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GENERALITIES ON A DELAYED SPATIOTEMPORAL

HOST–PATHOGEN INFECTION MODEL WITH DISTINCT

DISPERSAL RATES

Salih Djilali*

Abstract. We propose a general model to investigate the effect of the distinct dispersal coefficients
infected and susceptible hosts in the pathogen dynamics. The mathematical challenge lies in the fact
that the investigated model is partially degenerate and the solution map is not compact. The spatial
heterogeneity of the model parameters and the distinct diffusion coefficients induce infection in the
low-risk regions. In fact, as infection dispersal increases, the reproduction of the pathogen particles
decreases. The dynamics of the investigated model is governed by the value of the basic reproduction
number R0. If R0 ≤ 1, then the pathogen particles extinct, and for R0 > 1 the pathogen particles
persist, and there is at least one positive steady state. The asymptotic profile of the positive steady
state is shown in the case when one or both diffusion coefficients for the host tends to zero or infinity.
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1. Introduction

The recent studies show that there is an increased focus on the study of the behavior of partially degenerate
reaction-diffusion systems, e.g. [1–7], and references therein, due to the mathematical challenges and the practical
applications. The degenerate reaction-diffusion systems are formed by partial differential equation and ordinary
differential equation (ODE) or delayed differential equation (DDE). The degeneration appears in a system of
reaction-diffusion equations when some of the dispersal coefficients are equal to zero in some (or all) locations
in a bounded domain. In this case, the solution map becomes noncompact, which generates some mathematical
challenges in showing the existence of a compact attractor and identifying the basic reproduction number. To
overcome these challenges, it is possible to employ the generalized Krein-Ruthman Theorem [8], and Kuratowski
measure of non-compactness [9]. There are numerous researches that investigate the reaction-diffusion host–
pathogen interaction, and we discuss some of them. In [10], the authors considered a viral infection with virus
diffusion only, where the global asymptotic stability of the virus-free steady state (VFSS) for R0 < 1 and
the global stability of the unique positive steady state for R0 > 1, similar results proved for more generalized
systems, e.g. [1, 3, 5], and references therein. Recently, Y. WU and X. Zou [11] provided a mathematical analysis
of a degenerate host–pathogen reaction-diffusion system, for the investigated model is given in the following
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structure 
∂W1

∂t = d1∆W1 + a1(x)− β(x)W1W3 − b1(x)W1, x ∈ Ω, t > 0,

∂W2

∂t = d2∆W2 + β(x)W1W3 − b2(x)W2, x ∈ Ω, t > 0,

∂W3

∂t = a2(x)W2 − b3(x)W3, x ∈ Ω, t > 0,

(1.1)

with Neumann boundary condition

∂W1

∂n
=
∂W2

∂n
= 0, x ∈ ∂Ω, t > 0, (1.2)

where Ω ⊂ Rn (n is the dimension) is a bounded domain with smooth boundary, and n in the outward normal
direction vector to ∂Ω. W1(t, x),W2(t, x),W3(t, x) are respectively the concentration of the susceptible host,
infected host, pathogen particles at time t and location x. a1(x) is the recruitment of the susceptible host.
β(x) is the transmission rate. bi(x), i = 1, 2, 3 are respectively the mortality coefficients for the susceptible
host, infected host, and pathogen particles. a2(x) is the production coefficient of the pathogens particles from
the infected hosts. Suppose that all parameters are positive Hölder continuous functions on Ω̄. The Neumann
boundary condition represent that the studied population are in an isolated habitat Ω. The authors proved
the well-posedness of the solution and the existence of a globally connected attractor. The main difficulty of
to show that the semiflow is point dissipative (for definition see [12]), where the distinct diffusion coefficients
play a substantial role increasing the difficulty in the model temporal analysis. The basic reproduction number
is also identified with its threshold role, where for R0 ≤ 1 the pathogen constructing a super solution for the
pathogen and infected hosts that tend to zero. The uniform persistence is also provided for R0 > 1 by applying
the results of [13], Theorem 1.3.2. Moreover, the asymptotic profile of the positive steady state is shown as one
of the dispersal rates d1 or d2 tends to zero. Recently, different approaches have been considered in modelling
pathogen spread in hosts, we cite a few, [14–16], and references therein.

In this research, we investigate a generalized version of the (1.1), by considering a generalized incidence
function of the form G(x,W1,W3) with some properties on G that will be fixed later. Indeed, recent work
investigate a generalized version of (1.1) as [3] (with the case of the cell-to-cell transmission), where the authors
proved the well-posedness of the solution to the threshold dynamics. However, for R0 > 1, the global dynamics
of the solution are shown for the homogeneous case only, and no asymptotic profile of the positive steady
state, which are difficult to be achieved for the case of the nonlinear incidence function. Based on the best of
our knowledge, other than [3], there are no results on a degenerate reaction-diffusion system with generalized
nonlinear incidence in the case of distinct dispersal rates. Notice that the newly reproduced infected hosts after
a direct contact between a pathogen particle and susceptible host is not instantaneous, this last takes some time
(denoted τ) until the pathogen particles reproduce in the susceptible host, and this host becomes a fully infected
one. This behavior can be modeled by the presence of time delay in the incidence function in the infected host
equation (second equation of (1.1)), see e.g. [17, 18], and references therein. The investigated model is structured
as 

∂W1

∂t = d1∆W1 + a1(x)−G(x,W1,W3)− b1(x)W1, x ∈ Ω, t > 0,

∂W2

∂t = d2∆W2 + e−b4τG(x,W1(t− τ, x),W3(t− τ, x))− b2(x)W2, x ∈ Ω, t > 0,

∂W3

∂t = a2(x)W2 − b3(x)W3, x ∈ Ω, t > 0,

∂W1

∂n = ∂W2

∂n = 0, x ∈ ∂Ω, t > 0,

(1.3)

where e−b4τ is the survival rate of the infected host from the original transmission (t − τ) until t. Also, we
consider that G ∈ C1(Ω̄× R+ × R+,R+) is the nonlinear incidence function, which satisfies
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(H1) G(·, 0, ·) ≡ 0 and G(·, ·, 0) ≡ 0;

(H2) ∂2G(x, x1, x2) :=
∂G(x,x1,x2)

∂x1
> 0, x1 ≥ 0, x2 > 0, x ∈ Ω̄ and ∂3G(x, x1, x2) :=

∂G(x,x1,x2)
∂x2

> 0, x1 >

0, x2 ≥ 0, x ∈ Ω̄;
(H3) G is a concave function with respect to the third variable.

To mention that the assumption (H1) implies that there is no transmission in the absence of the susceptible
particles or pathogen particles. (H2) implies that the incidence function is increasing in both two last parameters.
However, (H3) implies that G(x, x1, x2) ≤ ∂3G(x, x1, 0)x2, ∀x1 ≥ 0, x2 ≥ 0, x ∈ Ω̄. To mention that there
are numerous well known incidence functionals that fulfill the assumptions e.g. (Hi), i = 1, 2, 3 as Holling I-III
incidence function, Beddington-DeAngelis incidence function, ratio-dependent incidence function.

The presence of the time delay generates an additional challenge in showing the asymptotic compactness of
the semiflow, existence of the global compact attractor, and identifying the basic reproduction number (where it
will be discussed in the proof of Lem. 3.1) and determining the global dynamics of the steady states. On the other
hand, the main challenging point is the asymptotic profile of the positive steady state, where the nonlinearity
of the incidence function setting an additional assumption about the incidence function. In literature works,
e.g. [2, 19, 20], and references therein, many authors considered the asymptotic profile for PSS. However, the
bilinear incidence is considered for most part of them, or a specific nonlinear incidence function as in the SIS
epidemic model [19], where the authors considered a ratio-dependent type as an incidence function. Our interest
is to generalize these results, and provide an additional information on the asymptotic profile of the PSS in the
case of the nonlinear incidence. Indeed, we investigate the case when one or both diffusion coefficients d1, d2
tends to infinity or when d1 goes to zero.

To show the cited goals, we organize our research in the following structure. In the next section, we prove the
existence of a global solution and show the existence of a connected global attractor, also, we identify the basic
reproduction number, with its susceptibility with respect to the diffusion coefficients. In Section 3, we prove the
global asymptotic stability of the pathogen-free steady state (PFSS) for R0 ≤ 1. In Section 4, we show that the
semiflow is strongly uniformly persistent for R0 > 1, and there exists at least one positive steady state (PSS).
Sections 5 and 6 investigate the global prosperities and the uniqueness of the positive steady state. Indeed, in
Section 5, and by the Lyaponuv approach and Lasalle invariance principle, we investigate the global attraction
of the positive steady state for some particular cases. The asymptotic profile of PSS is shown in Section 6,
where the effect of mobility of the hosts on the PSS, large mobility and small mobility rates are investigated. In
Section 7, we explore the global dynamics of steady states and the asymptotic profile of PSS. A brief discussion
ends the paper.

2. Preliminaries

We let C = C(Ω̄,R), and Cτ = C([−τ, 0]× Ω̄,R), for all τ ≥ 0. Define X := Cτ ×C ×Cτ , equipped with the
supreme norm, and X+ is its positive cone. We let h ∈ C be a positive function, and denote

h̄ = max{h(x); x ∈ Ω̄}, h = min{h(x); x ∈ Ω̄}.

For any τ ≥ 0, t > 0, x ∈ Ω̄, we let Wi,τ (t, x) = Wi(t + τ, x), and for simplicity we write Wi instead Wi(t, x),
i = 1, 2, 3, and Wi,τ instead Wi,τ (t, x) i = 1, 2, 3.

2.1. Well-posedness

At first, we shall show the existence and uniqueness of a positive solution of (1.3) through the following
theorem

Theorem 2.1. Letting W (t, x;W0), be the solution of the system (1.3) with the corresponding to the initial
conditionW0 = (W10,W20,W30). IfW0 ∈ X+ then the system (1.3) admits a unique positive solution on [0, T0)×
Ω. Provided that T0 > 0 and satisfies either lim supt→T−

0
∥W∥X = ∞ or T0 = +∞.
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Proof. The system (1.3) can be expressed in the following abstract form

d

dt
W (t, ·;W0) = AW (t, ·;W0) + F (W (t, ·;W0)), (2.1)

with A defined on D(A) ⊂ X by

AW :=

 d1∆W1(t, ·)
d2∆W2(t, ·)

0

 ,

and F : X → X defined as

FW :=

 a1(·)−G(·,W1(t, ·),W3(t, ·))− b1(.)W1(t, ·)
e−b4τG(·,W1(t− τ, ·),W3(t− τ, ·))− b2(·)W2(t, ·)

a2(·)W2(t, ·)− b3(·)W3(t, ·)

 ,

with W ∈ X+. Clearly, by the assumption on G we deduce that F is Fréchet differentiable on X. Also, A is the
infinitesimal generator of the strongly continuous semigroup {etA }t≥0 in X. Then, by applying [21], Proposition
4.16, we ensure the existence of a unique solution W (t, ·;W0) on [0, T0), with either lim supt→T−

0
∥W∥X = ∞ or

T0 = +∞.
In the following, we shall show that Wi(t, x) > 0, i = 1, 2, 3, for all t ∈ (0, T0) and x ∈ Ω̄. Clearly, F is twice

differential and continuous, therefore by applying Theorem 7.3.1 and Corollary 7.3.2 in [22], we deduce the
positivity of the solution.

The next theorem shows that the solution is globally defined.

Theorem 2.2. For W0 = (W10,W20,W30) ∈ X+, then (1.3) has a unique global solution that defined on Ω̄ ×
[0,+∞).

Proof. Let W = (W1,W2,W3) be the solution of (1.3) for the data W0 = (W10,W20,W30) ∈ X+. The standard
comparison principle implies that W1(t, x) ≤ W̃1(x, t), and W̃1 is the unique solution of the problem


∂W̃1

∂t = d1∆W̃1 + a1(x)− b1(x)W̃1, x ∈ Ω, t > 0,

∂W̃1

∂n = 0, x ∈ ∂Ω, t > 0,

W̃1(0, x) =W10(0, x), x ∈ Ω, t > 0.

