m/Nldx.
Q Q

Thus,
Q
/ Nldq,‘ < (Wl(oa ) + eb4TW2,‘r(0a '))e_nlt - % (1 a e_Mt> = M
Q

with M; a positive constant. Then we deduce that ¥(¢) is bounded in L;(§2) for any bounded set C.

Next, we show that ¥(¢) is bounded in L,(f) for any bounded set C. We let, Noy = W3, + W3
Again, by following the calculations performed in Step 3 in the proof of Theorem 2.3, we obtain

2%%/ Ng’kdx S dQEk%Mgk,l —03/ Ng’kd{E.
Q Q

Then,

doERS= M2,
i / Node < (W3 (0.0) 73 (0,))e 21 4 oL (1 - C) < M,
Q

with M}, a positive constant. Thus ¥(¢) is bounded in Lok (2) for any bounded set C C X*. From
the continuous embedding L9(2) C LP(Q2), ¢ > p > 1, we conclude that ¥(t) is bounded in L,(2)
(p > 1) for any bounded set C C X*. Similar reasoning can be applied to show that ¥(t) is bounded
in Y, for any bounded set C of Y,, with 2—’; < a <1, and p and n are positive and satisfy p > 5. By
the embedded of Y, in C, we deduce the result. The claim is proved.

U(t) is asymptotically smooth.

From [12], Lemma 2.3.4, we need only to prove that the semiflow W(t) is a k — contraction. Letting
A C X* be a bounded set, we define the Kuratowski measure of non-compactness x of A by

k(A) := inf {r : A has a finite cover of diameter < r},

where A is precompact if and only if kK(A) = 0. Therefore, the k — contraction of the semiflow I'(t)
implies exists a continuous function §(¢) : RT™ — RT verifying 0 < §(¢) < 1 for any ¢ > 0, and if A be a
bounded set of X+ we have x(I'(s)B), 0 < s < t is also bounded, and verifying x(T'(t)A) < §(t)x(A).
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Applying [11], Lemma 2.5, we deduce that for any bounded A C Xt and ¢ > 0, S is a precompact
set in C', where

t
S .= {/ eib3(tis)a2WQ(S, . WQ)dS s Wy e A}
0

Now, we decompose the semiflow as () = ¥y () + ¥2(t), t > 0, with

t
\111(t)W0 = (Wl (t, *y Wo), Wg(t, - Wo),/ e_bs(t_s)aQWQ(S, ‘y VVb)dS)7 t Z 0,
0

and
Uy ()W = (0,0,e W), t>0.
We let A C X* is a bounded set. By (2.7)-(2.8), {¥(s)4,0 < s <t} is bounded for any ¢ > 0. Since

S is a precompact set in C(Q) we deduce that W;(¢)A is also precompact for any ¢ > 0. Therefore
k(¥1(t)A) = 0, t > 0. Further,

k(Ua(t)A) < |le™%!|k(A) < e b2fk(A), t >0,
Thus,
K(U(t)A) < w(W1(E)A) + k(Wa()A) < e 2'k(A),
Thus, U(t) is k — contracting.

Claim 3. ¥(¢) has a connected global compact attractor.
Using the previous claims and [12], Theorem 2.4.6, we deduce the result.

2.3. Basic reproduction number

Obviously, system (1.3) has a pathogen-free steady state (PFSS) Ey = (V,0,0), with V' the unique positive
solution of

(2.28)

{ di AW + a1 — 01 W, =0,z € Q7

o =0, x € 0.

The basic reproduction number Ry of (1.3) can be determined as the spectral radius of the next generation
operator of the model. Linearizing (1.3) at Ey, we obtain

0L = dy AWy — 956G (x, V,0)W; — by () W7, rEQ, >0,
W2 = dy AW, + e 2703G(2, V,0) W, _p — ba(2)Wa, z € Q, t > 0, 2.39)
O = as(z)Wa — by(z) W, €N, t>0, '

oWy _ oW _ redQ, t> 0,
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Clearly, the W5 and W3 equations can be separated from the first equation. Let T'(t) be the semigroup associated
to

oW, — doAWo + e_b“@gG z, V,0)W3 —boWs, z € Q, t >0,
ot

s = ayWo — by W, zeN, t>0, (2.30)
Gr =0, z €N, t>0.

Then, T(t) has the generator

- 1A —=by 0 0 e 79;G(.,V,0)
A.B+F< o _b3)+<0 0 (2.31)

Clearly, S(B) < 0, with S(B) = sup{Re\, A € o(B)} is the spectral bound of B. By [23], the basic reproduction
number for (1.3) is the spectral radius of the operator L, and

Lidle) = [ " P T ()é(x)dt = Fla) / T Fwe(e)dt, ¢eC@QR), ze

where T'(t) is semigroup associated to B. Hence,
Ry :=r(L) =sup{|\|, A € o(L)}.

Lemma 2.5. The following statements holds

(i) r(—=F(B)~Y) = r(By), where for any ¢ € C, By can be defined as

Bl [¢] = 7(62 - dQA)ilbg_laQeilMTaiﬁG(xv‘/70)(257 S Q7
% =0, x € 0.

Moreover,

/ e—b47'83G(a';, V, O)%qﬁde
Ry = T‘(Bl) = Sup < -
GEH (2),620 / (d2|VY[> + by¢®)da
Q

(2.32)

(ii) We treat dy as an independent variable in (0,00), then Ry is decreasing function of da. Moreover, Ry — Ry
as dy — 0, and Rg — Ry as dy — 400, with

Jo azeb;bU 903G (z,V,0)dz

RE = (2 0 Gwv0). R =
0 b2b3 3 B ’ 0 fQ deCC

Proof. (i) Let M = F¢ and ¢ = —B~ ', with ¢ = (¢1,¢2)" € C?, 9 = (¢1,92)" € C?, M = (M, Ma)" €
C?. We consider the following system

{ P1 = (ba — daA) " [1y],
b2 = by — 82 (by — daA) " [hy].
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Thus, we can write
My = P0G, V.0 — (00— ) ],
M, = 0.
Therefore, we have

—FB'[y] = ( Bi[¢1] J(;BQ[%] ) 7

with

{ Bi[ih1] = —e 04T 05G(-, V, (bo — doA) "],
Boly

,0) 5
o[tha] = e 7O3G(-, V, )bLZ/J

By iterations, we obtain

(_ FB1M)" _ ( B [{n] + fé?lez[lﬁz] > .

Hence, || BY|| < |[(=FB~'[¢])"|| < ||BY /(]| B1|| + || B2||). Gelfand’s formula and squeeze theorem implies
r(—FB™!) = r(By). Therefore, Ry can be expressed as

/ e PTGz, V, o) ¢ dz
Ry =r(B1) = sup 2

GEH(2),¢£0 /(d2|V¢|2 +boop” )dw
Q

Since By = —e~%1793G(x, V, 0) 52 (b2 — dsA)™1 is compact, we have

e~ t47 095G (z,V,0)
b3

Te(B1 + B2) = 1.(B2) = ( ) =r(B2) < r(By + B2)),

with r. is the essential spectral radius. The generalized Krein-Rutmam Theorem [8] implies that Ry =
r(B1 + Bs) is the principal eigenvalue of By 4+ Bs associated to a positive eigenfunction denoted by ¢(x).
We get

dsAG — b+ — 2o b7, G (ar, V, 0)p = (2.33)
Ry b3

with Neumann boundary condition. We consider ds as a variable, and denote q; the derivative of ¢ with
respect to dp. Taking the derivative of the two sides of (2.33), we get

Ap+ daAd — badp + g az e 793Gz, V,0)p + 1@ rga G(z,V,0)p = 0, (2.34)
R() b3 RO b3
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where R} is the derivative of Ry with respect to do. Multiplying (2.33) by , (2.34) by ¢, and subtracting
the resulting equations, integrating on 2, we get

Rg/ f;o ZQ e YT 93G (x, V,0)p?dx = / pApdr = / |Vo|?dz < 0.
0 Y3

Using (Hz), we get R < 0.

Now, we determine the effect of small diffusion on Rg. Let Ry = Rp(dz), and m(x) =
e 173G, V, 0)#% For any ¢ € C, we have

/e_b“Tag,G(x VO) ¢ dz m/ by da
Q <

/Q (Al Vo[ + b2¢>2>dx [ (@aIV0 + bao?)da

S\\

<

Hence, Ry(d2) < m. We claim that Ry(dz) — T as da — 0, and we need to show that liminfy, o Ro(d2) >
m. If not, there exist § > 0 such that Ry(ds) < m — ¢, for all dy > 0. The continuity of the coefficient
functions implies the existence of some xg € {2, and § > 0 sufficiently small, such that

Ry+6 <m—46 <m(x),

for all € Bs(zp), where Bs(xg) is the ball of center zy and radius §. By compactness of continuous
function on a bounded domain, there exists dg > 0 verifying

]. a2 717
—by + — Ze 7 )
2+R0b3 035G (z,V,0) > do,

for all € Bs(x), and dy > 0. Letting (u, ¢—) be the principal eigenpaire of —A on Bs(zg) with Neumann
boundary condition, we can normalize ¢_ < 1 for all x € Bs(xg). Besides, we consider d € (0, %0) and
normalize the eigenfunction in (2.33) as

e )
¢ (x) infzeBa(mo)d)(x).

Clearly, ¢~ (x) < 1 < ¢T(z) for all z € Bs(xo). Moreover, ¢+ satisfies —AgT > %"gb*, and ¢~ satisfy
—A¢p™ < %‘)df". Thus, ¢~ and ¢+ are respectively the lower and upper solution of the operator —A — %0

with Neumann boundary condition. Then, the problem

do

Ewa

— Aty =
with Neumann boundary condition has a positive solution. Therefore, %" > 1 is an eigenvalue of the
operator —A, which is a contradiction with the assumption that p is a principal eigenvalue. Then, we
deduce that Ry — RS‘ as do — 0.

At last, we show that Ry — Ry as da — +00. We substitute ¢ =1 in (2.32), we obtain

Ry > Ry, for all dy > 0.
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From (i), we have Ry(dz) is uniformly bounded for all dy > 1, which implies that Ro(d2) has a finite limit
Ry as dy — +o0o. We claim that Ry = R, . Clearly, Ry > R . It remain to show that Ry < Ry . We divide
both sides of (2.33) by dz we get

* a’i —baT
Ag* — ¢> 7 Ro e TG, V. 006" =0, (2.35)

with Neumann boundary condition. The elliptic regularity [24] implies that ¢* — $in C () as dy — oo
for some positive constant ¢. Integrating both sides of (2.33) on , and get Ry = R .