(2.2)

Clearly, (2.2) has a unique positive steady state denoted V (x) which is globally asymptotically stable. Therefore,
we deduce that

lim sup
t→+∞

W1(t, x) ≤ lim sup
t→+∞

W̃1(t, x) = V (x), uniformly for x ∈ Ω̄. (2.3)

Thus, the boundedness ofW 0
1 next to (2.3) implies the existence of a positive constant denoted D1 that depends

on the initial data verifying

∥W1∥ ≤ D1, t ≥ 0. (2.4)
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Let {T2(t)}t≥0 be the semigroup generated by the generator d2∆− b2(·) in C with Neumann boundary condition,
hence, 

W2(t, ·) = T2(t)W20 +

∫ t

0

T2(t− s)e−b4τG(·,W1(s− τ, ·),W3(s− τ, ·))ds,

W3(t, ·) = e−b3tW30 + a2

∫ t

0

e−b3(t−s)W2(s, ·)ds.
(2.5)

Let λ > 0 is the principal eigenvalue of d2∆ − b2(·) with Neumann boundary condition. From (H2), and
using (2.4), we have ||G(x,W1,W3)|| ≤ ||G(x,D1,W3)||. Using (H3) on the previous inequality, we obtain
||G(x,W1,W3)|| ≤ ||∂2G(x,D1, 0)||||W3||. Therefore,

∥W2(t, ·)∥ ≤ e−λt∥W20∥+ L1e
−b4τ

∫ t

0

e−λ(t−s)∥W3(s− τ, ·)∥ds,

∥W3(t, ·)∥ ≤ e−b3t∥W30∥+ ∥a2∥
∫ t

0

e−b3(t−s)∥W2(s, ·)∥ds,
(2.6)

with L1 = ||∂2G(x,D1, 0)||. From (2.6), we obtain

∥W2(t, ·)∥ ≤ e−λt∥W20∥+ L1e
−b4τ

∫ t

0

e−λ(t−s)
{
e−b3(s−τ)∥W30∥+ ∥a2∥

∫ s−τ

0

e−b3(t−σ)∥W2(σ, ·)∥dσ
}
ds,

= e−λt∥W20∥+ L1e
−b4τ∥W30∥

∫ t

0

e−λ(t−s)e−b3(s−τ)ds

+L1∥β∥e−b4τ∥a2∥
∫ t

0

e−λ(t−s)
∫ s−τ

0

e−b3(t−σ)∥W2(σ, ·)∥dσds,

≤ e−λt∥W20∥+ L1e
−b4τ∥W30∥

∫ t

0

e−b3(s−τ)ds+ L1e
−b4τ∥a2∥e−(λ+b3)t

∫ t

0

∫ t

σ−τ
eλseb3σ∥W2(σ, ·)∥dsdσ,

= e−λt∥W20∥+ L1e
−b4τeb3τ∥W30∥

∫ t

0

e−b3sds+ L1e
−b4τ∥a2∥e−(λ+b3)t

∫ t

0

eb3σ∥W2(σ, ·)∥
∫ t

σ−τ
eλsdsdσ,

≤ ∥W20∥+ L1e
−b4τ eb3τ

b3
∥W30∥+ L1e

−b4τ∥a2∥
λ e−b3t

∫ t

0

eb3σ∥W2(σ, ·)∥dσ,

≤ D1 +D2e
−b3t

∫ t

0

eb3σ∥W2(σ, ·)∥dσ,

with D1 = ∥W20∥+ L1e
−b4τ eb3τ

b3
∥W30∥, and D2 = L1e

−b4τ∥a2∥
λ . Gronwall’s inequality implies that

∥W2(t, ·)∥ ≤ D1e
D2t, t ≥ 0. (2.7)

Substituting (2.7) into the second inequality of (2.4), we get

∥W3(t, ·)∥ ≤ ∥W30∥+
∥a2∥D1

D2
eD2t, t ≥ 0. (2.8)

Therefore, the solution is globally defined.

Motivated by [11], we have the following result

Theorem 2.3. We let W0 = (W10,W20,W30) ∈ X+, then the solution of (1.3) is point dissipative.

Proof. We show this result step by step as follows
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Step 1: There exist a positive constant M0 > 0, such that W1(t, ·) satisfy

lim sup
t→+∞

||W1(t, ·)|| ≤M0.

From the proof of Theorem 2.2, we have W1(t, x) ≤ W̃1(x, t), with W̃1 is the unique solution of the
problem (2.2), and therefore W1(t, ·) is ultimately bounded.

Step 2: There exists a positive constant M1 > 0 such that

lim sup
t→+∞

(∥W1∥1 + ∥W2∥1) ≤M1.

By integrating the two sides of the first equation of (1.3), we get

∂

∂t

∫
Ω

W1dx =

∫
Ω

a1dx−
∫
Ω

G(x,W1,W3)dx−
∫
Ω

b1(x)W1dx. (2.9)

Recall that W2,τ =W2(t+ τ, x). Then, the second equation of (1.3) implies

∂

∂t

∫
Ω

W2,τdx =

∫
Ω

e−b4τG(x,W1,W2)−
∫
Ω

b2(x)W2,τdx. (2.10)

From (2.9) and (2.10), we get

∂
∂t

∫
Ω

(W1 + eb4τW2,τ )dx =

∫
Ω

a1dx−
∫
Ω

b1(x)W1dx− eb4τ
∫
Ω

b2(x)W2,τdx,

≤ |Ω|∥a1∥ −m

∫
Ω

(W1 + eb4τW2,τ )dx,

with m = minx∈Ω̄{b1(x), eb4τ b2(x)}, and |Ω| is the volume of Ω. Then, variation of constant formula
implies that there exists a positive constant M1 > 0, verifying

lim sup
t→+∞

(∥W1∥1 + ∥W2∥1) ≤M1.

Step 3: For any p ≥ 1, there exists Mp > 0 such that

lim sup
t→+∞

(∥W1∥p + ∥W2∥p) ≤Mp.

At first, for any integer k ≥ 0, we show the result for p = 2k by induction. Notice that for k = 0 is
proved in Step 2. Assume that the claim is true for k− 1. That means there exists M2k−1 > 0 verifying

lim sup
t→+∞

(∥W2∥2k−1 + ∥W3∥2k−1) ≤M2k−1 .

The second equation of (1.3) can be rewritten as

∂W2,τ

∂t
= d2∆W2,τ + e−b4τG(x,W1,W3)− b2(x)W2,τ . (2.11)
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Multiplying (2.11) by W 2k−1
2,τ , and integrating the resulting equation, we get

1

2k
∂

∂t

∫
Ω

W 2k

2,τdx = d2

∫
Ω

W 2k−1
2,τ ∆W2,τdx+ e−b4τ

∫
Ω

W 2k−1
2,τ G(x,W1,W3)dx−

∫
Ω

b2(x)W
2k

2,τdx, (2.12)

Using (H3), we obtain

1

2k
∂

∂t

∫
Ω

W 2k

2,τdx ≤ d2

∫
Ω

W 2k−1
2,τ ∆W2,τdx+e−b4τ

∫
Ω

W 2k−1
2,τ ∂3G(x,W1, 0)W3dx−

∫
Ω

b2(x)W
2k

2,τdx, (2.13)

Note that∫
Ω

W 2k−1
2,τ ∆W2,τdx ≤ −

∫
Ω

∇W 2k−1
2,τ ∇W2,τdx = −(2k − 1)

∫
Ω

(∇W2,τ )
2W 2k−2

2,τ dx,

= −Ek
∫
Ω

|∇W 2k−1

2,τ |2dx,

with Ek = 2k−1
22k−2 . Therefore, (2.13) becomes

1

2k
∂

∂t

∫
Ω

W 2k

2,τdx ≤ −d2Ek
∫
Ω

|∇W 2k−1

2,τ |2dx+ e−b4τ
∫
Ω

W 2k−1
2,τ ∂3G(x,W1, 0)W3dx−

∫
Ω

b2(x)W
2k

2,τdx.

(2.14)
From the first step, there exists t0 > 0, and M0 > 0 such that W1 ≤ M0 for t > t0. For t > t0, we
obtain ∫

Ω

W 2k−1
2,τ ∂3G(x,W1, 0)W3dx ≤ ||∂3G(x,M0, 0)||

∫
Ω

W 2k−1
2,τ W3dx, for t > t0. (2.15)

Applying Young’s inequality to separate the term W 2k−1
2,τ W3, we get

W 2k−1
2,τ W3 ≤ ε1(W

2k−1
2,τ )p + Cε1(W3)

q,

with p−1+ q−1 = 1, and Cε1 = (ε1p)
− q

p q−1. Choosing q = 2k, then p = 2k

2k−1
, and ε1 will be determined

later. Hence,

W 2k−1
2,τ W3 ≤ ε1W

2k

2,τ + Cε1W
2k

3 . (2.16)

Substituting (2.15), (2.16) into (2.14), we obtain

1
2k

∂
∂t

∫
Ω

W 2k

2,τdx ≤ −d2Ek
∫
Ω

|∇W 2k−1

2,τ |2dx+ e−b4τ ||∂3G(x,M0, 0)||ε1
∫
Ω

W 2k

2,τdx

+e−b4τ ||∂3G(x,M0, 0)||Cε1
∫
Ω

W 2k

3 dx− b2

∫
Ω

W 2k

2,τdx.
(2.17)

Recall the interpolation inequality: for any ε > 0 (will be determined later), there exists Cε > 0
satisfying

||u||22 ≤ ε||∇u||22 + Cε||u||21, for any u ∈W 1,2(Ω).
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We let u =W 2k−1

2,τ , then

−
∫
Ω

|∇W 2k−1

2,τ |2dx ≤ −1

ε

∫
Ω

W 2k

2,τdx+
Cε
ε

(∫
Ω

W 2k−1

2,τ dx

)2

. (2.18)

Substituting (2.18) into (2.17), we obtain

1
2k

∂
∂t

∫
Ω

W 2k

2,τdx ≤ d2Ek

(
− 1

ε

∫
Ω

W 2k

2,τdx+
Cε
ε

(∫
Ω

W 2k−1

2,τ dx

)2)
+ e−b4τ ||∂3G(x,M0, 0)||ε1

∫
Ω

W 2k

2,τdx

+e−b4τ ||∂3G(x,M0, 0)||Cε1
∫
Ω

W 2k

3 dx.

Doing some simplifications and using the induction assumption, we get

1
2k

∂
∂t

∫
Ω

W 2k

2,τdx ≤ d2Ek
Cε

ε M
2
2k−1 +

(
− 1

εd2Ek + e−b4τ ||∂3G(x,M0, 0)||ε1 − b2

)∫
Ω

W 2k

2,τdx

+e−b4τ ||∂3G(x,M0, 0)||Cε1
∫
Ω

W 2k

3 dx.
(2.19)

Next, we multiply both sides of the third equation of (1.3) by W 2k−1
3 , and integrating the resulting

equation on Ω, we get

1
2k

∂
∂t

∫
Ω

W 2k

3 dx =

∫
Ω

a2W
2k−1
3 W2dx−

∫
Ω

b3W
2k

3 dx,

≤ ||a2||
∫
Ω

W 2k−1
3 W2dx− b3

∫
Ω

W 2k

3 dx.
(2.20)

Again, by using Young’s inequality on W 2k−1
3 W2,τ , with q = 2k, and p = 2k

2k−1
, then for any ε2 > 0,

we have Ce2 = (ε2p)
− q

p q−1, which satisfies the inequality

W 2k−1
3 W2 ≤ ε2W

2k

3 + Ce2W
2k

2 . (2.21)

Substituting (2.21) into (2.20), we get

1
2k

∂
∂t

∫
Ω

W 2k

3 dx ≤
(
||a2||ε2 − b3

)∫
Ω

W 2k

3 dx+ ||a2||Cε2
∫
Ω

W 2k

2 dx. (2.22)

By the continuity of W2 with respect to t, and by the first equation of (2.5), we have W2 > 0 for all
W20 > 0, therefore, there exists a positive constant M̃ that depends only on τ such that

W2(t, x) ≤ M̃W2,τ (t, x),

therefore, (2.22) becomes

1
2k

∂
∂t

∫
Ω

W 2k

3 dx ≤
(
||a2||ε2 − b3

)∫
Ω

W 2k

3 dx+ ||a2||Cε2M̃
∫
Ω

W 2k

2,τdx. (2.23)
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Adding (2.20), and (2.23), we get

1
2k

∂
∂t

∫
Ω

(W 2k

2,τ +W 2k

3 )dx ≤ d2Ek
Cε

ε M
2
2k−1

+

(
||a2||Cε2M̃ − 1

εd2Ek + e−b4τ ||∂3G(x,M0, 0)||ε1 − b2

)∫
Ω

W 2k

2,τdx

+

(
||a2||ε2 − b3 + e−b4τ ||∂3G(x,M0, 0)||Cε1

)∫
Ω

W 2k

3 dx.

(2.24)
Choose ε sufficiently small in such a way

||a2||Cε2M̃ − 1

ε
d2Ek + e−b4τ ||∂3G(x,M0, 0)||ε1 − b2 < 0,

and fix ε1, Cε2 sufficiently small such that

||a2||ε2 − b3 + e−b4τ ||∂3G(x,M0, 0)||Cε1 < 0.

Let

C3 = min

{
−||a2||Cε2M̃+

1

ε
d2Ek−e−b4τ ||∂3G(x,M0, 0)||ε1+b2,−||a2||ε2+b3−e−b4τ ||∂3G(x,M0, 0)||Cε1

}
> 0.

Thus, (2.24) becomes

1
2k

∂
∂t

∫
Ω

(W 2k

2,τ +W 2k

3 )dx ≤ d2Ek
Cε

ε M
2
2k−1 − C3

∫
Ω

(W 2k

2,τ +W 2k

3 )dx. (2.25)

Then, there exists a positive constant M2k > 0 satisfies

lim sup
t→+∞

(∥W2∥2k + ∥W3∥2k) ≤M2k .

For any p ≥ 1, and from the continuous embedding Lq(Ω) ⊂ Lp(Ω), q ≥ p ≥ 1, we have

lim sup
t→+∞

(∥W2∥p + ∥W3∥p) ≤Mp,

with Mp is a positive constant independent on the initial conditions.