O
We let (A1, ¢1(x)) be the principal eigenpaire of the problem
da At — bath + §2e7 "7 05G (2, V,0) = M, x € Q, (2.36)
‘%’ =0, €. '

Notice that B and F' satisfy all statements of [25], Theorem 2.3, then we have the following relationship between
R07 )\1 and S(A)

Lemma 2.6. Ry — 1, Ay and S(A) have the same sign.

Proof. Clearly, B and F satisfy all statements of [25], Theorem 2.3, then we deduce that Ry — 1 has the same
sign as S(A).

By the Krein-Rutmam Theorem [8], we deduce that \; is simple and ¢;(z) > 0 for all z € . Notice that
the eigenpaire (Ry, ¢) satisfies

1 _
do A — boch + Rf%e*b“agc(x, V,0)p =0, xe. (2.37)
0 U3

with Neumann boundary condition. Also, the principal eigenpaire (A1, ¢1(x)) satisfies
d2 Ay — by — 210Gz, V,0)l61 = My, € O, (2.38)

with Neumann boundary condition. Multiplying both sides of (2.37) by ¢; and both sides of (2.38) by ¢,
subtracting the resulting equations, and integrating on €2, we obtain

1 a2 —b47’ —
(1—RO) / e 06 (, V. 0)drds =\ /Q prda. (2.39)

The positivity of all functions in (2.39) implies that 1 — = and A1 have the same sign, which implies that Ry — 1
has the same sign as A;. From the first part of the proof We deduce that S(A) has also the same sign as A;. The
proof is completed. [

Remark 2.7. If Ry > 1 then S(A) > 0 becomes an eigenvalue of the generator A associated to a strictly
positive eigenfunction, and hence satisfies the following eigenvalue problem

daAgs + e 793G (2, V,0) 3 — baps = A2, x € €,

ax¢s — b3z = A3, x €, (2.40)
% =0, x € 0N.

The proof can be performed by similar method as in the proof of [11], Lemma 3.7, so we omit the proof.
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3. PATHOGEN-FREE STEADY STATE

In this section, we investigate the global stability of the PFSS for Ry < 1. The main difficulty is dealing
with the nonlinearity of the incidence function G and the delay term. For this, we need some additional results
comparing with [11]. We let the following problem

{dQAW—FmW—bgW:/\VV,xEQ, (31)

OW.
87712:0’ 1:65(2,

with m € C, and m(z) > 0 for all z € Q. We let (A\o(dz,m), ¢(z)) be the principal eigenpaire of the eigenvalue
problem (3.1). Also, we consider the eigenvalue problem

oW 0, x € 0f). (3.2)

{ do AW + mWe ™ — bW = AW, x € Q,
on

Let Ao(d2, m,T) be the principal eigenvalue of (3.2). The following result is inspired by the proof of [13],
Theorem 9.2.1.

Lemma 3.1. There exists a principal eigenpaire (Ao(dz, m,7),(x)) of (3.2), and for any T > 0, Ao(d2, m) and
Xo(da, m, T) have the same sign.

Proof. Define L : C; — C as
L¢(x) = m(x)¢(—7,x)7 T e Qa¢ € C7'~
Clearly, C' is Banach Lattice, and L is positive. For each A € R, we define Ly : C — C by

La(¢) = L(e¥9), ¢€C,

with et ¢ € C; defined as

Moo, x) = P(z), o€ [-7,0, zeQ.

Letting Q(t) : C — C,, t > 0, be the solution of the following parabolic equation

dv _

G =Av(t)+ Lv_,, t>0, (3.3)
Vo = ¢ € CTa

with v_,; € C;, and A[p] = d20¢ — bagp. Letting A, : D(A,) — C; be its generator. Thus, v(t) : C; — C, is
positive. From [26], Section 4, we deduce that S(A4,) has the same sign as S(B + Lg) = Ag(d2, m). Since L is
positive, and by applying the strong maximum principle we can prove that v(¢,z) > 0 for all z € Q. Hence
Q) : C; — C; is strongly positive and compact for each ¢ > 27. Fixing some ¢ > 27, the Krein-Rutman
Theorem implies that » = r(Q(¢)) is a positive eigenvalue of Q(¢). The point spectral mapping Theorem [27],
Theorem 2.2.4 implies the existence of a point spectral point \ of A, such that r = e**, with = R, and
A< S(A,).

Furthermore, since S(A,) € o(4,) next to the spectral mapping Theorem [27], Theorem 2.2.3, we have
et5(A) ¢ o(Q(t)). Thus, e'5(Av) < et which means that S(A,) < A. Therefore, we deduce that S(A,) = A
is a point spectral value of A,. We let ™ € E be the positive eigenfunction associated to and by the Krein-
Rutman Theorem we deduce that ¢+ is strictly positive. Therefore, S(A,) is the principal eigenvalue of A,.
Therefore, A(dz,m, 7) exists and it is simple.
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It remains to show that sign{(da, m,7)} = sign{\(dz, m)} for all 7 > 0. We replace A by A(dy, m) in (3.1),
and A by A(da, m, 7) in (3.2). Multiplying both sides of (3.1) by ¢ and the two sides of (3.2) by ¢, and integrating
the obtain equation, and subtracting the resulting equations, we obtain

/ mgp(1 — e~ NE ) )dg = (A(da, m) — A(da, m, 7)) / doda. (3-4)
Q Q

We prove the result by contradiction. We assume that A(dy,m,7) > 0 and A(dy, m) < 0. Hence, the left hand
side of the equality (3.4) is positive, and then (A(da,m) — A(d2, m, 7)) > 0, which is a contradiction. Now,
suppose that A(da,m,7) < 0 and A(d2, m) > 0. Hence, the left hand side of the equality (3.4) is negative, and

we get also a contradiction. Then we deduce the result. O

Remark 3.2. The choice of the next generation operator A in (2.31) is inspired by the results provided in
Lemma 3.1.

Now, we show the global stability of the PFSS for Ry < 1. At first, we show the local stability of this steady
state through the following theorem:

Theorem 3.3. If Ry <1 then Ey is locally asymptotically stable, and unstable for Ry > 1.

Proof. At first, we mention that the generator of the linearized system (2.29) (denoted A;) and the one for the
non-delayed linear system (2.30) (which is A) are not the same. Moreover, S(A;) is the principal eigenvalue of
the problem

doAgy + e 793G (x, V,0)p3e ™ — bagy = Ao, x € Q,

azp2 — b3gs = A, z€qQ, (3.5)
902 =, x €09,

with A, is the generator of the semigroup T, (t) associated to the delayed linear system (2.29). S(A) is the
principal eigenvalue of the problem

dQA(bQ + e—b47’83G(x’ V7 0)¢3 - b2¢2 = >\¢27 HARS Q?

axpz — bz = A3, z €, (3.6)
%ff =0, x € 0.

By applying the results of Lemma 3.1 on the eigenvalue problem formed by the first equation of (3.5) and
(3.6), with m = e~%793G(x, V,0), we deduce that S(A) has the same sign as S(A, ). Therefore, the exponential
growth rate related to the semigroup associated to the delayed system (2.29) (which is denoted w(T%)) and the
one related to T'(¢) have the same sign. Now, we determine the exponential growth bound of T'(¢), which can
be defined as

w(T) = max{S(A),wo(T)},

with e“o(T) .= k(T'(t)), and & is the measure of non-compactness. To show the local stability of Fy, we need to
determine the sign of w(T;), where if w(T) < 0 then Ey is locally asymptotically stable, and if w(T") > 0 then
Ey is unstable. Since w(T) has the same sign as w(7T;), the local asymptotic stability of PFSS can be deduced
by determining the sign of w(7T') by applying [28], Theorem 2.1, or [23], Theorem 3.1.
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For any (Wao, Wao) € C* (with Wag(-) = Wao (0, -)), and (Wa(t,-), Wa(t,-)) := T(t)(Wao, Wso). Thus, T(t) =
T1(t) + To(t), where

t
Ty (t)(Wao, Wao) = (Wl('at)v/ eb?’(ts)GQWQ('aU)d0> , To(t)(Wa, Wag) = <anb3tW30>.
0

From [11], Lemma 2.5, we have that T3 (¢) is compact. Hence,
R(T(1) = 5(Ta(t) + Ta(t)) = K(Ta(t) < | To(t)]] < e™2".

Therefore, wg < —bs < 0. Therefore, S(A) determines the stability (resp. instability) of Ey. From Lemma 2.6
we have Ry — 1 and S(A) have the same sign. As a result, if Ry < 1 then S(A) < 0 and hence w(T') < 0, which
means that Ey is locally asymptotically stable. However, if Ry > 1 then S(A) > 0 therefore w(T") = S(A) > 0,
and then Fj is unstable. O

Theorem 3.4. If Ry < 1, then Ey is globally asymptotically stable.

Proof. We show the global attractiveness by constructing a Lyapunov function. From Lemma 2.5, Ry satisfies
the problem Bj[¢] = Ry¢, with Neumann boundary condition. Hence,

—daA¢ + by — e PTG (2, V,0)§2¢ = 0, z € Q, 57
3.
2 =0, x € 0.
Let ¢ = ‘g—;¢ > 0, then (3.7) can be written as the following system
—dyAd + by — f-e M7 05G (2, V,0)p = 0, z € Q,
G,Qd) - b3Q§ = 07 T e Qv (38)

2 =y, z € 99.

Note that 93G(x,V 4 v,0) is continuous for v > 0. Therefore, for Ry < 1, there exists a small enough v such
that Ry (also denoted as Ry) corresponding to the perturbation v on 93G(z, V 4 v, 0) remains less than 1. The
corresponding eigenfunctions will also be denoted by (¢, q~5), which satisfies the perturbed system of (3.8).

By Theorem 3.3, to show the global asymptotic stability of PFSS, it suffice to show the global attraction of
Ey. Since limsup,_, . Wi (t,z) < V(x), then for any v > 0 there exists t; > 0 such that Wy (¢,-) < V() + v for
all ¢t > ¢1. Notice that by applying (Hz) we get G(-, W1, W5 _;) < G(-,V +v,W5 _;), and by using (Hg)
we get G(-, Wy, W5 _) <G,V +uv,Ws_,) <Ws3_,;03G(-,V +v,0). The comparison principle implies that
(Wa(t,z), Wa(z, 1)) < (Walt,z), Wa(x, 1)), on Q x [t1, +00), with (Wa(t,z), Ws(z, ) satisfying

ngg = dgAWg + e_b4T83G($, V+ U,O)Wg,,-,— - bgWg, reQ, t>ty,

ag}/g = CLQWQ — bgWg, T e Q, t> tl, (39)
aav? =0, x € 08,
WQ(thx) = Wg(tl,fﬁ), W?)(va) = W3(37x)a T e Qv s € [tl - T7t1]'

Define T, (t) as the linear semigroup generated by (3.9), with the generator A,. We choose v > 0 sufficiently
small such that w(Ty,) < 0 (for Ry < 1), which means that the steady state (0,0) for (3.9) is locally stable. Next,
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we show the global attractiveness of (0,0) for Ry < 1. For this, we let the Lyapunov function

Ly ps[Wo, Ws](£) = L g [Wa, Wa)(t) + L3 g [We, Wi (2),
with

0
VFS[WQ? Wj]( ) / (¢W2 + k(]SWg)d{E, Lg}‘s[WQ, W3](t) = / e_b4T83G($7 \%4 + v, 0) W3’Sd8d$,
Q Q

-7

and k(z) = W The derivative of LV%,S[Wl, W5](t) along the solution of (3.9) is

0
ALY Wy, Wi (1) = %/ e PTG (2, V +0,0) | Ws dsdz,
Q

-7

0
= / e_b47'83G(£L'7V+’U70)/ %Wg(t+8,$)d8d$7
Q

0
= / e YT 93G(z, V 4+ v,0) / agWg(t + s, z)dsdz,
Q S

= / e M7 93G (2, V 4+ v, 0)Ws(t + 5,2) 320, da,
Q

-7

—T

§=—T

= / e_b”agG(x, V+ v, 0)(W3 - Wg’,-,—)dl‘.
Q

The derivative of LS}‘S[WM W5](t) along the solution of (3.9) is

~ 0
ST W3l = [ 0

= / (dgAWg + e*bﬂaga(x, V+u,00Ws _, — b2W2> pdz
Q

+/ k({)(CLQWQ — bgWg)d.’E,
Q

- 1 - -
(dgAWQ + R—e*bﬂaga(x, V+vu,0)Ws _, — b2W2> ¢dz
Q 0

+/ k(ﬁ(aQWg - bgWg)dx
Q

W2+k¢) )lL’

Therefore,
. . 1 .
%LVFS[WQ, W3]<t) < / (dgAWQ + Rff}‘bﬂ'@gG(fL’, V 4+, 0)W3 — bQWQ) ¢d$
Q 0

~ ~ ~ 1 ~
+/ k¢<&2W2 - bgWg) dz + < - 1) / e’b“ao,G(x, V+ v, 0)W37_7—¢d$,
Q Ry Q

:dg/ ¢AWde+/ kW — bsd + ie YT 9 G, V +0,0)¢ | dz:
Q [9) IﬁRo

- 1 -
+/ W <k:¢a2 — bgqb) dz + (R — 1) / e PTG (2, V +v,0) W5, ¢d.
Q Q

0
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—byT
Since that k = %W, and using the second equation of (3.8), we deduce that

|
—b3p + ——Be PTGV + v,0)p = 0.
kR

Also, by kas = m, and by the first equation of (3.8), we get

a2

kdas — bady = —da A

Then, %LVFS[WQ, Wg] (t) becomes

. . 1 -
%LVFS[WQ, Wg](t) < dy / |:¢AW2 — IUQA¢:| dr + (R — 1) / e_b4T83G(l‘, V 4+, O)Wg,_-,—(bdl‘.
Q 0 Q

By the Green’s first identity and the Neumann boundary condition, we obtain

& Ly rs[Wa, W3](t) < dz[ WoVe¢ - ndS + /Q VW,oVpdar + ., dVWy - ndS — /Q vmwm}

o0

i (5 B 1) /Qe_b“‘m@ V +0,0)Ws -gda,

= (1%0 — 1> / e TG (2, V 4 v,0)Ws,_, pda.
Q

Therefore, for Ry < 1, %LVFS[WQ, Wg](t) < 0. Since ¢(z) > 0 for all # € Q, then %LVFS[WQ, W3](t) = 0 if and
only if e=*793G(z, V + v,0)W5 _, = 0. Replacing this result into the first equation of (3.9), we Wy = 0, and
then W3 = 0. Therefore, %Lv FS[WQ, Wg](t) = 0 holds if and only if W, = W5 = 0. LaSalle’s invariance principle
implies that the origin is globally asymptotically stable for (3.9). This means that Wa — 0, and W3 — 0 as
t — +oo. Replacing this result into the first equation of (1.3), we deduce that T — T as t — +o0. Moreover, by
the first equation of (1.3), and the global stability of V for (2.2), we deduce that Wi (¢t,z) — V(z) as t = +oo.

Then, we conclude that Fy is globally asymptotically stable for Ry < 1.
O

Now, we prove the global asymptotic stability of E, for the critical case Ry = 1.
Theorem 3.5. If Ry = 1, Ey remain globally asymptotically stable.

Proof. To overcome this, we need to prove the local stability and the global attraction of Ey. First, we investigate
the local asymptotic stability of Ey. Let € > 0 be a given positive constant. Assume that § > 0, and we let Wy
be the initial data of (1.3) that satisfies ||Wy — Ep|| < J. We define

Wit z)
Ui(t = —— -1
1( 7I) V(Q?)
It is easy to check that VU; = %VWl — %Wl. Hence,
Wi dy

1
di AUy = =d1 AW, —

= AV =20 VV VUL
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Using the fact that diAV = —ay; + b1V, we obtain

dy Wy dq
— AW = d1 AU % 2—VV - VU
v 1 1 1+V(G1+1)+VV VU,
hence,
U, _ 10
9t =V ot
= d, AWlJrLVlfbl%,w,

3

BAU, + Wi (—ay + b, V) + 259V - VUl] pm gy BTGy
= AU, — YU, +2LVV - VU, - w

Hence, we can write

ouy ax dy e MGz, Wi, Ws)
S = AU - T+ 25V U - 2 .

Let T1(t) be the semigroup associated to the generator dy A — ¢+ +23+ 4 v VV -V with Neumann boundary condition.
Hence, there exists § > 0 such that ||T}(t)|| < Me™%, for some 0> 0 Then, we have

(]1(1'7 ) = Tl(t)Ulo — /O Tl(t _ 3) eib“’G('a Wl‘(/:s’ ')a WB(S, ))ds,

with U1(0,z) = W‘i(((i)x) — 1. We let b(t) = max,q{Ui(t, z),0}. From the positivity of T} (t), we have

) — maxweg{ (U0 — /OtTl - s) e TG, Wl( ), Wa(s, -))ds }7

S maxzeg {Tl (]107 }
< [T (t)Usoll,

_ W1(0,z)
< Me m”ﬁ —1]I;
g A‘/I/(Se—et

By the assumption (Hg), Wa, W3 satisfy

{ 6W2 < dgAWy — b Ws + e b4TW3 _+03G (l‘, vV, 0) + eib‘lTWg’_T(agG(I, Wi —~, O) — 83G(I, V, 0)),
26 = ax(@)Wa — bs(x)Ws,

with Neumann boundary conditions. Then, we have

(W) ) =mio (2 )+ [a (M GOC I 0 mRGEV0) Y g
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Since 93G(x, x1,0) is Lipchitz continuous for the second variable, then there exists some Lj > 0 such that

( %ﬁﬁii > gTT(t)( %f’g >+/OtTT(S) < efbuLle(s—T,.())IIWl(s_T,.)_V|| >ds

Hence,

(W) ) =mio (2 )+ [ (M RIAG mollt = m ol g,

From the last part proof of Theorem 3.3, and for Ry = 1, we have w(T) = w(T;) = 0. Hence ||T(t)|]
all ¢ > 0, for some constant M, > 0, which it can be chosen as larger as needed. Notice that b(t) <

thus

< M. for

M5 ot
Z ’

max{||Wa(t, )], [[Ws (¢, )|} < M max{[[Waoll, [[Wsol[} + M- M|[V]|e™ b”Ll/ b(s = 7)[[Ws(s — 7,-)||ds,

<M6—|—6M/ (=) |Wa(s — 7,-)]|ds,
(3.10)
~ —byT
with M, = W By applying Gronwall’s inequality, we get

[Ws(t,-)|| < M,delo 3M-e™"C77ds < gy 56Mre” /0, (3.11)

From (3.10), we have
N t
|[Wa(t,)|] < M-8 + M, / e~ 06| Wy (s — 7, -)|[ds.
0
Using (3.11), we obtain

. t
Walt,)|| < M, + 62M2e3Mre" /0 [ o=0(s=7) g
W (2, )l 2 ’

< M6 (1 + —W*mje”"eﬁ >
By (H1), we have
G(-, Wy, Ws) < G(-,Wl,MT(sveeGT/@).
Using the fact that G is Lipschitz function for the second and the third variable, we get
G(-, Wi, MT566M760T/9> - G(-, 0, MT5e5M7697/9> < LW,
with

Ls = max {82G($,8,M7566M7e67/9), 0<s< M, z¢€ Q},
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where M < oo is is taken as larger as needed. Notice that Ls — 0 as § — 0. Thus, from the first equation of
(1.3) we have

oW,
ot

> di AW, + al(x) — |:b1 (Z‘) + e_b4TL5:| Wwj.

By comparison principle, we have W, (t,z) < Wi(t,z), for all z € Q, t > 0, with W1 be the solution of the
problem

% = AW +ay(z) — {bl(x) + e_bUL[;] Wi, z€Q, t>0,

8&% =0, z €00, t>0, (3.12)
Wl(O,x) = Who, r € .

Let Vj be the unique positive steady state of (3.12). We let U= Wl — Vs, then U satisfies

v _ x€dN, t>0, (3.13)
Wi (0,2) = Wi — V3, x €.

We let T3 (t) be the semigroup of the generator d; A — by with Neumann boundary condition. Then, there exists
M; > 0 sufficiently large such that ||T1(t)|| < Mie~ 2. From (3.13), we have

U(t,-) = Ty (t)(Wig — Vs) — e*bﬂ/o Ti(t — s)LsU (s, -)ds.