Step 4: There exists M∞ > 0 such that

lim sup
t→+∞

(∥W1∥+ ∥W2∥) ≤M∞. (2.26)

The proof used in this step is similar to proof of [11], Lemma 2.4. We let p > n
2 , and

n
2p < a < 1,

then Ya is the fractional power space with graph norm continuously embedded in C. Also, there exists
Ma > 0 such that

∥AaT2(t)∥ ≤ MA

ta
,
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for all t > 0. To prove (2.26), we need only to show that

lim sup
t→+∞

(∥W1∥Y + ∥W2∥Y ) ≤MY . (2.27)

Furthermore, MY is a positive constant independent of the initial data. From the previous steps, we
fix η > 0, then there exists tm > 0 sufficiently large such that

∥W1(t, ·)∥ ≤M0 + η, ∥W2(t, ·)∥p ≤ (Mp + η)
1
p , ∥W3(t, ·)∥p ≤ (Mp + η)

1
p ,

for all t > tm + η. By the second equation of (1.3), we have for t > tm + η

W2(t, ·) = T2(1)W2(t− η) +

∫ t

t−η
T2(t− s)e−b4τG(W1(s− τ, ·),W3(s− τ, ·))ds.

Then, for all t > tm + η

∥AaW2(t, ·)∥p ≤ ∥AaT2(η)W2(t− η)∥p +
∫ t

t−η
∥AaT2(t− s)e−b4τG(·,W1(s− τ, ·),W3(s− τ, ·))ds∥p,

≤ Ma

ηa ∥W2(t− η)∥p +
∫ t

t−η
∥AaT2(t− s)e−b4τG(·,M0 + η,W3(s− τ, ·))ds∥p,

≤ Ma

ηa ∥W2(t− η)∥p +
∫ t

t−η
∥AaT2(t− s)e−b4τW3(s− τ, ·)∂3G(·,M0 + η, 0)∥pds,

≤ Ma

ηa ∥W2(t− η)∥p + ||∂3G(x,M0 + η, 0)||e−b4τ (Mp + η)
1
p

∫ t

t−η

Ma

(t− s)a
ds,

≤ Ma

ηa (Mp + η)
1
p + ||∂3G(x,M0 + η, 0)||e−b4τ (Mp + η)

1
pMaη

1−a.

Then, there exists M∞ > 0 such that

lim sup
t→+∞

||W2(t, ·)|| ≤M∞.

Replacing this result into the third equation of (1.3), we get

lim sup
t→+∞

||W3(t, ·)|| ≤
M∞||a2||

b3
.

The proof is completed.

2.2. Compactness

To show this, we apply [12], Theorem 2.4.6. We let Ψ(t) :→ X+, t ≥ 0, be the semiflow associated to the
system (1.3). This means that Ψ(t)W0 := W (t, ·,W0) = (W1(t, ·,W0),W2(t, ·,W0),W3(t, ·,W0)), t ≥ 0, with
W (t, ·,W0) be the solution of (1.3). The main result is provided in the following theorem

Theorem 2.4. For any W0 ∈ X+, Ψ(t) has a connected global attractor in X+.
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Proof. We prove this result through the following claims.

Claim 0. Ψ(t) is point dissipative.
This can be deduce from Theorem 2.3.

Claim 1. Ψ(t) is bounded for any bounded set C ⊂ X+.
First, we prove that W (t, ·) is bounded for any W0 ∈ C. Since W (t, ·) ≤ W̃ (t, ·), with W̃ (t, ·) the
positive solution of (2.2). Then we deduce that there exists a positive constant M̃1 > 0 independent
of the initial condition such that W̃ ≤ M̃1.
Next, we let N1 = W1 + eb4τW2,τ , and by following the procedures in step 2 in the proof of
Theorem 2.3, we obtain

∂
∂t

∫
Ω

N1dx ≤ |Ω|∥a1∥ −m

∫
Ω

N1dx.

Thus,

∫
Ω

N1dx ≤ (W1(0, ·) + eb4τW2,τ (0, ·))e−mt +
|Ω|∥a1∥
m

(
1− e−mt

)
≤M1.

with M1 a positive constant. Then we deduce that Ψ(t) is bounded in L1(Ω) for any bounded set C.

Next, we show that Ψ(t) is bounded in Lp(Ω) for any bounded set C. We let, N2,k = W 2k

2,τ +W 2k

3 .
Again, by following the calculations performed in Step 3 in the proof of Theorem 2.3, we obtain

1
2k

∂
∂t

∫
Ω

N2,kdx ≤ d2Ek
Cε

ε M
2
2k−1 − C3

∫
Ω

N2,kdx.

Then,

∂

∂t

∫
Ω

N2,kdx ≤ (W 2k

2,τ (0, ·) + eb4τW 2k

3 (0, ·))e−C32
kt +

d2Ek
Cε

ε M
2
2k−1

C3

(
1− e−C32

kt

)
≤Mk,

with Mk a positive constant. Thus Ψ(t) is bounded in L2k(Ω) for any bounded set C ⊂ X+. From
the continuous embedding Lq(Ω) ⊂ Lp(Ω), q ≥ p ≥ 1, we conclude that Ψ(t) is bounded in Lp(Ω)
(p ≥ 1) for any bounded set C ⊂ X+. Similar reasoning can be applied to show that Ψ(t) is bounded
in Ya for any bounded set C of Ya, with

n
2p < a < 1, and p and n are positive and satisfy p > n

2 . By
the embedded of Ya in C, we deduce the result. The claim is proved.

Claim 2. Ψ(t) is asymptotically smooth.
From [12], Lemma 2.3.4, we need only to prove that the semiflow Ψ(t) is a κ− contraction. Letting
A ⊂ X+ be a bounded set, we define the Kuratowski measure of non-compactness κ of A by

κ(A) := inf

{
r : A has a finite cover of diameter < r

}
,

where A is precompact if and only if κ(A) = 0. Therefore, the κ− contraction of the semiflow Γ(t)
implies exists a continuous function δ(t) : R+ → R+ verifying 0 ≤ δ(t) < 1 for any t > 0, and if A be a
bounded set of X+, we have κ(Γ(s)B), 0 ≤ s ≤ t is also bounded, and verifying κ(Γ(t)A) ≤ δ(t)κ(A).
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Applying [11], Lemma 2.5, we deduce that for any bounded A ⊂ X+ and t > 0, S is a precompact
set in C, where

S :=

{∫ t

0

e−b3(t−s)a2W2(s, ·,W0)ds : W0 ∈ A

}
.

Now, we decompose the semiflow as Ψ(t) = Ψ1(t) + Ψ2(t), t ≥ 0, with

Ψ1(t)W0 =

(
W1(t, ·,W0),W2(t, ·,W0),

∫ t

0

e−b3(t−s)a2W2(s, ·,W0)ds

)
, t ≥ 0,

and

Ψ2(t)W0 = (0, 0, e−b3tW30), t ≥ 0.

We let A ⊂ X+ is a bounded set. By (2.7)-(2.8), {Ψ(s)A, 0 ≤ s ≤ t} is bounded for any t > 0. Since
S is a precompact set in C(Ω̄) we deduce that Ψ1(t)A is also precompact for any t > 0. Therefore
κ(Ψ1(t)A) = 0, t > 0. Further,

κ(Ψ2(t)A) ≤ ||e−b3t||κ(A) ≤ e−b3tκ(A), t ≥ 0,

Thus,

κ(Ψ(t)A) ≤ κ(Ψ1(t)A) + κ(Ψ2(t)A) ≤ e−b3tκ(A),

Thus, Ψ(t) is κ− contracting.
Claim 3. Ψ(t) has a connected global compact attractor.

Using the previous claims and [12], Theorem 2.4.6, we deduce the result.

2.3. Basic reproduction number

Obviously, system (1.3) has a pathogen-free steady state (PFSS) E0 = (V, 0, 0), with V the unique positive
solution of {

d1∆W1 + a1 − b1W1 = 0, x ∈ Ω,

∂W1

∂n = 0, x ∈ ∂Ω.
(2.28)

The basic reproduction number R0 of (1.3) can be determined as the spectral radius of the next generation
operator of the model. Linearizing (1.3) at E0, we obtain



∂W1

∂t = d1∆W1 − ∂3G(x, V, 0)W3 − b1(x)W1, x ∈ Ω, t > 0,

∂W2

∂t = d2∆W2 + e−b4τ∂3G(x, V, 0)W3,−τ − b2(x)W2, x ∈ Ω, t > 0,

∂W3

∂t = a2(x)W2 − b3(x)W3, x ∈ Ω, t > 0,

∂W1

∂n = ∂W2

∂n = 0, x ∈ ∂Ω, t > 0.

(2.29)
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Clearly, theW2 andW3 equations can be separated from the first equation. Let T (t) be the semigroup associated
to 

∂W2

∂t = d2∆W2 + e−b4τ∂3G(x, V, 0)W3 − b2W2, x ∈ Ω, t > 0,

∂W3

∂t = a2W2 − b3W3, x ∈ Ω, t > 0,

∂W2

∂n = 0, x ∈ ∂Ω, t > 0.

(2.30)

Then, T (t) has the generator

A := B + F =

(
d1∆− b2 0

a2 −b3

)
+

(
0 e−b4τ∂3G(., V, 0)
0 0

)
(2.31)

Clearly, S(B) < 0, with S(B) = sup{Reλ, λ ∈ σ(B)} is the spectral bound of B. By [23], the basic reproduction
number for (1.3) is the spectral radius of the operator L, and

L[ϕ](x) =

∫ ∞

0

F (x)T̃ (t)ϕ(x)dt = F (x)

∫ ∞

0

T̃ (t)ϕ(x)dt, ϕ ∈ C( ¯Ω,R2), x ∈ Ω̄,

where T̃ (t) is semigroup associated to B. Hence,

R0 := r(L) = sup{|λ|, λ ∈ σ(L)}.

Lemma 2.5. The following statements holds

(i) r(−F (B)−1) = r(B1), where for any ϕ ∈ C, B1 can be defined as{
B1[ϕ] = −(b2 − d2∆)−1b−1

3 a2e
−b4τ∂3G(x, V, 0)ϕ, x ∈ Ω,

∂ϕ
∂n = 0, x ∈ ∂Ω.

Moreover,

R0 = r(B1) = sup
ϕ∈H1(Ω),ϕ ̸=0

∫
Ω

e−b4τ∂3G(x, V, 0)
a2
b3
ϕ2dx∫

Ω

(d2|∇ϕ|2 + b2ϕ
2)dx

. (2.32)

(ii) We treat d2 as an independent variable in (0,∞), then R0 is decreasing function of d2. Moreover, R0 → R+
0

as d2 → 0, and R0 → R−
0 as d2 → +∞, with

R+
0 =

(
a2e−b4τ

b2b3
∂3G(x, V, 0)

)
, R−

0 =

∫
Ω
a2e

−b4τ

b3
∂3G(x, V, 0)dx∫
Ω
b2dx

.

Proof. (i) Let M = Fϕ and ϕ = −B−1ψ, with ϕ = (ϕ1, ϕ2)
T ∈ C2, ψ = (ψ1, ψ2)

T ∈ C2, M = (M1,M2)
T ∈

C2. We consider the following system{
ϕ1 = (b2 − d2∆)−1[ψ1],
ϕ2 = 1

b3
ψ2 − a2

b3
(b2 − d2∆)−1[ψ1].
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Thus, we can write  M1 = e−b4τ∂3G(x, V, 0)

(
1
b3
ψ2 − a2

b3
(b2 − d2∆)−1[ψ1]

)
,

M2 = 0.

Therefore, we have

−FB−1[ψ] =

(
B1[ψ1] +B2[ψ2]

0

)
,

with {
B1[ψ1] = −e−b4τ∂3G(·, V, 0)a2b3 (b2 − d2∆)−1[ψ1],

B2[ψ2] = e−b4τ∂3G(·, V, 0) 1
b3
ψ2.

By iterations, we obtain

(
− FB−1[ψ]

)n
=

(
Bn1 [ψ1] +Bn−1

1 B2[ψ2]
0

)
.

Hence, ||Bn1 || ≤ ∥(−FB−1[ψ])n∥ ≤ ||Bn−1
1 ||(||B1||+ ||B2||). Gelfand’s formula and squeeze theorem implies

r(−FB−1) = r(B1). Therefore, R0 can be expressed as

R0 = r(B1) = sup
ϕ∈H1(Ω),ϕ ̸=0

∫
Ω

e−b4τ∂3G(x, V, 0)
a2
b3
ϕ2dx∫

Ω

(d2|∇ϕ|2 + b2ϕ
2)dx

.