Therefore,

t
1O (¢, )] < |[Wio — Vsl | Mie 8 4 M, Ly / e 1= [T (s, )] |ds.
0

Hence, we can write

t
(|U<t, ->||eb1t) < 11Wio = Vallaty + My Loe 7 [ (||U<s7 ->||ebls)ds.
0

Again, by Gronwall’s inequality, we obtain
10 (¢, )| < My||[Wig — Vs|le K001,

with K (§) = Mye=%7 Ls. Clearly, K(J) — 0 as § — 0. Therefore, there exists d,,, > 0 sufficiently small such that
for 0 < 6 < 6, and we have K(J) < %1. Thus,

1t

5 bt
U < My|[Who — Vslle™ . (3.14)

Notice that by the comparison principle we have Vs <V for all § > 0 and z € Q, and V; — V as § — 0.
Therefore, (3.14) implies

Wl(t7') -V >z (Ul(t") - ‘/5) + (Vé - V),

e
—My|[Wio = Ville™ ™= + (Vs = V),

M6 —||Vs = V|

\%

Vv



GENERALITIES ON A DELAYED SPATIOTEMPORAL HOST-PATHOGEN INFECTION MODEL 25

Besides,

Wi(t,:) =V =VU(L,-) <|[V][b(t) <

<|

Hence, we get

~MyS —||[Vs = V|| < Wi(t,) -V <

<|Z

thus, we can choose ¢ sufficiently small such that for all ¢ > 0
max{|[Wi(t,-) = V[, [[Wa(t, )], [[Wa(t, )]} <,
which is the local stability of Ej.

Next, we show the global attractiveness of Ey. From Theorem 2.4, the semiflow ¥(¢) has a global compact
attractor denoted D. To show the global attractiveness of Ey, we need to show that D = {Ey}. We define

Xo = {(¢1,¢2,93) € X7 1 thy 0, and 3 # 0}, (3.15)
9Xo = {(¢1,92,93) € X1 2 =0, or ¢3 =0}, (3.16)
X1 = {(¥1,92,93) €XT: ¢ =0, and 3 = 0}. (3.17)

We prove the result by showing the following two statements

(i) For any Wy € D the w — limt set w(Wy) C 9X;.
From (2.3), we must have W19 < V. Clearly, X, is an invariant set for ¥(¢), hence, if Wy € 90X, then
U (t)Wy € 0X;. Therefore, Ej is attractive in this case. Now, we suppose that Wy € 9Xg. From the two
last equations of (1.3), we have Wa(t,-) > Wy(t,-), and Wy(t, ) > Wsl(t,-), where Wa, W satisfy

OMWa — dy AWy — by ()W, zEN, t>0,
‘9;}/3 = ag(x)Wg — b3($)W3, e, t>0, (3.18)
a2 =, €N, t>0,
W5(0,-) = Wag, W3(0,-) = Wa, = € Q,
with Wio(-) = min{Wio(s,-), s € [-7,0]}, ¢ =2,3. Hence,
Wy (t, @) = T(t)Wao (), 5.19)

t
Ws(t, z) = e 3@ Wy () +/ e (@) (E=5) gy (2) Wy (s, )ds.
0

Clearly, if Wyo # 0 then Wg(t,x) >0 for all z € Q and t > 0, and then Wg(t,l’) >0 for all z € Q and
t > 0, with W3o = 0, and therefore Wi(t,z) >0, 7= 2,3 for all x € Q and ¢ > 0. However, if Wy =0
and Wsq # 0, then Ws(¢, 2) > 0. That follows W3(t, z) > 0, for all x €  and ¢ > 0. Notice that W5 satisfy

t
Wa(t,-) = / To(t —5)B(-)e "7 G(-, Wi (s —7,-), W3(s — 7,-))ds > 0. Then Wa(t,z) > 0, for all € Q and
0
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t > 0. Therefore, we deduce that if either Wyo = 0 or W3¢ = 0, we obtain that W;(t,x) >0, i=2,3 for
all z €  and t > 0. Hence W1 (¢, x) satisfies

oWy di AW, + al(x) — G(JZ, Wl,Wg) — bl(x)Wl, reQ, t>0

ot
G =0, redQ, t>0, (3.20)
W1 (0,z) < V(z), z e

The comparison principle implies that Wy (¢, z) < V(z) for all z € Q and ¢ > 0.
Now, motivated by [29], we define

C(t, Wo) mf{é ER: Wg(t, ) < é"[l)Q, and Wg(t, ) < 51[)3}
Hence, c(t, Wp) > 0 for all ¢ > 0. Next, we show that ¢(t, W) is strictly decreasing in ¢. To prove this, we

fix t; > 0 and we let Wa(t,-) = c(t; Wo)da and W3(t,-) = c(t; Wo) s for t > t;. Notice that Wy(t,) <V,
thus

oWy > dgAWQ - bg(x)Wg + Be_b“G(x, WL—T7 Wg)_T),, rzeQ, t>0,

ot

agt/3 = ag(x)Wa — bs(x) W, z e, t>0, (3.21)
oWz — ), z €9, t>0,
Wals, ) > Wa(s,-), Wi(s,-) > Ws(s,-), se[-7,0], z e

The comparison principle implies that (Wa(t, z), Ws(t, ) > (Wa(t, ), Ws(t,z)) for all z € Q, and t > t,.
The first equation of (3.21) and the strong maximum principle imply that c(t; Wo)ga(s, z) = Wa(t,z) >
Wo(t, ), for all x € Q and t > to, and s € [~7,0]. Also, the second equation gives all x € Q and t > tg,
and s € [—T,0]. Since tg is chosen in arbitrary way, we deduce that c(t; Wp) is strictly decreasing in ¢.

As a result, we deduce that lim; .. c(t;Wy) = ¢. We claim that ¢, = 0. We let W =
(W1, W3, W3) € w(Wp). Hence, there exists a sequence {t,} with ¢, — +oo as n — +oo
such that U(t,)Wy — W as n — +4oo. Use the semiflow properties lim, oo Y(t + ¢,)Wy =
() imy s oo U(t,)Wo = U(¢)W. Therefore, if Wy =0 or W3 = 0, by following the same above rea-
soning we prove that c(t; W) is strictly decreasing, which is a contradiction with ¢(t; W) = ¢;,,. Thus,
Wy =0 and W3 =0.

D ={Ep}.

If Wy € 90X, then {Ey} is globally attractive for ¥(t), and {Ep} is the only compact invariant set of
U(t) € 0X;. Now, we let Wy € D, since w(Wp) is compact invariant set, and satisfies w(Wy) C 0X;
(see statement (i)), we deduce that w(Wy) = {Ep}. As D is compact invariant in X*, Ey is locally
asymptotically stable. By applying [11], Lemma 3.1, we have D = {Ej}.

Thus we get the global asymptotic stability of Ey for Ry = 1. O

4. EXISTENCE OF POSITIVE STEADY STATE

We investigate the uniform persistence of the semiflow W(¢). This result is important to show the existence
of the solution, where we use [30], Theorem 4.17 to show the existence of the positive steady state. We let
U(t,Wy) = W(t,-) for all t > 0, with W = (W3, Wa, W3) be the solution of (1.3), with W, belonging to XT.

Also,

we let W (t,-; Wp) be the solution of (1.3), with Wy belonging to X*. There are many papers that prove

the uniform persistence in literature, and we cite a few [1, 3-5, 11], and references therein.
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We consider the spaces Xy and 90X, as defined by (3.15), and (3.16), respectively. Also, we let
My = {WO € 0Xp : \I/(t; Wo) € 0Xo f07‘ t> 0} (41)

Then, we have the following result
Theorem 4.1. If Ry > 1, then U (¢;Uy) is strongly uniformly persistent, that is, there exists a positive constant
a > 0 such that for any Wy € Xy, U(t; Up) satisfies

liginf Wi(t,z) > a, i=2,3, uniformly for all z € Q.

Moreover, (1.3) has at least one positive steady state (PSS).
Proof. To show this claim, we check all statements of Theorem [31], Theorem 3. We define p : X — R*

p(1) = min{y;(x), x€Q, i=1,2,3, Xt}

Clearly, p(¥(t;10)) > 0 for allyp € p~1(0,00)U(XoNp~1(0)). Then p(1)) is a generalized distance for the semifllow
['(t), see [31]. Notice that w(W) is the w — limit set of the orbit v* (W) = Ui>o{¥(t; Wy)}. First, we prove that
Xy is positively invariant for W (¢, Wy), that is ¥ (¢, Xo) C Xo, which also means that for any Wy € X, we have
W > 0.

By similar reasoning as in the proof of Theorem 3.5, if W € X, we have that W;(z,t) > 0, for all z € Q, and
t > 0. Therefore, ¥(t, Xo) C Xo.

Now, we claim that w(U) = {Ep}, for all U € My. This is true if we prove that My C {(¢1,0,0),¢1 € C;}.
We prove this claim by contradiction. We suppose that there exists ¥ = (¢1,192,%3) € My such that ¢ ¢
{(¥1,0,0),v¢1 € C}. This means that we have two different cases:

(1) ¥2 #0, and ¥3 = 0.
(ii) 2 =0, and ¥3 #Z 0.
For (i), W;, i = 2,3 can be expressed as
t
Wa(t, ) = Ti ()2 + / Ty (t — s)e "TG(-, Wi(s — 7)), Wa(s — 7))ds > Ti(t)¢hs > 0.
0
Then

t
Wi(t, ) :/ eb5=2) gy () Wy(s, -)dls > 0.
0

Therefore, W;(t,z) >0, i=2,3forallz € Q, and ¢t > 0. which means that U(t, 1) C Xp, that is a contradiction
with the definition of Mj.
For (ii), W3 is written as

t
Wal(t,) = e "'y +/ e P gy () Wy (s, -)ds > 0,
0
which means that W3(t,z) > 0 for all € Q, and ¢ > 0. Moreover, W satisfies

Wa(t, ) = /0 T (t— s)efb“G(7 Wi(s — 1), Ws(s — 7))ds.
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Hence, W;(t,xz) > 0, i = 2,3 for all z € , and ¢t > 0. Thus, ¥(t,v) C X,, which is a contradiction with the
definition of My. Therefore, w(v)) = {Fqg} for all 1p € My. Therefore, Ej is isolated in XT. Moreover, from the
fact that w(v) = {Ey} we deduce that there is no cycle in My from {Ep} to itself.

Now, we let W*(Ep) is the stable manifold of Ey. We claim that W*(Ep) N p~1(0,00) = (. This means that
there exists a positive constant § > 0 satisfying

limsup ||¥(¢)y — Eo|| > 6 for any ¢ € p~1(0, 00)
t—o0

with Wy € p~1(0,00) meaning that Wiy >0, i=1,2,3 for all x € Q, s € [-7,0].
We prove the claim by contradiction. We suppose that for any § > 0 there exists ¢ € p~1(0, 00) satisfying

limsup || ¥(t)y — Eo|| < 6 for any 1 € p~*(0,00).
t—00

Thus, there exists ¢; > 0 satisfying W;(¢,-,¢1) — V(:) <n, Wi(t,-, ;) <mn, i=2,3, for all ¢ > t;. Further, by
(Hg), for t > t1 + 7, (Wa(t,z,12), Ws(t, x,12)) is an upper bound of the solution of the problem

6522 = dyAwy + e 703G (2, V — 1, 0)ws,_, — byws,

9s = aywy — byws, (4.2)

wa(+,t1) = max{ys(s,x),s € [-7,0]} >0, ws(z,t1) = max{vs(s,z),s € [-7,0]} >0, x€ Q.