(ii) Since B1 = −e−b4τ∂3G(x, V, 0)
a2
b3
(b2 − d2∆)−1 is compact, we have

re(B1 +B2) = re(B2) =

(
e−b4τ∂3G(x, V, 0)

b3

)
= r(B2) < r(B1 +B2)),

with re is the essential spectral radius. The generalized Krein-Rutmam Theorem [8] implies that R0 =
r(B1 +B2) is the principal eigenvalue of B1 +B2 associated to a positive eigenfunction denoted by ϕ(x).
We get

d2∆ϕ− b2ϕ+
1

R0

a2
b3

e−b4τ∂3G(x, V, 0)ϕ = 0, (2.33)

with Neumann boundary condition. We consider d2 as a variable, and denote ϕ̃ the derivative of ϕ with
respect to d2. Taking the derivative of the two sides of (2.33), we get

∆ϕ+ d2∆ϕ̃− b2ϕ̃+
R′

0

R0

a2
b3

e−b4τ∂3G(x, V, 0)ϕ+
1

R0

a2
b3

e−b4τ∂3G(x, V, 0)ϕ̃ = 0, (2.34)
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where R′
0 is the derivative of R0 with respect to d2. Multiplying (2.33) by ϕ̃, (2.34) by ϕ, and subtracting

the resulting equations, integrating on Ω, we get

R′
0

∫
Ω

R′
0

R0

a2
b3

e−b4τ∂3G(x, V, 0)ϕ
2dx =

∫
Ω

ϕ∆ϕdx = −
∫
Ω

|∇ϕ|2dx ≤ 0.

Using (H2), we get R′
0 ≤ 0.

Now, we determine the effect of small diffusion on R0. Let R0 = R0(d2), and m(x) =

e−b4τ∂3G(x, V, 0)
a2(x)

b3(x)b2(x)
. For any ψ ∈ C, we have

∫
Ω

e−b4τ∂3G(x, V, 0)
a2
b3
ϕ2dx∫

Ω

(d2|∇ϕ|2 + b2ϕ
2)dx

≤
m

∫
Ω

b2ϕ
2dx∫

Ω

(d2|∇ϕ|2 + b2ϕ
2)dx

≤ m.

Hence, R0(d2) ≤ m. We claim that R0(d2) → m as d2 → 0, and we need to show that lim infd2→0R0(d2) ≥
m. If not, there exist δ > 0 such that R0(d2) ≤ m − δ, for all d2 > 0. The continuity of the coefficient
functions implies the existence of some x0 ∈ Ω, and δ > 0 sufficiently small, such that

R0 + δ < m− δ < m(x),

for all x ∈ Bδ(x0), where Bδ(x0) is the ball of center x0 and radius δ. By compactness of continuous
function on a bounded domain, there exists δ0 > 0 verifying

−b2 +
1

R0

a2
b3

e−b4τ∂3G(x, V, 0) > δ0,

for all x ∈ Bδ(x0), and d2 > 0. Letting (µ, ϕ−) be the principal eigenpaire of −∆ on Bδ(x0) with Neumann
boundary condition, we can normalize ϕ− ≤ 1 for all x ∈ Bδ(x0). Besides, we consider d ∈ (0, δ0µ ) and

normalize the eigenfunction in (2.33) as

ϕ+(x) =
ϕ(x)

infx∈Bδ(x0) ϕ(x)
.

Clearly, ϕ−(x) ≤ 1 ≤ ϕ+(x) for all x ∈ Bδ(x0). Moreover, ϕ+ satisfies −∆ϕ+ > δ0
d ϕ

+, and ϕ− satisfy

−∆ϕ− < δ0
d ϕ

+. Thus, ϕ− and ϕ+ are respectively the lower and upper solution of the operator −∆− δ0
d

with Neumann boundary condition. Then, the problem

−∆ψ =
δ0
d
ψ,

with Neumann boundary condition has a positive solution. Therefore, δ0
d > µ is an eigenvalue of the

operator −∆, which is a contradiction with the assumption that µ is a principal eigenvalue. Then, we
deduce that R0 → R+

0 as d2 → 0.
At last, we show that R0 → R−

0 as d2 → +∞. We substitute ϕ = 1 in (2.32), we obtain

R0 ≥ R−
0 , for all d2 > 0.
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From (i), we have R0(d2) is uniformly bounded for all d2 ≥ 1, which implies that R0(d2) has a finite limit
R̃0 as d2 → +∞. We claim that R̃0 = R−

0 . Clearly, R̃0 ≥ R−
0 . It remain to show that R̃0 ≤ R−

0 . We divide
both sides of (2.33) by d2 we get

∆ϕ∗ − b2
d2
ϕ∗ +

1

d2R0

a2
b3

e−b4τ∂3G(x, V, 0)ϕ
∗ = 0, (2.35)

with Neumann boundary condition. The elliptic regularity [24] implies that ϕ∗ → ϕ̂ in C(Ω̄) as d2 → ∞
for some positive constant ϕ̂. Integrating both sides of (2.33) on Ω, and get R0 = R−

0 .

We let (λ1, ϕ1(x)) be the principal eigenpaire of the problem{
d2∆ψ − b2ψ + a2

b3
e−b4τ∂3G(x, V, 0)ψ = λψ, x ∈ Ω̄,

∂ψ
∂n = 0, x ∈ Ω̄.

(2.36)

Notice that B and F satisfy all statements of [25], Theorem 2.3, then we have the following relationship between
R0, λ1 and S(A).

Lemma 2.6. R0 − 1, λ1 and S(A) have the same sign.

Proof. Clearly, B and F satisfy all statements of [25], Theorem 2.3, then we deduce that R0 − 1 has the same
sign as S(A).

By the Krein-Rutmam Theorem [8], we deduce that λ1 is simple and ϕ1(x) > 0 for all x ∈ Ω̄. Notice that
the eigenpaire (R0, ϕ) satisfies

d2∆ϕ− b2ϕ+
1

R0

a2
b3

e−b4τ∂3G(x, V, 0)ϕ = 0, x ∈ Ω̄. (2.37)

with Neumann boundary condition. Also, the principal eigenpaire (λ1, ϕ1(x)) satisfies

d2∆ϕ1 − [b2 − a2
b3
e−b4τ∂3G(x, V, 0)]ϕ1 = λ1ϕ1, x ∈ Ω̄, (2.38)

with Neumann boundary condition. Multiplying both sides of (2.37) by ϕ1 and both sides of (2.38) by ϕ,
subtracting the resulting equations, and integrating on Ω, we obtain(

1− 1

R0

)∫
Ω

a2
b3

e−b4τ∂3G(x, V, 0)ϕϕ1dx = λ1

∫
Ω

ϕϕ1dx. (2.39)

The positivity of all functions in (2.39) implies that 1− 1
R0

and λ1 have the same sign, which implies that R0− 1
has the same sign as λ1. From the first part of the proof we deduce that S(A) has also the same sign as λ1. The
proof is completed.

Remark 2.7. If R0 ≥ 1 then S(A) > 0 becomes an eigenvalue of the generator A associated to a strictly
positive eigenfunction, and hence satisfies the following eigenvalue problem

d2∆ϕ2 + e−b4τ∂3G(x, V, 0)ϕ3 − b2ϕ2 = λϕ2, x ∈ Ω,

a2ϕ2 − b3ϕ3 = λϕ3, x ∈ Ω,
∂ϕ2

∂n = 0, x ∈ ∂Ω.

(2.40)

The proof can be performed by similar method as in the proof of [11], Lemma 3.7, so we omit the proof.
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3. Pathogen-free steady state

In this section, we investigate the global stability of the PFSS for R0 ≤ 1. The main difficulty is dealing
with the nonlinearity of the incidence function G and the delay term. For this, we need some additional results
comparing with [11]. We let the following problem{

d2∆W +mW − b2W = λW, x ∈ Ω,
∂W2

∂n = 0, x ∈ ∂Ω,
(3.1)

with m ∈ C, and m(x) > 0 for all x ∈ Ω̄. We let (λ0(d2,m), ϕ̃(x)) be the principal eigenpaire of the eigenvalue
problem (3.1). Also, we consider the eigenvalue problem

{
d2∆W +mW e−λτ − b2W = λW, x ∈ Ω,
∂W
∂n = 0, x ∈ ∂Ω.

(3.2)

Let λ0(d2,m, τ) be the principal eigenvalue of (3.2). The following result is inspired by the proof of [13],
Theorem 9.2.1.

Lemma 3.1. There exists a principal eigenpaire (λ̂0(d2,m, τ), ϕ̂(x)) of (3.2), and for any τ ≥ 0, λ0(d2,m) and

λ̂0(d2,m, τ) have the same sign.

Proof. Define L : Cτ → C as

Lϕ(x) = m(x)ϕ(−τ, x), x ∈ Ω, ϕ ∈ Cτ .

Clearly, C is Banach Lattice, and L is positive. For each λ ∈ R, we define Lλ : C → C by

Lλ(ϕ) = L(eλ·ϕ), ϕ ∈ C,

with eλ·ϕ ∈ Cτ defined as

eλ·ϕ(σ, x) = eλσϕ(x), σ ∈ [−τ, 0], x ∈ Ω̄.

Letting Q(t) : Cτ → Cτ , t ≥ 0, be the solution of the following parabolic equation{
dv
dt = Av(t) + Lv−τ , t ≥ 0,
v0 = ϕ ∈ Cτ ,

(3.3)

with v−τ ∈ Cτ , and A[ϕ] = d2δϕ − b2ϕ. Letting Av : D(Av) → Cτ be its generator. Thus, v(t) : Cτ → Cτ is
positive. From [26], Section 4, we deduce that S(Av) has the same sign as S(B + L0) = λ0(d2,m). Since L is
positive, and by applying the strong maximum principle we can prove that v(t, x) > 0 for all x ∈ Ω̄. Hence
Q(t) : Cτ → Cτ is strongly positive and compact for each t > 2τ . Fixing some t > 2τ , the Krein-Rutman
Theorem implies that r = r(Q(t)) is a positive eigenvalue of Q(t). The point spectral mapping Theorem [27],

Theorem 2.2.4 implies the existence of a point spectral point λ̂ of Av such that r = etλ̂, with λ̂ ∈ R, and
λ̂ ≤ S(Av).

Furthermore, since S(Av) ∈ σ(Av) next to the spectral mapping Theorem [27], Theorem 2.2.3, we have

etS(Av) ∈ σ(Q(t)). Thus, etS(Av) ≤ retλ̂, which means that S(Av) ≤ λ̂. Therefore, we deduce that S(Av) = λ̄
is a point spectral value of Av. We let ψ+ ∈ E be the positive eigenfunction associated to and by the Krein-
Rutman Theorem we deduce that ψ+ is strictly positive. Therefore, S(Av) is the principal eigenvalue of Av.

Therefore, λ̂(d2,m, τ) exists and it is simple.
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It remains to show that sign{λ̂(d2,m, τ)} = sign{λ(d2,m)} for all τ ≥ 0. We replace λ by λ(d2,m) in (3.1),

and λ by λ̂(d2,m, τ) in (3.2). Multiplying both sides of (3.1) by ϕ̂ and the two sides of (3.2) by ϕ̃, and integrating
the obtain equation, and subtracting the resulting equations, we obtain∫

Ω

mϕ̃ϕ̂(1− e−τλ̂(d2,m,τ))dx = (λ(d2,m)− λ̂(d2,m, τ))

∫
Ω

ϕ̃ϕ̂dx. (3.4)

We prove the result by contradiction. We assume that λ̂(d2,m, τ) > 0 and λ(d2,m) ≤ 0. Hence, the left hand

side of the equality (3.4) is positive, and then (λ(d2,m) − λ̂(d2,m, τ)) > 0, which is a contradiction. Now,

suppose that λ̂(d2,m, τ) < 0 and λ(d2,m) ≥ 0. Hence, the left hand side of the equality (3.4) is negative, and
we get also a contradiction. Then we deduce the result.

Remark 3.2. The choice of the next generation operator A in (2.31) is inspired by the results provided in
Lemma 3.1.

Now, we show the global stability of the PFSS for R0 ≤ 1. At first, we show the local stability of this steady
state through the following theorem:

Theorem 3.3. If R0 < 1 then E0 is locally asymptotically stable, and unstable for R0 > 1.

Proof. At first, we mention that the generator of the linearized system (2.29) (denoted Aτ ) and the one for the
non-delayed linear system (2.30) (which is A) are not the same. Moreover, S(Aτ ) is the principal eigenvalue of
the problem 

d2∆ϕ2 + e−b4τ∂3G(x, V, 0)ϕ3e
−λτ − b2ϕ2 = λϕ2, x ∈ Ω,

a2ϕ2 − b3ϕ3 = λϕ3, x ∈ Ω,

∂ϕ2

∂n = 0, x ∈ ∂Ω,

(3.5)

with Aτ is the generator of the semigroup Tτ (t) associated to the delayed linear system (2.29). S(A) is the
principal eigenvalue of the problem

d2∆ϕ2 + e−b4τ∂3G(x, V, 0)ϕ3 − b2ϕ2 = λϕ2, x ∈ Ω,

a2ϕ2 − b3ϕ3 = λϕ3, x ∈ Ω,

∂ϕ2

∂n = 0, x ∈ ∂Ω.

(3.6)

By applying the results of Lemma 3.1 on the eigenvalue problem formed by the first equation of (3.5) and
(3.6), with m = e−b4τ∂3G(x, V, 0), we deduce that S(A) has the same sign as S(Aτ ). Therefore, the exponential
growth rate related to the semigroup associated to the delayed system (2.29) (which is denoted ω(Tτ )) and the
one related to T (t) have the same sign. Now, we determine the exponential growth bound of T (t), which can
be defined as

ω(T ) = max{S(A), ω0(T )},

with eω0(T )t := κ(T (t)), and κ is the measure of non-compactness. To show the local stability of E0, we need to
determine the sign of ω(Tτ ), where if ω(T ) < 0 then E0 is locally asymptotically stable, and if ω(T ) > 0 then
E0 is unstable. Since ω(T ) has the same sign as ω(Tτ ), the local asymptotic stability of PFSS can be deduced
by determining the sign of ω(T ) by applying [28], Theorem 2.1, or [23], Theorem 3.1.
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For any (W̃20,W30) ∈ C2 (with W̃20(·) =W20(0, ·)), and (W2(t, ·),W3(t, ·)) := T (t)(W̃20,W30). Thus, T (t) =
T1(t) + T2(t), where

T1(t)(W̃20,W30) =

(
W1(·, t),

∫ t

0

e−b3(t−s)a2W2(·, σ)dσ
)
, T2(t)(W̃20,W30) =

(
0, e−b3tW30

)
.

From [11], Lemma 2.5, we have that T1(t) is compact. Hence,

κ(T (t)) = κ(T1(t) + T2(t)) = κ(T2(t)) ≤ ∥T2(t)∥ ≤ e−b3t.

Therefore, ω0 ≤ −b3 < 0. Therefore, S(A) determines the stability (resp. instability) of E0. From Lemma 2.6
we have R0 − 1 and S(A) have the same sign. As a result, if R0 < 1 then S(A) < 0 and hence ω(T ) < 0, which
means that E0 is locally asymptotically stable. However, if R0 > 1 then S(A) > 0 therefore ω(T ) = S(A) > 0,
and then E0 is unstable.

Theorem 3.4. If R0 < 1, then E0 is globally asymptotically stable.

Proof. We show the global attractiveness by constructing a Lyapunov function. From Lemma 2.5, R0 satisfies
the problem B1[ϕ] = R0ϕ, with Neumann boundary condition. Hence,{

−d2∆ϕ+ b2ϕ− 1
R0

e−b4τ∂3G(x, V, 0)
a2
b3
ϕ = 0, x ∈ Ω,

∂ϕ
∂n = 0, x ∈ ∂Ω.

(3.7)

Let ϕ̃ = a2
b3
ϕ > 0, then (3.7) can be written as the following system


−d2∆ϕ+ b2ϕ− 1

R0
e−b4τ∂3G(x, V, 0)ϕ̃ = 0, x ∈ Ω,

a2ϕ− b3ϕ̃ = 0, x ∈ Ω,

∂ϕ
∂n = 0, x ∈ ∂Ω.

(3.8)

Note that ∂3G(x, V + υ, 0) is continuous for υ > 0. Therefore, for R0 < 1, there exists a small enough υ such
that R0 (also denoted as R0) corresponding to the perturbation υ on ∂3G(x, V + υ, 0) remains less than 1. The
corresponding eigenfunctions will also be denoted by (ϕ, ϕ̃), which satisfies the perturbed system of (3.8).

By Theorem 3.3, to show the global asymptotic stability of PFSS, it suffice to show the global attraction of
E0. Since lim supt→∞W1(t, x) ≤ V (x), then for any υ > 0 there exists t1 > 0 such that W1(t, ·) ≤ V (·) + υ for
all t ≥ t1. Notice that by applying (H2) we get G(·,W1,−τ ,W3,−τ ) ≤ G(·, V + υ,W3,−τ ), and by using (H3)
we get G(·,W1,−τ ,W3,−τ ) ≤ G(·, V + υ,W3,−τ ) ≤W3,−τ∂3G(·, V + υ, 0). The comparison principle implies that

(W2(t, x),W3(x, t)) ≤ (W̃2(t, x), W̃3(x, t)), on Ω̄× [t1,+∞), with (W̃2(t, x), W̃3(x, t)) satisfying

∂W̃2

∂t = d2∆W̃2 + e−b4τ∂3G(x, V + υ, 0)W3,−τ − b2W̃2, x ∈ Ω, t > t1,

∂W̃3

∂t = a2W̃2 − b3W̃3, x ∈ Ω, t > t1,

∂W̃2

∂n = 0, x ∈ ∂Ω,

W̃2(t1, x) =W2(t1, x), W̃3(s, x) =W3(s, x), x ∈ Ω, s ∈ [t1 − τ, t1].

(3.9)

Define Tυ(t) as the linear semigroup generated by (3.9), with the generator Aυ. We choose υ > 0 sufficiently
small such that ω(Tυ) < 0 (for R0 < 1), which means that the steady state (0, 0) for (3.9) is locally stable. Next,
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we show the global attractiveness of (0, 0) for R0 < 1. For this, we let the Lyapunov function

LV FS [W̃2, W̃3](t) = L
(1)
V FS [W̃2, W̃3](t) + L

(2)
V FS [W̃2, W̃3](t),

with

L
(1)
V FS [W̃2, W̃3](t) =

∫
Ω

(ϕW̃2 + kϕ̃W̃3)dx, L
(2)
V FS [W̃2, W̃3](t) =

∫
Ω

e−b4τ∂3G(x, V + υ, 0)

∫ 0

−τ
W̃3,sdsdx,

and k(x) = e−b4τ∂3G(x,V+υ,0)
a2(x)

. The derivative of L
(2)
V FS [W̃1, W̃2](t) along the solution of (3.9) is

d
dtL

(2)
V FS [W̃2, W̃3](t) =

d
dt

∫
Ω

e−b4τ∂3G(x, V + υ, 0)

∫ 0

−τ
W̃3,sdsdx,

=

∫
Ω

e−b4τ∂3G(x, V + υ, 0)

∫ 0

−τ

∂

∂t
W̃3(t+ s, x)dsdx,

=

∫
Ω

e−b4τ∂3G(x, V + υ, 0)

∫ 0

−τ

∂

∂s
W̃3(t+ s, x)dsdx,

=

∫
Ω

e−b4τ∂3G(x, V + υ, 0)W̃3(t+ s, x)|s=0
s=−τdx,

=

∫
Ω

e−b4τ∂3G(x, V + υ, 0)(W̃3 − W̃3,−τ )dx.

The derivative of L
(1)
V FS [W̃1, W̃2](t) along the solution of (3.9) is

d
dtL

(1)
V FS [W̃2, W̃3](t) =

∫
Ω

(ϕ
∂

∂t
W̃2 + kϕ̃

∂

∂t
W̃3)dx,

=

∫
Ω

(
d2∆W̃2 + e−b4τ∂3G(x, V + υ, 0)W̃3,−τ − b2W̃2

)
ϕdx

+

∫
Ω

kϕ̃

(
a2W̃2 − b3W̃3

)
dx,

≤
∫
Ω

(
d2∆W̃2 +

1

R0
e−b4τ∂3G(x, V + υ, 0)W̃3,−τ − b2W̃2

)
ϕdx

+

∫
Ω

kϕ̃

(
a2W̃2 − b3W̃3

)
dx.

Therefore,

d
dtLV FS [W̃2, W̃3](t) ≤

∫
Ω

(
d2∆W̃2 +

1

R0
e−b4τ∂3G(x, V + υ, 0)W3 − b2W̃2

)
ϕdx

+

∫
Ω

kϕ̃

(
a2W̃2 − b3W̃3

)
dx+

(
1

R0
− 1

)∫
Ω

e−b4τ∂3G(x, V + υ, 0)W̃3,−τϕdx,

= d2

∫
Ω

ϕ∆W̃2dx+

∫
Ω

kW3

(
− b3ϕ̃+

1

kR0
e−b4τ∂3G(x, V + υ, 0)ϕ

)
dx

+

∫
Ω

w2

(
kϕ̃a2 − b2ϕ

)
dx+

(
1

R0
− 1

)∫
Ω

e−b4τ∂3G(x, V + υ, 0)W̃3,−τϕdx.



GENERALITIES ON A DELAYED SPATIOTEMPORAL HOST–PATHOGEN INFECTION MODEL 21

Since that k = e−b4τ∂3G(x,V+υ,0)
a2

, and using the second equation of (3.8), we deduce that

−b3ϕ̃+
1

kR0
βe−b4τ∂2G(V + υ, 0)ϕ = 0.

Also, by ka2 = e−b4τ∂3G(x,V+υ,0)
a2

, and by the first equation of (3.8), we get

kϕ̃a2 − b2ϕ = −d2∆ϕ.

Then, d
dtLV FS [W̃2, W̃3](t) becomes

d
dtLV FS [W̃2, W̃3](t) ≤ d2

∫
Ω

[
ϕ∆W̃2 − w2∆ϕ

]
dx+

(
1

R0
− 1

)∫
Ω

e−b4τ∂3G(x, V + υ, 0)W̃3,−τϕdx.

By the Green’s first identity and the Neumann boundary condition, we obtain

d
dtLV FS [W̃2, W̃3](t) ≤ d2

[
−
∫
∂Ω

W2∇ϕ · ndS +

∫
Ω

∇W2∇ϕdx+

∫
∂Ω

ϕ∇W2 · ndS −
∫
Ω

∇W2∇ϕdx
]

+

(
1
R0

− 1

)∫
Ω

e−b4τ∂3G(x, V + υ, 0)W̃3,−τϕdx,

=

(
1
R0

− 1

)∫
Ω

e−b4τ∂3G(x, V + υ, 0)W̃3,−τϕdx.

Therefore, for R0 < 1, d
dtLV FS [W̃2, W̃3](t) ≤ 0. Since ϕ(x) > 0 for all x ∈ Ω̄, then d

dtLV FS [W̃2, W̃3](t) = 0 if and

only if e−b4τ∂3G(x, V + υ, 0)W̃3,−τ = 0. Replacing this result into the first equation of (3.9), we W̃2 = 0, and

then W̃3 = 0. Therefore, d
dtLV FS [W̃2, W̃3](t) = 0 holds if and only if W̃2 = W̃3 = 0. LaSalle’s invariance principle

implies that the origin is globally asymptotically stable for (3.9). This means that W̃2 → 0, and W̃3 → 0 as
t→ +∞. Replacing this result into the first equation of (1.3), we deduce that T → T 0 as t→ +∞. Moreover, by
the first equation of (1.3), and the global stability of V for (2.2), we deduce that W1(t, x) → V (x) as t→ +∞.
Then, we conclude that E0 is globally asymptotically stable for R0 < 1.

Now, we prove the global asymptotic stability of E0 for the critical case R0 = 1.

Theorem 3.5. If R0 = 1, E0 remain globally asymptotically stable.

Proof. To overcome this, we need to prove the local stability and the global attraction of E0. First, we investigate
the local asymptotic stability of E0. Let ε > 0 be a given positive constant. Assume that δ > 0, and we let W0

be the initial data of (1.3) that satisfies ||W0 − E0|| ≤ δ. We define

U1(t, x) =
W1(t, x)

V (x)
− 1.

It is easy to check that ∇U1 = 1
V ∇W1 − ∇V

V 2 W1. Hence,

d1∆U1 =
1

V
d1∆W1 −

W1

V 2
d1∆V − 2

d1
V

∇V · ∇U1.
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Using the fact that d1∆V = −a1 + b1V , we obtain

d1
V

∆W1 = d1∆U1 +
W1

V 2
(−a1 + b1V ) + 2

d1
V

∇V · ∇U1,

hence,

∂U1

∂t = 1
V
∂W1

∂t ,

= d1
1
V ∆W1 +

a1
V − b1

W1

V − e−b4τG(x,W1,W3)
V ,

=

[
d1∆U1 +

W1

V 2 (−a1 + b1V ) + 2d1V ∇V · ∇U1

]
+ a1

V − b1
W1

V − βe−b4τG(x,W1,W3)
V ,

= d1∆U1 − a1
V U1 + 2d1V ∇V · ∇U1 − e−b4τG(x,W1,W3)

V .

Hence, we can write

∂U1

∂t
= d1∆U1 −

a1
V
U1 + 2

d1
V

∇V · ∇U1 −
e−b4τG(x,W1,W3)

V
.

Let T1(t) be the semigroup associated to the generator d1∆− a1
V +2d1V ∇V ·∇ with Neumann boundary condition.

Hence, there exists θ > 0 such that ||T1(t)|| ≤Me−θt, for some θ > 0. Then, we have

U1(t, ·) = T1(t)U10 −
∫ t

0

T1(t− s)
e−b4τG(·,W1(s, ·),W3(s, ·))

V
ds,

with U1(0, x) =
W1(0,x)
V (x) − 1. We let b(t) = maxx∈Ω̄{U1(t, x), 0}. From the positivity of T1(t), we have

b(t) = maxx∈Ω̄

{
T1(t)U10 −

∫ t

0

T1(t− s)
e−b4τG(·,W1(s, ·),W3(s, ·))ds

V
, 0

}
,

≤ maxx∈Ω̄

{
T1(t)U10, 0

}
,

≤ ||T1(t)U10||,

≤ Me−θt||W1(0,x)
V (x) − 1||,

≤ Mδ
V e−θt.