We let (A1(9), ¢1,6(x)) be principal eigenpair of the following eigenvalue problem

doAu — byu + e 793G (2, V — 1, 0)%11 —u, zeQ.
3

Clearly, A\1(n) is continuous in 7. Lemma 2.6 implies that A\;(0) = A\; > 0 for Ry > 1. From the continuity of

A1(n) with respect to 1, we choose 1 > 0 sufficiently small such that A;(n) > 0.
Moreover, Lemma 2.6 implies that the following eigenvalue system

dadtps + e 705Gz, V — 1, 0)1h3 — baths = Ao, w € Q,

a2 — b3pz = s, x €, (4.3)
%1 =, z € 99,

has a principal eigenvalue 5\1(77) > 0 for a sufficiently small constant 7 > 0, and (qgg, gzgg) is the corresponding
eigenfunction. Choose o > 0 sufficiently small such that a¢] < W;(t1,-), = 2,3. Then, (4.2) has a unique
solution

(w1, wg) = (ae’\l(g)(t_tl)é;’,ae)‘l(‘s)(t_tl)q/;g), t>t.

Then, w; — 400, ¢ = 2,3 as t — 400, which is a contradiction with the results of Theorem 2.3. Hence we
deduce that W*(Ep) N p~1(0,00) = (). Therefore, all statements of Theorem [31], Theorem 3 holds true. ¥(t) is
strongly uniformly persistent. This completes the first part of the proof.

Next, we focus on the second part of the proof. Theorem 2.3 implies that ¥(¢) is point dissipative. Further,
My is a convex set, and ¥(¢) is k—condensing, then [30], Theorem 4.7 implies the existence of a PSS denoted
by E* = (W7, W5, Wy), that satisfy the system (1.3), and satisfy the persistence result (for Ry > 1). Therefore,
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this steady state is the positive steady state and belongs to Xy, and satisfies

0= dlAWl(x) + al(x) — G(ZL’, Wl, Wg) — bl(:c)Wl(x), S Q,
0= d2AW2($) + eib‘lTG(CE, W1, Wg) — bQ(.%)WQ(l‘), x €,

(4.4)
0 = ag(x)Wa(x) — bg(z)Ws(x), x €,
Bt = B =0, v €00,
O

5. GLOBAL ATTRACTIVITY

Here, we investigate the global attractivity of the PSS. Mention that Theorem 4.1 does not guarantee the
uniqueness of the PSS. In the case of the bilinear incidence and one diffusion coefficient, the uniqueness can be
performed by applying similar reasoning as in [2], and for applications, e.g. [32], Theorem 3.1, and references
therein. However, this method cannot be applied in our analysis due to the distinct diffusion coefficients. Notice
that (Hg) and (Hz) implies the following

G (x,Wy,W3) 1% . -
+ oW = wi for all Wy < Wy, and x €

For all wy,ws € R™ we have Gl Wt o ) (5.1)

Z,VWi1,W3 %

Gy < wi for all W > W, and @ € Q.

Notice that (5.1) implies that W is nonincreasing in ys. The global attractivness result is provided through
the following subsections

5.1. Spatially homogeneous case
In this case, we consider that all parameters are space independent, and hence, G is also spatially

homogeneous, and then the PSS becomes constant, and satisfies the following system

0=a1 — G(Wl*a Wi‘;k) - lel*v
0= et TG(Wy, Wi) — ba Wi, (5.2)
0 = as Wi — by Wi

Remark 5.1. For the system (5.2), we can prove the existence of the positive steady state by searching on a
fixed point, e.g. [33], Theorem 1. However, the uniqueness is hard to be achieved by analyzing (5.2). Therefore,
we use the global attraction to show it. This reasoning is used in different literature works, we cite a few
[1, 33, 34].

We define the Volterra function as
plp)=p—1—Inp, p=0. (5.3)

Tt is readily seen that p(p) > 0 for all p > 0, and p(p) = 0 if and only if p = 1.

Theorem 5.2. Assume that (Hy) — (Hg) hold. If Ry > 1, then the PSS denoted E* = (W7, W5, W3) of (5.2)
s unique and globally attractive in Xg.

Proof. We construct the following Lyapunov function as

V (W, Wa, W3) = Vi (W1, Wa, W3) + Vo(Wy, Wa, Ws),
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with

v (W Wo. W ) B / - (t x) e /Wl(t,ﬂi) Wd0+eb4TW*(x)p(W2(t’x)> —|—kW*p<W3(t,z)>dgL‘
1 1 25 3 o 1\ 1 . G(e} Wg) 2 W2* 3 Wék ’

and

(Wit —s,z), Ws(t — s,z
Vo(Wh, Wa, W3) = G(W, Wy) // ( i (Wz Wi() ))>dsdx,
-7 1> "W3

with k = % From the boundedness of the solution (Thm. 2.3), and uniform persistent (Thm. 4.1),
2

we deduce that the Lyapunov function V' is well-defined. The derivative of V; along the solution of (1.3) is
given by

LY (W, Wa, W) =/

(1 G W)
Q

di AW — GW1,W3) — W
G(Wl,Wg‘))<l 1t (W, W) 1 1)

—1—(1 - 2> ( baTdy AWy + GWh,—r, W3 1) — eb4Tb2W2>

+k (1 — ) <a2W2 — bgWg) dz.

Adding and subtracting the term G(W7, Wg)( Vviéz ) then, we obtain

GO, Wy)

d
AV Wy Wo. W 1_
dt‘/l( 1 25 3) /Q ( GWl,WP’)

) (dlAV[/l + a1 — G(Wl, Wg) — b1W1>

( ) < b4Td2AW2 + G(Wl, Wg) - eb4Tb2W2> + k(l - > (GQWQ — b3W3>

<1 W ) (Wi, _r, Ws._1) — G(Wy, Ws))da.

(5.4)
By a simple calculation, we have

wy _ * * GWy, -, W3 _,)
(1 - 2) (G(WL—Ta W37—7') - G(Wh W3)) - G(Wl ’WS ) (p(m)
G(W ’W ) W*G(W ,,T,W ,*T)
—p G(W}Wz;)) — p( 2W2G(1W1*’W33) ) (5.5)

Wi G(Wi,Ws)
P WQZG(WE,W;)))'

Using the steady state equations (5.2), and (5.5), then (5.4) becomes

G(Wi, W) o )
- /Q (1 - M) (dlAW1 + GW,W3) + bWy — G(Wy, W) — le1>

+(1 _ W2 < b7 Ay AWy + G(Wy, W3) — W;; G(Wf,W§‘)> + aQW;k< - VV&;) (vaj — V”g;)

N N T G(W1,Ws) W3 G(Wi,_r Ws, ) W OOV W)
+G(W1? 3)<p( G(Wl*,Wz*) ) _p<G(W§,W})> —p( 2W2G(1W1*7W§*) ) +p(VV22G(VV§:VV§))>dJJ

(5.6)
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By a tedious calculations, (5.6) can be expressed as

Wi, W) Wy
d — - GVE V)N ) A 1— =2 )eMTdy AWad
Gt Vi(Wy, Wo, W3) /Q( (Wl,W3) 1AW, + W2 Wadx

-
bW,
/Q[l 1( G(Wr, W) Wy
G (W1, W (W1, W)
+G (W 7W3) Wf,w3) 1> <Wd - G(Wll Wi))
G(W;,W3) (W1,Ws) , W. Wy G(W1,W5)
( wv)w(wé i) +o( ) + o )

G(W1,W3) Wy G(Wi,_+ W3, _7)
cwr.wy) | — P\ T ey wg)

G(Wy, ﬂ—,Wg )
—oWr Wi

G, Wg)(
460, 5) (5
Next, we calculate the derivative of V5 along the solution of the model (1.3), that is

GOV (W Wi) g,

LV (W, Wa, W :/ Wi, Wi
dtv2( 1, 2y 3) QG( 17W3) p G(Wl*,W;) G(Wl*,W;)

Then, V' becomes

¢ GWi, W3) W3\ bar
LV (W, Wa, W) = /Q <1— M)dlAler <1 o ) 047 dy AW da:

>
2
GWy, Wy Wi
] o Gy
ol ! G(Wy, W3) W}
R G(W1,W. Wi G(W, W)
+G(W1’W3)VV5§<G<(W11WS%—1>( —G<ww>> (5.8)
* * G(W W3) W W,y G(W1,W5)
—G(W17W3)<P(G<mw§)>+p< 2w)+p(wg*c;(mw§)>

WiG(Wi._r Ws._y)
+p< QWQG(IWI*,W;;) ))} da.

Q(Wlawe, )

In the view of (Hz), we deduce that (1 - M) ( RIS

) < 0. From (5.1), we deduce that (G(WIWP’) _

1) (VV& - m> < 0 (for more details see [33], Thm. 1). Next, we apply the Green’s first identity, use the

Neumann boundary condition to simplify the first term in (5.8), and then

/(1 G(Wl’W3)>d1AW1 (1—I€V/2>eb“d2AW2dx
2

G(W1, Wy
GWr, Wy b Wy
— baT d
|: ( (W17W3) VW1 (§ d2V W2 VWQ xZ,
G(Wi, W) G(Wy, W) VWL 2, WQ‘IVW2|2>
+ e dy—=—-F— |dz <0.
/ ( (G(W1, W3))? 2 ()2 -
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The above estimates next to the definition of p, we get

d
aV(WlaW%WZi) <0, for all (Wl,Wz,Wg) € Xp.

We let M be the largest invariant subset of {(Wl, Wa, W3) € Xo : V(1) = } Lasalle invariance principle [35]

implies that the w — limit sets of solution are contained in M. Clearly, V'(t) = 0 implies that

e COVEWE) W Wy Ws GOV, W) _ WiG(Wi—r Wi r) _
! UG, W) Wy Ws Wi G(Wh, Wa) WoG(W;, W) :

Substituting the above relations into the third equation of (1.3), we obtain

oWy Wi
= Wy —bsW3) =0.
o Wy T (a2 Wy — bsW3)
Hence W3 = W5, W2 W~" = 1 we obtain that Wy = W Therefore, M = {E*}. Hence E* is globally
attractive in Xy. The unlqueness of the PSS follows immediately from the global attractivity of E*. O

5.2. Spatially heterogeneous case

We now establish the global attractivity of the PSS in the case when all parameters are space dependent by
combining the method of Lyapunov functionals and Lasalle invariance principle. Indeed, we prove this result
when the susceptible tissues diffusion coefficient is zero (dy = 0).