By the assumption (H3), W2,W3 satisfy

{
∂W2

∂t ≤ d2∆W2 − b2W2 + e−b4τW3,−τ∂3G(x, V, 0) + e−b4τW3,−τ (∂3G(x,W1,−τ , 0)− ∂3G(x, V, 0)),

∂W3

∂t = a2(x)W2 − b3(x)W3,

with Neumann boundary conditions. Then, we have

(
W2(t, ·)
W3(t, ·)

)
≤ Tτ (t)

(
W20

W30

)
+

∫ t

0

Tτ (s)

(
e−b4τW3,−τ (∂3G(·,W1,−τ , 0)− ∂2G(·, V, 0))

0

)
ds.
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Since ∂3G(x, x1, 0) is Lipchitz continuous for the second variable, then there exists some L1 > 0 such that(
W2(t, ·)
W3(t, ·)

)
≤ Tτ (t)

(
W20

W30

)
+

∫ t

0

Tτ (s)

(
e−b4τL1W3(s− τ, ·)||W1(s− τ, ·)− V ||

0

)
ds.

Hence, (
W2(t, ·)
W3(t, ·)

)
≤ Tτ (t)

(
W20

W30

)
+

∫ t

0

Tτ (s)

(
||V ||e−b4τL1W3(s− τ, ·)||U1(s− τ, ·)||

0

)
ds.

From the last part proof of Theorem 3.3, and for R0 = 1, we have ω(T ) = ω(Tτ ) = 0. Hence ||Tτ (t)|| ≤Mτ for
all t ≥ 0, for some constant Mτ > 0, which it can be chosen as larger as needed. Notice that b(t) ≤ Mδ

V e−θt,

thus

max{||W2(t, ·)||, ||W3(t, ·)||} ≤ Mτ max{||W20||, ||W30||}+MτM ||V ||e−b4τL1

∫ t

0

b(s− τ)||W3(s− τ, ·)||ds,

≤ Mτδ + δM̃τ

∫ t

0

e−θ(s−τ)||W3(s− τ, ·)||ds,

(3.10)

with M̃τ = MτM ||V ||e−b4τL1

V . By applying Gronwall’s inequality, we get

||W3(t, ·)|| ≤Mτδe
∫ t
0
δM̃τ e

−θ(s−τ)ds ≤Mτδe
δM̃τ e

θτ/θ. (3.11)

From (3.10), we have

||W2(t, ·)|| ≤Mτδ + δM̃τ

∫ t

0

e−θ(s−τ)||W3(s− τ, ·)||ds.

Using (3.11), we obtain

||W2(t, ·)|| ≤ Mτδ + δ2M̃2
τ e
δM̃τ e

θτ/θ

∫ t

0

e−θ(s−τ)ds,

≤ Mτδ

(
1 + δM̃τ e

δM̃τ eθτ /θeθτ

θ

)
.

By (H1), we have

G(·,W1,W3) ≤ G

(
·,W1,Mτδe

δM̃τ e
θτ/θ

)
.

Using the fact that G is Lipschitz function for the second and the third variable, we get

G

(
·,W1,Mτδe

δM̃τ e
θτ/θ

)
−G

(
·, 0,Mτδe

δM̃τ e
θτ/θ

)
≤ LδW1,

with

Lδ = max

{
∂2G

(
x, s,Mτδe

δM̃τ e
θτ/θ

)
, 0 ≤ s < M, x ∈ Ω̄

}
,
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where M < ∞ is is taken as larger as needed. Notice that Lδ → 0 as δ → 0. Thus, from the first equation of
(1.3) we have

∂W1

∂t
> d1∆W1 + a1(x)−

[
b1(x) + e−b4τLδ

]
W1.

By comparison principle, we have Ŵ1(t, x) ≤ W1(t, x), for all x ∈ Ω̄, t ≥ 0, with Ŵ1 be the solution of the
problem 

∂Ŵ1

∂t = d1∆Ŵ1 + a1(x)−
[
b1(x) + e−b4τLδ

]
Ŵ1, x ∈ Ω, t > 0,

∂Ŵ1

∂n = 0, x ∈ ∂Ω, t > 0,

Ŵ1(0, x) =W10, x ∈ Ω.

(3.12)

Let Vδ be the unique positive steady state of (3.12). We let Û = Ŵ1 − Vδ, then Û satisfies
∂Û
∂t = d1∆Û −

[
b1(x) + e−b4τLδ

]
Û , x ∈ Ω, t > 0,

∂Û
∂n = 0, x ∈ ∂Ω, t > 0,

Ŵ1(0, x) =W10 − Vδ, x ∈ Ω.

(3.13)

We let T1(t) be the semigroup of the generator d1∆− b1 with Neumann boundary condition. Then, there exists
M1 > 0 sufficiently large such that ||T1(t)|| ≤M1e

−b1t. From (3.13), we have

Û(t, ·) = T1(t)(W10 − Vδ)− e−b4τ
∫ t

0

T1(t− s)LδÛ(s, ·)ds.

Therefore,

||Û(t, ·)|| ≤ ||W10 − Vδ||M1e
−b1t +M1Lδe

−b4τ
∫ t

0

e−b1(t−s)||Û(s, ·)||ds.

Hence, we can write(
||Û(t, ·)||eb1t

)
≤ ||W10 − Vδ||M1 +M1Lδe

−b4τ
∫ t

0

(
||Û(s, ·)||eb1s

)
ds.

Again, by Gronwall’s inequality, we obtain

||Û(t, ·)|| ≤M1||W10 − Vδ||e(K(δ)−b1)t,

with K(δ) =M1e
−b4τLδ. Clearly, K(δ) → 0 as δ → 0. Therefore, there exists δm > 0 sufficiently small such that

for 0 < δ < δm, and we have K(δ) ≤ b1
2 . Thus,

||Û(t, ·)|| ≤M1||W10 − Vδ||e−
b1t

2 . (3.14)

Notice that by the comparison principle we have Vδ ≤ V for all δ > 0 and x ∈ Ω̄, and Vδ → V as δ → 0.
Therefore, (3.14) implies

W1(t, ·)− V ≥ (U1(t, ·)− Vδ) + (Vδ − V ),

≥ −M1||W10 − Vδ||e−
b1)t

2 + (Vδ − V ),

≥ −M1δ − ||Vδ − V ||.
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Besides,

W1(t, ·)− V = V U1(t, ·) ≤ ||V ||b(t) ≤ δM

V
.

Hence, we get

−M1δ − ||Vδ − V || ≤W1(t, ·)− V ≤ δM

V
,

thus, we can choose δ sufficiently small such that for all t > 0

max{||W1(t, ·)− V ||, ||W2(t, ·)||, ||W3(t, ·)||} ≤ ε,

which is the local stability of E0.
Next, we show the global attractiveness of E0. From Theorem 2.4, the semiflow Ψ(t) has a global compact

attractor denoted D. To show the global attractiveness of E0, we need to show that D = {E0}. We define

X0 = {(ψ1, ψ2, ψ3) ∈ X+ : ψ2 ̸≡ 0, and ψ3 ̸≡ 0}, (3.15)

∂X0 = {(ψ1, ψ2, ψ3) ∈ X+ : ψ2 ≡ 0, or ψ3 ≡ 0}, (3.16)

∂X1 = {(ψ1, ψ2, ψ3) ∈ X+ : ψ2 ≡ 0, and ψ3 ≡ 0}. (3.17)

We prove the result by showing the following two statements

(i) For any W0 ∈ D the ω − limt set ω(W0) ⊂ ∂X1.
From (2.3), we must have W10 ≤ V . Clearly, ∂X1 is an invariant set for Ψ(t), hence, if W0 ∈ ∂X1, then
Ψ(t)W0 ∈ ∂X1. Therefore, E0 is attractive in this case. Now, we suppose that W0 ∈ ∂X0. From the two
last equations of (1.3), we have W2(t, ·) ≥ W̃2(t, ·), and W3(t, ·) ≥ W̃3(t, ·), where W̃2, W̃3 satisfy

∂W̃2

∂t = d2∆W̃2 − b2(x)W̃2, x ∈ Ω, t > 0,

∂W̃3

∂t = a2(x)W̃2 − b3(x)W̃3, x ∈ Ω, t > 0,

∂W̃2

∂n = 0, x ∈ ∂Ω, t > 0,

W̃2(0, ·) =W20, W̃3(0, ·) =W30, x ∈ Ω,

(3.18)

with Wi0(·) = min{Wi0(s, ·), s ∈ [−τ, 0]}, i = 2, 3. Hence, W̃2(t, x) = T2(t)W20(x),

W̃3(t, x) = e−b3(x)tW30(x) +

∫ t

0

e−b3(x)(t−s)a2(x)W̃2(s, x)ds.
(3.19)

Clearly, if W20 ̸= 0 then W̃2(t, x) > 0 for all x ∈ Ω̄ and t > 0, and then W̃3(t, x) > 0 for all x ∈ Ω̄ and
t > 0, with W30 = 0, and therefore Wi(t, x) > 0, i = 2, 3 for all x ∈ Ω̄ and t > 0. However, if W20 = 0
and W30 ̸= 0, then W̃3(t, x) > 0. That follows W3(t, x) > 0, for all x ∈ Ω̄ and t > 0. Notice that W2 satisfy

W2(t, ·) =
∫ t

0

T2(t− s)β(·)e−b4τG(·,W1(s− τ, ·),W3(s− τ, ·))ds > 0. Then W2(t, x) > 0, for all x ∈ Ω̄ and
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t > 0. Therefore, we deduce that if either W20 ≡ 0 or W30 ≡ 0, we obtain that Wi(t, x) > 0, i = 2, 3 for
all x ∈ Ω̄ and t > 0. Hence W1(t, x) satisfies

∂W1

∂t = d1∆W1 + a1(x)−G(x,W1,W3)− b1(x)W1, x ∈ Ω, t > 0

∂W1

∂n = 0, x ∈ ∂Ω, t > 0,

W1(0, x) ≤ V (x), x ∈ Ω.

(3.20)

The comparison principle implies that W1(t, x) < V (x) for all x ∈ Ω̄ and t > 0.
Now, motivated by [29], we define

c(t,W0) inf{c̃ ∈ R : W2(t, ·) ≤ c̃ψ2, and W3(t, ·) ≤ c̃ψ3}.

Hence, c(t,W0) > 0 for all t > 0. Next, we show that c(t,W0) is strictly decreasing in t. To prove this, we
fix t1 > 0 and we let W̄2(t, ·) = c(t;W0)ϕ2 and W̄3(t, ·) = c(t;W0)ϕ3 for t ≥ t1. Notice that W1(t, ·) < V,
thus 

∂W̄2

∂t > d2∆W̄2 − b2(x)W̄2 + βe−b4τG(x, W̃1,−τ , W̃3,−τ ), , x ∈ Ω, t > 0,

∂W̃3

∂t = a2(x)W̃2 − b3(x)W̃3, x ∈ Ω, t > 0,

∂W̃2

∂n = 0, x ∈ ∂Ω, t > 0,

W̃2(s, ·) ≥W2(s, ·), W̃3(s, ·) ≥W3(s, ·), s ∈ [−τ, 0], x ∈ Ω̄.

(3.21)

The comparison principle implies that (W̃2(t, x), W̃3(t, x)) ≥ (W2(t, x),W3(t, x)) for all x ∈ Ω̄, and t ≥ t0.
The first equation of (3.21) and the strong maximum principle imply that c(t;W0)ϕ2(s, x) = W̃2(t, x) >
W2(t, x), for all x ∈ Ω̄ and t > t0, and s ∈ [−τ, 0]. Also, the second equation gives all x ∈ Ω̄ and t > t0,
and s ∈ [−τ, 0]. Since t0 is chosen in arbitrary way, we deduce that c(t;W0) is strictly decreasing in t.

As a result, we deduce that limt→+∞ c(t;W0) = cm. We claim that cm = 0. We let W =
(W1,W2,W3) ∈ ω(W0). Hence, there exists a sequence {tn} with tn → +∞ as n → +∞
such that Ψ(tn)W0 → W as n → +∞. Use the semiflow properties limn→+∞ Ψ(t + tn)W0 =
ψ(t) limn→+∞ Ψ(tn)W0 = Ψ(t)W. Therefore, if W2 ≡ 0 or W3 ≡ 0, by following the same above rea-
soning we prove that c(t;W) is strictly decreasing, which is a contradiction with c(t;W) = cm. Thus,
W2 ≡ 0 and W3 ≡ 0.

(ii) D = {E0}.
If W0 ∈ ∂X1 then {E0} is globally attractive for Ψ(t), and {E0} is the only compact invariant set of
Ψ(t) ∈ ∂X1. Now, we let W0 ∈ D, since ω(W0) is compact invariant set, and satisfies ω(W0) ⊂ ∂X1

(see statement (i)), we deduce that ω(W0) = {E0}. As D is compact invariant in X+, E0 is locally
asymptotically stable. By applying [11], Lemma 3.1, we have D = {E0}.

Thus we get the global asymptotic stability of E0 for R0 = 1.

4. Existence of positive steady state

We investigate the uniform persistence of the semiflow Ψ(t). This result is important to show the existence
of the solution, where we use [30], Theorem 4.17 to show the existence of the positive steady state. We let
Ψ(t,W0) = W (t, ·) for all t ≥ 0, with W = (W1,W2,W3) be the solution of (1.3), with W0 belonging to X+.
Also, we let W (t, ·;W0) be the solution of (1.3), with W0 belonging to X+. There are many papers that prove
the uniform persistence in literature, and we cite a few [1, 3–5, 11], and references therein.
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We consider the spaces X0 and ∂X0 as defined by (3.15), and (3.16), respectively. Also, we let

M∂ =

{
W0 ∈ ∂X0 : Ψ(t;W0) ∈ ∂X0 for t ≥ 0

}
. (4.1)

Then, we have the following result

Theorem 4.1. If R0 > 1, then Ψ(t;U0) is strongly uniformly persistent, that is, there exists a positive constant
a > 0 such that for any W0 ∈ X+, U(t;U0) satisfies

lim inf
t→∞

Wi(t, x) ≥ a, i = 2, 3, uniformly for all x ∈ Ω̄.

Moreover, (1.3) has at least one positive steady state (PSS).

Proof. To show this claim, we check all statements of Theorem [31], Theorem 3. We define ρ : X+ → R+

ρ(ψ) = min{ψi(x), x ∈ Ω̄, i = 1, 2, 3, ψ ∈ X+}.

Clearly, ρ(Ψ(t;ψ)) > 0 for all ψ ∈ ρ−1(0,∞)∪ (X0∩ρ−1(0)). Then ρ(ψ) is a generalized distance for the semifllow
Γ(t), see [31]. Notice that ω(W ) is the ω− limit set of the orbit γ+(W ) = ∪t≥0{Ψ(t;W0)}. First, we prove that
X0 is positively invariant for Ψ(t,W0), that is Ψ(t,X0) ⊆ X0, which also means that for any W0 ∈ X0, we have
W > 0.

By similar reasoning as in the proof of Theorem 3.5, if W0 ∈ X, we have that Wi(x, t) > 0, for all x ∈ Ω̄, and
t > 0. Therefore, Ψ(t,X0) ⊆ X0.

Now, we claim that ω(U) = {E0}, for all U ∈ M∂ . This is true if we prove that M∂ ⊆ {(ψ1, 0, 0), ψ1 ∈ Cτ}.
We prove this claim by contradiction. We suppose that there exists ψ = (ψ1, ψ2, ψ3) ∈ M∂ such that ψ ̸∈
{(ψ1, 0, 0), ψ1 ∈ C}. This means that we have two different cases:

(i) ψ2 ̸≡ 0, and ψ3 ≡ 0.
(ii) ψ2 ≡ 0, and ψ3 ̸≡ 0.

For (i), Wi, i = 2, 3 can be expressed as

W2(t, ·) = T1(t)ψ2 +

∫ t

0

T1(t− s)e−b4τG(·,W1(s− τ)),W3(s− τ))ds ≥ T1(t)ψ2 > 0.

Then

W3(t, ·) =
∫ t

0

e−b3(t−s)a2(·)W2(s, ·)ds > 0.

Therefore,Wi(t, x) > 0, i = 2, 3 for all x ∈ Ω̄, and t > 0. which means that Ψ(t, ψ) ⊆ X0, that is a contradiction
with the definition of M∂ .

For (ii), W3 is written as

W3(t, ·) = e−b3tψ3 +

∫ t

0

e−b3(t−s)a2(·)W2(s, ·)ds > 0,

which means that W3(t, x) > 0 for all x ∈ Ω̄, and t > 0. Moreover, W2 satisfies

W2(t, ·) =
∫ t

0

T1(t− s)e−b4τG(·,W1(s− τ),W3(s− τ))ds.
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Hence, Wi(t, x) > 0, i = 2, 3 for all x ∈ Ω̄, and t > 0. Thus, Ψ(t, ψ) ⊆ X0, which is a contradiction with the
definition of M∂ . Therefore, ω(ψ) = {E0} for all ψ ∈ M∂ . Therefore, E0 is isolated in X+. Moreover, from the
fact that ω(ψ) = {E0} we deduce that there is no cycle in M∂ from {E0} to itself.

Now, we let W s(E0) is the stable manifold of E0. We claim that W s(E0) ∩ ρ−1(0,∞) = ∅. This means that
there exists a positive constant δ > 0 satisfying

lim sup
t→∞

∥Ψ(t)ψ − E0∥ ≥ δ for any ψ ∈ ρ−1(0,∞)

with W0 ∈ ρ−1(0,∞) meaning that Wi0 > 0, i = 1, 2, 3 for all x ∈ Ω̄, s ∈ [−τ, 0].
We prove the claim by contradiction. We suppose that for any δ > 0 there exists ψ ∈ ρ−1(0,∞) satisfying

lim sup
t→∞

∥Ψ(t)ψ − E0∥ < δ for any ψ ∈ ρ−1(0,∞).

Thus, there exists t1 > 0 satisfying Wi(t, ·, ψ1)− V (·) < η, Wi(t, ·, ψi) < η, i = 2, 3, for all t ≥ t1. Further, by
(H3), for t ≥ t1 + τ , (W2(t, x, ψ2),W3(t, x, ψ2)) is an upper bound of the solution of the problem


∂w2

∂t = d2∆w2 + e−b4τ∂3G(x, V − η, 0)w3,−τ − b2w2,

∂w3

∂t = a2w2 − b3w3,

w2(·, t1) = max{ψ2(s, x), s ∈ [−τ, 0]} > 0, w3(x, t1) = max{ψ3(s, x), s ∈ [−τ, 0]} > 0, x ∈ Ω̄.

(4.2)

We let (λ1(δ), ϕ1,δ(x)) be principal eigenpair of the following eigenvalue problem

d2∆u− b2u+ e−b4τ∂3G(x, V − η, 0)
a2
b3
u = λu, x ∈ Ω.

Clearly, λ1(η) is continuous in η. Lemma 2.6 implies that λ1(0) = λ1 > 0 for R0 > 1. From the continuity of
λ1(η) with respect to η, we choose η > 0 sufficiently small such that λ1(η) > 0.

Moreover, Lemma 2.6 implies that the following eigenvalue system
d2δψ2 + e−b4τ∂3G(x, V − η, 0)ψ3 − b2ψ2 = λψ2, x ∈ Ω,
a2ψ2 − b3ψ3 = λψ3, x ∈ Ω,
∂ψ1

∂n = 0, x ∈ ∂Ω,
(4.3)

has a principal eigenvalue λ̃1(η) > 0 for a sufficiently small constant η > 0, and (ϕ̃η2 , ϕ̃
η
3) is the corresponding

eigenfunction. Choose α > 0 sufficiently small such that αϕ̃ηi ≤ Wi(t1, ·), i = 2, 3. Then, (4.2) has a unique
solution

(w1, w2) =

(
αeλ1(δ)(t−t1)ϕ̃η2 , αe

λ1(δ)(t−t1)ϕ̃η3

)
, t ≥ t1.

Then, wi → +∞, i = 2, 3 as t → +∞, which is a contradiction with the results of Theorem 2.3. Hence we
deduce that W s(E0) ∩ ρ−1(0,∞) = ∅. Therefore, all statements of Theorem [31], Theorem 3 holds true. Ψ(t) is
strongly uniformly persistent. This completes the first part of the proof.

Next, we focus on the second part of the proof. Theorem 2.3 implies that Ψ(t) is point dissipative. Further,
M∂ is a convex set, and Ψ(t) is κ−condensing, then [30], Theorem 4.7 implies the existence of a PSS denoted
by E∗ = (W ∗

1 ,W
∗
3 ,W

∗
3 ), that satisfy the system (1.3), and satisfy the persistence result (for R0 > 1). Therefore,
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this steady state is the positive steady state and belongs to X0, and satisfies

0 = d1∆W1(x) + a1(x)−G(x,W1,W3)− b1(x)W1(x), x ∈ Ω,

0 = d2∆W2(x) + e−b4τG(x,W1,W3)− b2(x)W2(x), x ∈ Ω,

0 = a2(x)W2(x)− b3(x)W3(x), x ∈ Ω,

∂W1

∂n = ∂W2

∂n = 0, x ∈ ∂Ω,

(4.4)

5. Global attractivity

Here, we investigate the global attractivity of the PSS. Mention that Theorem 4.1 does not guarantee the
uniqueness of the PSS. In the case of the bilinear incidence and one diffusion coefficient, the uniqueness can be
performed by applying similar reasoning as in [2], and for applications, e.g. [32], Theorem 3.1, and references
therein. However, this method cannot be applied in our analysis due to the distinct diffusion coefficients. Notice
that (H3) and (H2) implies the following

For all w1, w3 ∈ R+ we have


G(x,W1,W3)
G(x,W1,W∗

3 ) ≥
W3

W∗
3
for all W3 ≤W ∗

3 , and x ∈ Ω̄;

G(x,W1,W3)
G(x,W1,W∗

3 ) ≤
W3

W∗
3
for all W3 ≥W ∗

3 , and x ∈ Ω̄.
(5.1)

Notice that (5.1) implies that G(x,y1,y2)
y2

is nonincreasing in y2. The global attractivness result is provided through
the following subsections

5.1. Spatially homogeneous case

In this case, we consider that all parameters are space independent, and hence, G is also spatially
homogeneous, and then the PSS becomes constant, and satisfies the following system 0 = a1 −G(W ∗

1 ,W
∗
3 )− b1W

∗
1 ,

0 = e−b4τG(W ∗
1 ,W

∗
3 )− b2W

∗
2 ,

0 = a2W
∗
2 − b3W

∗
3 .

(5.2)

Remark 5.1. For the system (5.2), we can prove the existence of the positive steady state by searching on a
fixed point, e.g. [33], Theorem 1. However, the uniqueness is hard to be achieved by analyzing (5.2). Therefore,
we use the global attraction to show it. This reasoning is used in different literature works, we cite a few
[1, 33, 34].

We define the Volterra function as

p(ρ) = ρ− 1− ln ρ, ρ ≥ 0. (5.3)

It is readily seen that p(ρ) ≥ 0 for all ρ > 0, and p(ρ) = 0 if and only if ρ = 1.

Theorem 5.2. Assume that (H1)− (H3) hold. If R0 > 1, then the PSS denoted E∗ = (W ∗
1 ,W

∗
2 ,W

∗
3 ) of (5.2)

is unique and globally attractive in X0.

Proof. We construct the following Lyapunov function as

V (W1,W2,W3) = V1(W1,W2,W3) + V2(W1,W2,W3),
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with

V1(W1,W2,W3) =

∫
Ω

W1(t, x)−W ∗
1

∫ W1(t,x)

W∗
1

G(W ∗
1 ,W

∗
3 )

G(θ,W ∗
3 )

dθ + eb4τW ∗
2 (x)p

(
W2(t, x)

W ∗
2

)
+ kW ∗

3 p

(
W3(t, x)

W ∗
3

)
dx,

and

V2(W1,W2,W3) = G(W ∗
1 ,W

∗
3 )

∫
Ω

∫ 0

−τ
p

(
G(W1(t− s, x),W3(t− s, x))

G(W ∗
1 ,W

∗
3 )

)
dsdx,

with k =
G(W∗

1 ,W
∗
3 )

a2W∗
2

. From the boundedness of the solution (Thm. 2.3), and uniform persistent (Thm. 4.1),

we deduce that the Lyapunov function V is well-defined. The derivative of V1 along the solution of (1.3) is
given by

d
dtV1(W1,W2,W3) =

∫
Ω

(
1− G(W ∗

1 ,W
∗
3 )

G(W1,W ∗
3 )

)(
d1∆W1 + a1 −G(W1,W3)− b1W1

)
+

(
1− W∗

2

W2

)(
eb4τd2∆W2 +G(W1,−τ ,W3,−τ )− eb4τ b2W2

)
+k

(
1− W∗

3

W3

)(
a2W2 − b3W3

)
dx.

Adding and subtracting the term G(W1,W3)

(
1− W∗

2

W2

)
, then, we obtain

d
dtV1(W1,W2,W3) =

∫
Ω

(
1− G(W ∗

1 ,W
∗
3 )

G(W1,W ∗
3 )

)(
d1∆W1 + a1 −G(W1,W3)− b1W1

)
+

(
1− W∗

2

W2

)(
eb4τd2∆W2 +G(W1,W3)− eb4τ b2W2

)
+ k

(
1− W∗

3

W3

)(
a2W2 − b3W3

)
+

(
1− W∗

2

W2

)
(G(W1,−τ ,W3,−τ )−G(W1,W3))dx.

(5.4)
By a simple calculation, we have(

1− W∗
2

W2

)
(G(W1,−τ ,W3,−τ )−G(W1,W3)) = G(W ∗

1 ,W
∗
3 )

(
p

(
G(W1,−τ ,W3,−τ )
G(W∗

1 ,W
∗
3 )

)
−p

(
G(W1,W3)
G(W∗

1 ,W
∗
3 )

)
− p

(
W∗

2G(W1,−τ ,W3,−τ )
W2G(W∗

1 ,W
∗
3 )

)
+p

(
W∗

2G(W1,W3)
W2G(W∗

1 ,W
∗
3 )

))
.