Theorem 5.3. Suppose that (H1) — (Hq) hold. If Ry > 1, then the PSS E* = (W, W3, W5) of (5.2) is unique
and globally attractive in Xo.

Proof. We construct the following Lyapunov function as

W) G, Wy, W) Wa(t, )
V (W1, Wy, W- :/W*{W t,x) — Wiz +/ — L3240 4 e T :cp<;>
( 1 2 3) 0 2 1( ) 1 ( ) Wi (2) G(l’, 97 Wd) 2 ( ) W2

+k(x)W5p W?,[(,i;z) dz

o [ ST Yo

-7

with k(x) = %‘/‘W Clearly, V is well-defined. The derivative of V along the solution of (1.3) is given

by

Gz, W, W5)
AV (W, Wa, W) = W [(1 - G(lel,VV;i)) <a1 - G(x, Wy, W3) — b1W1>

( ) ( b4Td2AW2 + G(JI W1 —Ts W3 _7—) - eb‘“—bQWg)

(o) o)

* * * G(l’,Wl,WE}) _ G(x7W17—7'7W3,—T)
+/ng2[G(x’wl’W?’)(p(G(x,Wf,W;)) p( Gawrwy) )]
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Using the steady state equations (6.1), and performing similar calculation to the homogeneous case, we obtain

Wy W-
%V(Wl, Wa, Wg) = /S;WQ* [(1 — VV22>eb47'd2AW2 + (1 — V[/i>e547'd2AW5:| dx
2

G(Wika:?))( Wl)

+ W*{bw*(l -
. e Wa [ G(W1,Wa) wr o GWh, W)

et ) ) (3 5 o
v e (o GOV w; W, GOV W)

—G(W; ’W3)<p<G(W11,W§)) er(vv;« Wi) +p(WSZ G(Wi,Wi))

WiG(Wi o\ Wa._r)
+p( 2W2G(W1*,W§) ))} dz.

Now, we simplify the first term (5.9). By applying Green’s first identity, and the Neumann boundary condition,
we obtain

Wi W
/ Wi (1— =2 )P dyAWoda + Wi (1 — —= P dy AW da
Q Wa w3

W* 2
— e”“dg/ Wy ( - v(w; _ (¥3) )VW2 — V(W5 — Wz)vwg)dx,
Q

Wy
Ws OW- oW
= —ehitdy [ B 3278 208 \dr <.
¢ 2/9 Z_1<VV3 Ox; Ox; z=0

Therefore, %V < 0, and equality holds if and only if Wy = W, Wy = W5, W5 = W3. Therefore, M = {E*}.

Hence E* is globally attractive in Xy. The global attractivity of E* implies the uniqueness of the PSS. O

Remark 5.4. Notice that the global attractiveness of the PSS is done only in the case d; = 0 and dy # 0.
However, if d; # 0 and dy = 0, we couldn’t construct a Lyapunov function even in the case of the bilinear
incidence.

6. ASYMPTOTIC PROFILES

In this section, we investigate the asymptotic profile of PSS. From Theorem 4.1, the system (5.2) has at least
one positive steady state for Ry > 1, but no information has been provided on the uniqueness of this steady
state. Indeed, in the spatially homogeneous case, the uniqueness of PSS is shown using the global attraction
of E* and by employing Lyapunov function and Lasalle invariance principle, similar result is proved for the
heterogeneous case with do # 0, dy = 0. The asymptotic profiles of PSS when one or both dispersal rates goes
to infinity or zero is the subject of interest in this section. Also, to generalize the results established in [11].
However, due to the nonlinearity of the incidence function, we are required to consider additional assumption
on the nonlinear incidence to establish the asymptotic profile of PSS, that is

(H4) Suppose that %ﬁ;;, z € Q, 1, Y1, y2 > 0 is independent of x;.

Notice that (H4) implies that there exists f,g € C1(2 x RT,R¥), such that for all z € Q, x1,y;1 > 0, we
have G(z,z1,y1) = f(z,21)g(z, y1). From (Hz2), we get 0s f(z,21) = ngl) > 0, and dag(w,y1) = 769((92’13’1) >0
for all z € Q, z1,y1 > 0. By (Hs), we have g(z,y) < 029(z,0)y for all z € Q, y > 0, and g is a concave function

with respect to the second variable.
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From the third equation of the system (4.4), we have W3 = azb—zV?. Then, the PSS satisfies the following system

0=d1AW1 4+ a1 — f(JJ,Wl)g(JJ, ZL§W2) — bWy, x €9Q,

0 = da AWy + 7047 f(z,Wh)g <x, ‘giW2> —boWa, z € Q, (6.1)
T =G =, z € 0N

Motivated by [11, 19], for any d > 0 and m € C, we let A1(d, m) be the principal eigenvalue of the problem

dA — A, Q,
{anym e 52

A1(d, m) depends continuously on d and m, and satisfies

Ai(d,m) = sup {/Q(de/)|2+mw2)dx, with /911)21}. (6.3)

YEH?(Q), ¥#0

Clearly, A1(d, m) is decreasing in d, and by Lemma 2.5, we have A;(d, m) — ™ as d — 0, and A\ (d,m) — / hdx
Q
as d — +00. Moreover, A;(d,m) is increasing in m, with A1(d, m1) > A1(d, ma) if m1 > ma, and my (z) > ma(z)

for some x € ), with m; € C, i =1,2.

6.1. Profile as d; — +o0

In this subsection, we treat dy as independent parameter in (0,400). We denote

fQ adz as
A=)\ (d a7 — —by .
1 1 ( 2;f<1'7 fQ bldx € 829(1',0) b3 2

Lemma 6.1. A\ — A}, as di — +00, with (A1, ¢1(x)) is principal eigenpaire of (2.38). Moreover, Ry — R},
as di — +o00, and satisfies A7 > 0 if and only if R > 1.
Furthermore, R can be expressed in the following variational form

d

/ e_buf(x, Lj:ﬂ Zldx) %829(3:’ 0)¢2d$
X

Ry = sup o Thi i .

PEH (Q2),0p#£0 /(d2|v¢|2 +b2¢2)dﬂj
Q

(6.4)

Proof. Notice that V(z) satisfy (2.28). We define the sequence {d;,} such that d; , — 400 as n — +oo, and
V,, is the corresponding solution of (2.28), and (A1, ¢1,,(x)) is the corresponding principal eigenpaire of (2.38).
We divide both sides of (2.28) over d ,,, we obtain

din

oV, _

AV, + -2 — by —0 zeq,
{ T v (6.5)

Letting n — 400, and by the elliptic regularity, we obtain that AV* = 0, hence V* is constant. Then, we

integrate both sides of (2.28), and we get V* = ﬁ Zijz.
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Letting n — +oo for (2.38), we obtain that (A1, ¢1,,(2)) = (A}, ¢1(z)). Using (Hs), and the value of V*,
we obtain that the principal eigenpaire (A}, ¢5(x)) satisfy

dZA/l;[} - wa + Z:ebw'f(l‘v %;Ziji)aQQ(x7o)w = Ad)7 HAS Q7

5 a
9e =0, z e

(6.6)

For the second part of the lemma, again, we let a sequence {d; ,,} that satisty d; , — 400 as n — 400, where
Vi and (Ro p, ¢on(x)) satisfy

AV, + - — -V, =0, z€Q,

dl,n n

d2A¢n - b2¢n + Rs,n %eibu—f(l'v Vn)a2g(xa 0)¢n = 07 T e Q,

with Neumann boundary condition. Letting n tends to 400, then we get V,, — V* and Ry, — Rf, with Rf is
defined by the variational form (6.4). From Lemma 2.6, we deduce that Rj; — 1 has the same sign as \}. Hence,
we deduce the result. O

Next, we prove the main result of this subsection through the following theorem

Theorem 6.2. Assume that R > 1, and (H1) — (Hy) holds. Then, for any fized da > 0 there exists a sequence
{d1n} that verify di, — +00 as n — +oo, such that the corresponding PSS (Wi, Wa,) of (6.1) satisfy
(Wi, Wan) = (W, W5) in C, where (W7, W) is unique, and W7 is constant.

Proof. The existence of of PSS can be deduced from Theorem 4.1. It remains to show the convergence of
(W1n, Wa,,) as n — 4o00. By the first equation of (6.1), one has

—d1 AWy < ag — b W7,

with Neumann boundary condition. Hence, the maximum principle implies that ||W7 || < % for all d; > 0. Next,

we integrate both sides of the two equations of (6.1), and we multiply both sides of the first resulting equation
by e~%47 then, we add the resulting equations, we obtain

/ boWadz = e 047 / (ay — byWh)dz < @]
Q Q

Therefore, ||Ws]|1 < %29‘ Next, for any p > 0, and by the second equation of (6.1), the uniform boundedness

of W1, and the assumptions (Hy) — (Hs), the elliptic estimate, and bootstrapping argument, there exists C' > 0
such that

|Wal|ap < C, for all dy > 0. (6.7)

Fixing p > n, by the boundedness of W; in C, and W> in W2P(Q), there exists a sequence {d; .}, with
dy n — +o0o such that the corresponding solution (Wi, Wa,,) of (6.1) satisfy Wi , — W7 weakly in LP(12),
and W, — W5 weakly in W2P(Q) and by the embedding theorem of W2?(Q) in C, we deduce that Wy, — W
strongly in C' as n — +oo, for some positive W; in LP(Q2), and nonnegative Wy in W2P(Q2) as n — oo. We
divide both sides of the first equation of (6.1) over dy ,, and we obtain

flamig(n )
’ dl n dl,n dl,n

Wy =0, x€9Q,
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with Neumann boundary condition. Letting n — oo, and by the elliptic regularity, and the assumptions (Hy) —
(H3), we get AW = 0, thus W7 is constant. We integrate both sides of the first equation of (6.1), and we
obtain

FEWY, W5 (x) =0, (6.8)

with
F(Wf,W;(m)):/aldx—/ f(x,Wf)g<x,“2W§)dx—Wf/bldx.
Q Q bs Q

We consider the equation F(I, W3 (x)) = 0, with a fixed function W3 (z). We show that F(I, W5 (x)) = 0 has
a unique positive solution denoted I*. Clearly, F' is strictly decreasing in I, and F'(0, W5 (z)) = [ aidz, and

limy_, oo F(I, W5(x)) = —o0. Therefore, F(I, W5 (x)) = 0 has a unique positive solution in [0, +00) d%noted Wi
Obviously, there exists a positive function denoted hy : C(Q) — R, such that W7 = hy (W5 (z)).

Now, we claim that hy(¢) is decreasing in ¢ € C, that is, for all ¢1, o € C satisfying ¢ (x) < ¢o(z) for all
z € Q and ¢ (7) < ¢o(x) for some = € Q, we have hy(¢1(x)) > hi(p2(x)). We show this claim by contradiction,
and we suppose that h; is non-decreasing in W3 (z), that is, for all ¢1, ¢2 € C satistying ¢ (z) < ¢o(x) for all
x € Qand ¢1(x) < ¢a(x) for some x € Q we have hy(¢1(x)) > hyi(p2()), and we let the constants Wi, W3 that
satisfy Wi = hy(¢1(z)), and W2 = hy(¢2(x)), respectively. Notice that by the assumption put on hy, we have
Wi > W2, Therefore, they satisfy the equations

{ F(W{, é1(x)) =0,
(6.9)

F(WE, ¢2(x)) = 0.

Subtracting the two equations of (6.9), and we obtain

/Q {f(m,le)g (:c Zi@) — f(z,Whg (z Zim)}dx = (W -wh /Q bydz. (6.10)

The monotonicity of f with respect to the second variable gives f(z, W) > f(z, W}). We substitute this result
into (6.10), we obtain

0> /Qf(x, Wi [g (;n Z;qbg) _ g(m, Zi@)}dm > (W — w2) /Q bydz > 0, (6.11)

which is a contradiction with the monotonicity of g. Then, h; is decreasing in Wi (x).
By the monotonicity of f with respect to the second parameter, we deduce that f(x, hi(y)) is also decreasing
in y, y € C. For simplicity, we let H;(z,y) defined by

Hy(z,y) = f(z,hi(y)),

which is decreasing in y, = € ©, y € C. By the definition of H;, and the second equation of (6.1), Wy is the
solution of the following problem

Ao AU + e=%7 Hy (2, U)g (:g ‘;§U> —bU =0,z €Q,

v —o, x € 09,

(6.12)



GENERALITIES ON A DELAYED SPATIOTEMPORAL HOST-PATHOGEN INFECTION MODEL 37

Now, for Ry > 1, we claim that (6.12) has a unique positive solution. We prove this claim by constructing
an upper and lower solution of (6.12). We denote

Q(u) = doAu+ Hy(x,u)g (x, ?u) — bau.
3
We let @ = e¢7 with € > 0 sufficiently small. Then, we have
Q@) = sda 301 + 0~ Ha,01)g . 220t ) — st

e AT H, (z,e¢7)g (E»Zgﬂﬂ)
= E(dQA(bik + - b2¢>1k>'

€

By Lemma 6.1, we have

) s (H@eod(n22e0) i .
Q(u):€|:A1 +e ba ( 1(x,e Eig b3 © 1) _b;f<gj, Jf;ézld;t)agg(m,O)>:|¢1

as %
Notice that Hi(x,e¢7) — f(x, I aldx), and w
1

RO — $2029(2,0) as € — 0. Since H(z,y) and g(a;y) are

both decreasing in y, for all y > 0, we deduce that Hy(z,c¢7) oF Tota
1 o b1dx

sufficiently small. Moreover, for Ry > 1 (more precisely R§ > 1) we have A* > 0 (Lem. 6.1), then Q(@) > 0

if £ > 0 is small. Thus, @ is a lower solution of (6.12) if ¢ is small. Next, we let U = A, with A is a positive
constant. Then, by (Hg), and the fact that H(A) < H(0), we obtain

z, 32 e} ardz .
m_%f Joard )an(x,0)<01fE>0

Joardz
’ fﬂ bldﬂl‘

Q) < | Hi(x, A)‘Zie—bﬂ f(x
3

)629(33, 0) — bl] Al

By the definition of Hy, we have lim4_, ., Hi(z, A) = 0 for all x € 2, then, there exists a positive constant A > 0
sufficiently large such that Q(U ) < 0. Hence, U is an upper solution of (6.12). Thus, the upper-lower solution
method implies that (6.12) has at least one positive solution.

Next, we show the uniqueness of the solution for (6.12). We suppose by contradiction that (6.12) has two
positive solutions Uy, Us, we choose € sufficiently small, and A sufficiently large such that U; € [a, U], 1=1,2.
The lower-upper solution method implies the existence of a minimal solution U,,, and maximal solution Uy,
such that u < U, < U;,Us < Upy < U. We multiply both sides of (6.12) with U = U,,, by Ujs, and both sides
of (6.12) with U = Up; by U, and subtracting the resulting equations, and we integrate both sides of the
obtained equation on () we get

9(z, 2Un)
b5 Um

g(l’, %UM)

a2

7UmUM a
Gy

by~ M

Hl(SL',Um) —H1(.’L‘,UM) dx = 0.
Q b3

By (Hy), we have g(f—ﬂ is non-increasing in y, y € C, with % > % if 51 < yo, and y1(z) < yo(x) for

1

some x € €, and y;, i = 1,2 € C. The monotonicity of H;(z,y), and w with respect to y, for all € Q,

which implies that U,,, = Ups as Uy > Uy, thus, (6.12) has a unique positive solution denoted Wy. The proof
is completed. 0
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6.2. Profile as ds — +o©

Here, we consider d; as independent parameter in (0,+o00). We define hy : Rt — RT, with ha(y) =
/ f(z,y)dz, y > 0, since Oz f(x,y) > 0 for all z € Q, y > 0, then hy is invertible, and its inverse is denoted
h§1.

Theorem 6.3. Assume that Ry > 1, and (Hy) — (Hs), holds, and @ is non-increasing in y, r € Q, and

y > 0. Then, for any fizred di > 0, there exists a sequence {d2} satisfy ds,, — +00 as n — 400 such that the
PSS (Wi, Wa ) of (6.1) verify (Wi n, Wa ) = (W, W5) in C, with W5 is a constant and satisfying

/aldx — | 6hWide
* _ _—baTJQ Q
Wy =e ™ ,

/ bgdx
Q

and W7 is the unique positive solution of the problem

Jq bada

G AU + ay — f(z,U)g ( QZe*bﬂw)w U=0,z€eQ, (6.13)
‘3—2—0 x € 00. '

Proof. Theorem 4.1 implies the existence of PSS. Then, we check the convergence of (W7 ,,, Wa,,) as n — +oo.
By the first equation of (6.1), and performing similar reasoning to the proof of Theorem 6.2, we obtain that
{W1}d,>0 is uniformly bounded in C, and {W}4,¢ is uniformly bounded in W2?(Q). (Hy) — (Hs) and the
elliptic estimate implies that (Wi ,,, Ws ,,) the solution of (6.1) satisfies (W1, Wa,) — (W7, Wy') weakly in
W2P(Q) x W3P(Q) as n — +o00. By the second equation of (6.1), we obtain that AWy = 0, which means W
is constant. By integrating both sides of the second equation of (6.1), we obtain

_b“/ flz, W)g Wz)dx— W2*/ badz = 0. (6.14)
Q

Then, two cases appear

(i) W5 =0and e™™7 [, f(z, W})§202g(x,0)dz — [ badx # 0;
(i) W3 # 0 and e~ [ f(a, Wf)wdx — Jo badz = 0.

For (i), we let Wg’n = HW H Notice that as n — 400, Wy, — 0, and the definition of the derivative (and
(Hy)) gives lim,_,g G(xy’ay) = adag(z,0) for all x € Q. Then, ng satisfy

9(1'7 %WZ,TL)

d2,nAW2,n + e—bu'f(x’ Wl,n) [Wanll

— byWa,, =0, (6.15)

with Neumann boundary condition. By a similar reasoning as above we have ng — 1 as n — +o0. Integrating
the two sides of (6.15), we obtain e~*7 [, f(, Wi)§2029(x, 0)dz — Jq badz = 0, which is a contradiction.
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For (ii), W7 and W3 satisfy

A AWT +ay — f(x, W)g(x, 2W5) —bi Wi =0,z € Q,

x, BWs
e_b‘”/ f(ale*)de —/ badx = 0, (6.16)
Q 2 Q
ML o, x € 99

Integrating both sides of the first equation of (6.16) on 2, we obtain

a *

* * g(fE,E 2) *
aldx — LLQ f(.’l?, Lbl)i*dl' — bl LLI dz =0.
Q Q ”2 Q

Using the second equation of (6.16), we obtain

/a1d$76b47—w2*/ bgdl‘*/ lel*dz =0.
Q Q Q

Hence,

/aldx—/blwl*dx
W* _ efb4‘r Q Q .

5 =
/ del’
Q

Substituting this result into the first equation of (6.16), we get (6.13). It remains to show the existence and the
uniqueness of the solution for (6.13). By similar reasoning to the proof of Theorem 6.2, we can define the lower
solution % = ¢ with £ > 0 is a small constant, and U= A, with A > 0 is a sufficiently large constant. Then, we
guarantee the existence of at least one positive solution of (6.13). For uniqueness, we assume by contradiction
that (6.16) has two positive solutions Uy, Us, and the existence of a minimal solution U,,,, and maximal solution
Unr, such that @ < Uy, < Uy, Us < Uy < U. We multiply both sides of (6.13) with U = U,,, by Uy, and both
sides of (6.13) with U = Uy by U,,, and subtracting the resulting equations, and we integrate both sides of the
obtained equation. Then, we have

/ UmUM (f(.’E, UM)g (1., aje*bzu' fQ aldx o fQ blUMdz) o f(xa UTTL)g (SU, a‘ieszu' fQ aldx B fQ blUde]C) >d£L’
Q UM b3 fQ deZL' Um b3 fQ deiE

+/ a1(Up, — Upg)dz = 0,
Q

By (Hjs), we have g (x, Z—;e_b“TW) is decreasing in y, with g(z,y1) > g(z,y2) if y1 < yo, and

y1(x) < yo(x) for some x € Q, and y;, i = 1,2 € C, and, since that f(zTy) is non-increasing in y, € Q, and
y > 0, we deduce that that U,,, = Uy as Ups > Uy, ' O
6.3. Profile as dy,dy — 400

Here, we treat both dy,ds as independent parameters in (0, +00). We let

ane 4T ardx
fo 2 (i, fz ) Dag(x, 0)dar

fQ bgdl‘

EE
RO -
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By similar prove to Lemma 6.1, and Lemma 2.5, we have the following result
Lemma 6.4. Ry — R§*, as di,dy — +00.
Then we have the principal result of this subsection

Theorem 6.5. Assume that R§* > 1. Then there exists sequences {din}, {den} that satisfy dy, — +o0,
and dy , — +00 as n — +oo, such that the corresponding PSS (Wi, Wa,) of (6.1) satisfy (Wi, Wa ) —
(W, W5) in C, with Wi, W5 is unique and both are constants, and satisfy

Wi = hi(W3),

6.17
e b Jo %H1(l‘aW§k) (6.17)

z, WS
de — [ bada = 0.
Proof. We check the convergence of (W; ,,Ws,) as n — +o0o. By a routine calculation as in the proof of
Theorem 4.1, and we get the uniform the boundedness of Wy in C' and W5 in W2P(Q) for all d; > 0 and dy > 0.
The elliptic estimate implies that (Wq ,, Wa,,) — (W5, W5) weakly in W2P(Q) x W2P(Q2) as n — +o0o. By the
equations of (6.1), we have AW} = 0, and AW; = 0, hence, both W} and W7 are constant. We integrate both
sides of the two equation of (6.1), we get

Wi = (W3),

_ a oy 9\ 52 W5 (6.18)
e bam fQ b—iHl(m7W2)7g( 25‘;’/‘/;2)(1‘% — fQ bodx = 0.
We define Hs : RT™ — R, by
x, 42
Hs(y) = e b7 ZQHl(a:,y)WdI _ / bodiz.
Q03 i Q
Clearly, limy,_,o H3(y) = R§* —1 > 0, and limy,_, 4o H3(y) = —fQ bodx < 0. Note that the second limit is

obtained from the fact that g(TTy) is bounded for all z € Q and y > 0, and H;(z,y) is decreasing in y for all

x € Q, and satisty Hy(z,y) — 0 as y — 0 for all x € Q. Since H; is decreasing with respect to the second
variable, and % is also decreasing in the second variable, we obtain that Hj(y) < 0, then Hs(y) = 0 has a
unique positive solution W3, which guarantee the existence and the uniqueness of PSS as di,ds — +00. The
proof is completed.

O

6.4. Profile as d; — 0

In this subsection, we consider that d; is an independent parameter in (0, +00), and investigate the asymptotic
profile of PSS as d; — 0. The result of this subsection generalizes the obtained result in [11], Lemme 4.1, and
Theorem 4.2. We define hy : Q x C(Q) — R by

hafa,y) = 2

by (Hz), we have ha(z,y) is decreasing in y, y € C, with ha(z,y1) < ha(x,ys) for all x € Q, ify; >
Y2, and y1(x) > ya(w) for some x € Q, and y;, i = 1,2 € C. Clearly, the equation hy(r,y) = z has a unique
positive solution for all z > 0, and x € ©, which we will refer this solution by h5 *(z, 2).
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We let

) /Q e (x ‘Zj) i 00(r,0)0%da

RS = sup
PEH(Q),$70 / (d2|V¢|* + ba¢?)da
Q

; (6.19)

and
A" =X (do, f CE,a*l e_bUazg(%O)%—bz -
by b3

By similar reasoning to the proof of Lemma 2.5, we obtain for d; — 0, Ay — A7*, and Ry — ]:23 We let ¢7*
is the corresponding eigenfunction to the eigenvalue A}*.

Theorem 6.6. Assume that R} > 1, and (H,) — (Hs) holds. Then, for any fized dy > 0, there exists a
sequence {din} that satisfy dy, — 0, as n — 400, such that the corresponding PSS (Wi, Wa,) of (6.1)
satisfy (Wi p, Wa ) = (W, W3) in C, with W satisfy

a

W), (6.20)

Wi = b3z, gl
3

and W3 is the unique positive solution of the following nonlinear problem

doAu + f(x, hy ' (z, g(x, Z;u)))y(x, g;u) —bu=0, €,

(6.21)
% =0, x € 0N.

Proof. Notice that V is the solution of (2.28), and satisfy V' — Z—ll as d; — 0. We investigate the convergence of
(W1 n, Wa,,) as n — +oo. From the proof of Theorem 6.2, we have the uniform the boundedness of W in C' and
the uniform boundeness of Wy in W2P(Q) for all d; > 0 and da > 0. Therefore, Wy, — W; weakly in LP(Q),
and Wa,, — W5 weakly in W??(Q) and by the embedding theorem of W2P(Q) in C, we have Wy,, — W
strongly in C' as n — +o0, for some positive W; in LP(Q2), and nonnegative W3 in W2P(Q) as n — oo, where
Wi, i =1,2 satisfy

a1 — f(z,W)g (x ZQW2*> — bWy = 0. (6.22)
3

Hence, (6.22) can be rewritten as

ijW;))' (6.23)

Wl* = h;l(x,g(x,

We let y;, i = 1,2 such that y; > y2, and y;(z) > yo(x) for some z € Q, and y;, i = 1,2 € C. Hence, the

monoticity of g implies that hy'(z,g(z,y1)) < hy '(x,g(x,y2)), hence hy'(x, g(x,y)) is decreasing in y. By

(6.23), and the second equation of (6.1), we have W5 is the nonnegative solution of (6.21). Now, we show that

for Rg > 1, the problem (6.21) has a unique positive solution Ws. As in the proof of Theorem 6.2, we construct
an upper and lower solution for (6.21). Notice that as d; — 0, we have \; — A", and Ry — R& as d; — 0.

By letting & = e¢7* with e sufficiently small constant , we get that @ is a lower solution for (6.21), and we put

U = A, with A is sufficiently large constant, we obtain that U/ = A is an upper solution for (6.21). Therefore,

we guarantee the existence of solution for (6.21). By performing a similar reasoning in the last part of the proof
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FIGURE 1. The dynamics of the solution for dy = 0, and the global stability of the positive
steady state.

of Theorem 6.2, we deduce that the solution of (6.21) is unique. Therefore, for R > 1 the problem (6.21) has
a unique positive solution. O

7. NUMERICAL SIMULATION

In this section, we utilize the numerical simulations to validate the theoretical findings and provide the
proprieties of the basic reproduction number. Moreover, we determine the effect of the distinct diffusion coef-
ficient on the temporal behavior of the solution. Motivated by [1], We consider that the spatial domain € is
one-dimensional interval Q = [0mm, 2mm], and we let by(z) = 0.02 day~!, a;(z) = 10 day~'mm=3, and we
suppose that by, b3, as are space dependent and notice that these coefficients have the same unit as by, and
expressed as ag(x) = 24(1 — 0.5z), ba(x) = 0.24(1 + z), and bs(z) = 2.4(1 4+ z). Moreover, we consider that
the nonlinear incidence function takes the bilinear form, that is G(z, Wy, W3) = B(x)W; W3, with 3 is a C1()
function is the transmission rate. In this section, we vary 3, and the dispersal rates di, do to distinguish the
effect of the transmission rate on the pathogen distribution and verify the theoretical results. From Lemma 2.5,
Ry is a decreasing function of ds, where the maximum value can be reached for dy = 0, then, by the same lemma
we have R(J{ = lim;_, o+ Ry. However, the lowest value can be reached when ds tends to +o00, and by Lemma 2.5,
we have R, = limg, 4o Ro. In the followed numerical simulations, we choose value of d; and § in such a way
Ry is larger than one for ds = 0 and less than one as dy — +oc.

For a further understanding the asymptotic profile of the positive steady state as do — 0, we consider a small
diffusion rate dy = 0.000lmm?day—!. In Figure 3, it is obtained that the positive steady state is stable (which is
the result of the numerical results only), and the concentration of the pathogen particles is focused in a specific
region which is referred to as a high-risk region. Hence, the intervention can be limited to this region only.
Now, we fix d; = 0.02 mm? day~!, and 8 = 2.4 x 10~ mm? day~!. Therefore, the highest value of the basic
reproduction number can be obtained for do = 0 mm? day~! (see Fig. 1) where in this case Ry = R} =5 > 1 (R
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is defined in Lem. 2.5). The numerical findings show that the positive steady state is globally asymptotically
stable, however, in our mathematical analysis we proved the attraction for some particular cases, namely,
homogeneous case, and d; = 0, d2 > 0. Notice that Figure 1B shows the profile positive steady state, where two
principal regions can be distinguished, the first is the highly-risked region, which represents the favorites sites
for pathogen reproduction, and the lowly-risked region, which represents the regions with a small concentration
of pathogen particles. Therefore, the efforts must focus on the high-risk region to reduce the concentration of the
pathogen particles instead of the overall domain. Moreover, as do — 400 we obtain that Ry —+ R, = 0.0166 < 1,
hence there exists di > 0 such that at dy = d5 ~ 0.37, Rg — 1 switch signs. However, for dy = 0.4 < d3, we obtain
that Ry < 1, and by Theorem 3.4 we deduce that the PFSS is globally asymptotically stable.

For a further understanding the asymptotic profile of the positive steady state as do — 0, we consider a small
diffusion rate do = 0.0001 mm?day—!. In Figure 3, we obtained that the positive steady state is stable (which is
the result of the numerical results only), and the concentration of the pathogen particles is focused in a specific
region which is referred by a high-risk region, and hence the intervention can be limited in this region only.
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8. CONCLUSION

In this paper, we investigated a global dynamics and profiles of a delayed reaction-diffusion host—pathogen
system. In addition to the existence of the solution, we proved that the semiflow W(¢) has a global attractor by
applying [12], Theorem 2.4.6. The basic reproduction number Ry is identified with its threshold role, if Ry <1
the PFSS is globally asymptotical stable, and for Ry > 1 the semiflow ¥(¢) is strongly uniformly persistent, and
there exists at least one positive steady state, which it is confirmed using numerical simulations Figure 2.

The main purpose of this study is the investigate the asymptotic profile of the PSS as the dispersal rates
tend to zero or infinity in the case of a generalized incidence function G(s,z1,22). Notice that this study is a
generalization of the findings [11]. In this research, we investigated the large diffusion rates (means d; — +oo,
or do — 400 or di,ds — +00). However, due to the nonlinearity of the incidence function, we couldn’t provide
information on the asymptotic profile as do — 0. The asymptotic profile of the PSS is very important to show
the feverous sites of reproduction of the pathogen particles, as is shown in the numerical simulation (Fig. 3).
As in [19], we can define the high-risk, low-risk regions associated to the generalized system (1.3) as follows

Qpigh = {x € Q%e*bﬂaga(x, V(z),0) — ba(z) > 01,
3

Qo = {2 € Q|%e’b“33G(x, V(x),0) — ba(z) < O},
3

respectively. Identifying the probable places where pathogens reproduce emphasizes how crucial it is to focus
efforts in these directions in order to successfully stop the spread of infection among hosts, the probable places
are mostly the highly risk regions €,;45. As such, choosing resources to these areas can greatly improve infection
control strategies.
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