(5.5)

Using the steady state equations (5.2), and (5.5), then (5.4) becomes

d
dtV1(W1,W2,W3)

=

∫
Ω

(
1− G(W ∗

1 ,W
∗
3 )

G(W1,W ∗
3 )

)(
d1∆W1 +G(W ∗

1 ,W
∗
3 ) + b1W

∗
1 −G(W1,W3)− b1W1

)
+

(
1− W∗

2

W2

)(
eb4τd2∆W2 +G(W1,W3)− W2

W∗
2
G(W ∗

1 ,W
∗
3 )

)
+ a2W

∗
2 k

(
1− W∗

3

W3

)(
W2

W∗
2
− W3

W∗
3

)
+G(W ∗

1 ,W
∗
3 )

(
p

(
G(W1,−τ ,W3,−τ )
G(W∗

1 ,W
∗
3 )

)
− p

(
G(W1,W3)
G(W∗

1 ,W
∗
3 )

)
− p

(
W∗

2G(W1,−τ ,W3,−τ )
W2G(W∗

1 ,W
∗
3 )

)
+ p

(
W∗

2G(W1,W3)
W2G(W∗

1 ,W
∗
3 )

))
dx.

(5.6)
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By a tedious calculations, (5.6) can be expressed as

d
dtV1(W1,W2,W3) =

∫
Ω

(
1− G(W ∗

1 ,W
∗
3 )

G(W1,W ∗
3 )

)
d1∆W1 +

(
1− W ∗

2

W2

)
eb4τd2∆W2dx

+

∫
Ω

[
b1W

∗
1

(
1− G(W ∗

1 ,W
∗
3 )

G(W1,W ∗
3 )

)(
1− W1

W ∗
1

)
+G(W ∗

1 ,W
∗
3 )

W3

W∗
3

(
G(W1,W3)
G(W1,W∗

3 ) − 1

)(
W∗

3

W3
− G(W1,W

∗
3 )

G(W1,W3)

)
−G(W ∗

1 ,W
∗
3 )

(
p

(
G(W∗

1 ,W
∗
3 )

G(W1,W∗
3 )

)
+ p

(
W∗

2

W2

g(W1,W3)
G(W∗

1 ,W
∗
3 )

)
+ p

(
W2

W∗
2

W∗
3

W3

)
+ p

(
W3

W∗
3

G(W1,W
∗
3 )

G(W1,W3)

))
+G(W ∗

1 ,W
∗
3 )

(
p

(
G(W1,−τ ,W3,−τ )
G(W∗

1 ,W
∗
3 )

)
− p

(
G(W1,W3)
G(W∗

1 ,W
∗
3 )

)
− p

(
W∗

2G(W1,−τ ,W3,−τ )
W2G(W∗

1 ,W
∗
3 )

)
+p

(
W∗

2G(W1,W3)
W2G(W∗

1 ,W
∗
3 )

))]
dx.

(5.7)
Next, we calculate the derivative of V2 along the solution of the model (1.3), that is

d
dtV2(W1,W2,W3) =

∫
Ω

G(W ∗
1 ,W

∗
3 )

(
p

(
G(W1,W3)

G(W ∗
1 ,W

∗
3 )

)
− p

(
G(W1,−τ ,W3,−τ

G(W ∗
1 ,W

∗
3 )

))
dx.

Then, V becomes

d
dtV (W1,W2,W3) =

∫
Ω

(
1− G(W ∗

1 ,W
∗
3 )

G(W1,W ∗
3 )

)
d1∆W1 +

(
1− W ∗

2

W2

)
eb4τd2∆W2dx

+

∫
Ω

[
b1W

∗
1

(
1− G(W ∗

1 ,W
∗
3

G(W1,W ∗
3 )

)(
1− W1

W ∗
1

)
+G(W ∗

1 ,W
∗
3 )

W3

W∗
3

(
G(W1,W3)
G(W1,W∗

3 ) − 1

)(
W∗

3

W3
− G(W1,W

∗
3 )

G(W1,W3)

)
−G(W ∗

1 ,W
∗
3 )

(
p

(
G(W∗

1 ,W
∗
3 )

G(W1,W∗
3 )

)
+ p

(
W2

W∗
2

W∗
3

W3

)
+ p

(
W3

W∗
3

G(W1,W
∗
3 )

G(W1,W3)

)
+p

(
W∗

2G(W1,−τ ,W3,−τ )
W2G(W∗

1 ,W
∗
3 )

))]
dx.

(5.8)

In the view of (H2), we deduce that

(
1− g(W∗

1 ,W
∗
3

g(W1,W∗
3 )

)(
1− W1

W∗
1

)
≤ 0. From (5.1), we deduce that

(
G(W1,W3)
G(W1,W∗

3 ) −

1

)(
W∗

3

W3
− G(W1,W

∗
3 )

G(W1,W3)

)
≤ 0 (for more details see [33], Thm. 1). Next, we apply the Green’s first identity, use the

Neumann boundary condition to simplify the first term in (5.8), and then

∫
Ω

(
1− G(W ∗

1 ,W
∗
3

G(W1,W ∗
3 )

)
d1∆W1 +

(
1− W ∗

2

W2

)
eb4τd2∆W2dx

=

∫
Ω

[
− d1∇

(
1− G(W ∗

1 ,W
∗
3

G(W1,W ∗
3 )

)
∇W1 − eb4τd2∇

(
1− W ∗

2

W2

)
∇W2

]
dx,

= −
∫
Ω

(
d1
∂1G(W1,W

∗
3 )G(W

∗
1 ,W

∗
3 )|∇W1|2

(G(W1,W ∗
3 ))

2
+ eb4τd2

W ∗
2 |∇W2|2

(W2)2

)
dx ≤ 0.
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The above estimates next to the definition of p, we get

d

dt
V (W1,W2,W3) ≤ 0, for all (W1,W2,W3) ∈ X0.

We let M be the largest invariant subset of

{
(W1,W2,W3) ∈ X0 : V ′(t) = 0

}
. Lasalle invariance principle [35]

implies that the ω − limit sets of solution are contained in M . Clearly, V ′(t) = 0 implies that

W1 =W ∗
1 ,

G(W ∗
1 ,W

∗
3 )

G(W1,W ∗
3 )

=
W2

W ∗
2

W ∗
3

W3
=
W3

W ∗
3

G(W1,W
∗
3 )

G(W1,W3)
=
W ∗

2G(W1,−τ ,W3,−τ )

W2G(W ∗
1 ,W

∗
3 )

= 1.

Substituting the above relations into the third equation of (1.3), we obtain

∂W3

∂t
=
W3

W ∗
3

(a2W
∗
2 − b3W

∗
3 ) = 0.

Hence W3 =W ∗
3 , and using W2

W∗
2

W∗
3

W3
= 1 we obtain that W2 =W ∗

2 . Therefore, M = {E∗}. Hence E∗ is globally

attractive in X0. The uniqueness of the PSS follows immediately from the global attractivity of E∗.

5.2. Spatially heterogeneous case

We now establish the global attractivity of the PSS in the case when all parameters are space dependent by
combining the method of Lyapunov functionals and Lasalle invariance principle. Indeed, we prove this result
when the susceptible tissues diffusion coefficient is zero (d1 = 0).

Theorem 5.3. Suppose that (H1)− (H4) hold. If R0 > 1, then the PSS E∗ = (W ∗
1 ,W

∗
2 ,W

∗
3 ) of (5.2) is unique

and globally attractive in X0.

Proof. We construct the following Lyapunov function as

V (W1,W2,W3) =

∫
Ω

W ∗
2

[
W1(t, x)−W ∗

1 (x) +

∫ W1(t,x)

W∗
1 (x)

G(x,W ∗
1 ,W

∗
3 )

G(x, θ,W ∗
3 )

dθ + eb4τW ∗
2 (x)p

(
W2(t, x)

W ∗
2

)
+k(x)W ∗

3 p

(
W3(t,x)
W∗

3

)
dx∫

Ω

G(x,W ∗
1 ,W

∗
3 )

∫ 0

−τ
p

(
G(x,W1(t− s, x),W3(t− s, x))

G(x,W ∗
1 ,W

∗
3 )

)
ds

]
dx,

with k(x) =
G(x,W∗

1 (x),W∗
3 (x))

a2(x)W∗
2 (x) . Clearly, V is well-defined. The derivative of V along the solution of (1.3) is given

by

d
dtV1(W1,W2,W3) =

∫
Ω

W ∗
2

[(
1− G(x,W ∗

1 ,W
∗
3 )

G(x,W1,W ∗
3 )

)(
a1 −G(x,W1,W3)− b1W1

)
+

(
1− W∗

2

W2

)(
eb4τd2∆W2 +G(x,W1,−τ ,W3,−τ )− eb4τ b2W2

)
+k

(
1− W∗

3

W3

)(
a2W2 − b3W3

)]
dx

+

∫
Ω

W ∗
2

[
G(x,W ∗

1 ,W
∗
3 )

(
p

(
G(x,W1,W3)

G(x,W ∗
1 ,W

∗
3 )

)
− p

(
G(x,W1,−τ ,W3,−τ )

G(x,W ∗
1 ,W

∗
3 )

))]
dx.
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Using the steady state equations (6.1), and performing similar calculation to the homogeneous case, we obtain

d
dtV (W1,W2,W3) =

∫
Ω

W ∗
2

[(
1− W ∗

2

W2

)
eb4τd2∆W2 +

(
1− W2

W ∗
2

)
eb4τd2∆W

∗
2

]
dx

+

∫
Ω

W ∗
2

[
b1W

∗
1

(
1− G(W ∗

1 ,W
∗
3 )

G(W1,W ∗
3 )

)(
1− W1

W ∗
1

)
+G(W ∗

1 ,W
∗
3 )

W3

W∗
3

(
G(W1,W3)
G(W1,W∗

3 ) − 1

)(
W∗

3

W3
− G(W1,W

∗
3 )

G(W1,W3)

)
−G(W ∗

1 ,W
∗
3 )

(
p

(
G(W∗

1 ,W
∗
3 )

G(W1,W∗
3 )

)
+ p

(
W2

W∗
2

W∗
3

W3

)
+ p

(
W3

W∗
3

G(W1,W
∗
3 )

G(W1,W3)

)
+p

(
W∗

2G(W1,−τ ,W3,−τ )
W2G(W∗

1 ,W
∗
3 )

))]
dx.

(5.9)

Now, we simplify the first term (5.9). By applying Green’s first identity, and the Neumann boundary condition,
we obtain ∫

Ω

W ∗
2

(
1− W ∗

2

W2

)
eb4τd2∆W2dx+W ∗

2

(
1− W2

W ∗
2

)
eb4τd2∆W

∗
2 dx

= eb4τd2

∫
Ω

W ∗
2

(
−∇

(
W ∗

2 − (W ∗
2 )

2

W2

)
∇W2 −∇(W ∗

2 −W2)∇W ∗
2

)
dx,

= −eb4τd2

∫
Ω

Σni=1

(
W ∗

3

W3

∂W3

∂xi
− ∂W ∗

3

∂xi

)
dx ≤ 0.

Therefore, d
dtV ≤ 0, and equality holds if and only if W1 = W ∗

1 , W2 = W ∗
2 , W3 = W ∗

3 . Therefore, M = {E∗}.
Hence E∗ is globally attractive in X0. The global attractivity of E∗ implies the uniqueness of the PSS.

Remark 5.4. Notice that the global attractiveness of the PSS is done only in the case d1 = 0 and d2 ̸= 0.
However, if d1 ̸= 0 and d2 = 0, we couldn’t construct a Lyapunov function even in the case of the bilinear
incidence.

6. Asymptotic profiles

In this section, we investigate the asymptotic profile of PSS. From Theorem 4.1, the system (5.2) has at least
one positive steady state for R0 > 1, but no information has been provided on the uniqueness of this steady
state. Indeed, in the spatially homogeneous case, the uniqueness of PSS is shown using the global attraction
of E∗ and by employing Lyapunov function and Lasalle invariance principle, similar result is proved for the
heterogeneous case with d2 ̸= 0, d1 = 0. The asymptotic profiles of PSS when one or both dispersal rates goes
to infinity or zero is the subject of interest in this section. Also, to generalize the results established in [11].
However, due to the nonlinearity of the incidence function, we are required to consider additional assumption
on the nonlinear incidence to establish the asymptotic profile of PSS, that is

(H4) Suppose that G(x,x1,y1)
G(x,x1,y2)

, x ∈ Ω, x1, y1, y2 > 0 is independent of x1.

Notice that (H4) implies that there exists f, g ∈ C1(Ω̄ × R+,R+), such that for all x ∈ Ω̄, x1, y1 > 0, we

have G(x, x1, y1) = f(x, x1)g(x, y1). From (H2), we get ∂2f(x, x1) =
∂f(x1)
∂x1

> 0, and ∂2g(x, y1) =
∂g(x,y1)
∂y1

> 0

for all x ∈ Ω̄, x1, y1 > 0. By (H3), we have g(x, y) ≤ ∂2g(x, 0)y for all x ∈ Ω̄, y > 0, and g is a concave function
with respect to the second variable.
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From the third equation of the system (4.4), we haveW3 = a2W2

b3
. Then, the PSS satisfies the following system

0 = d1∆W1 + a1 − f(x,W1)g

(
x, a2b3W2

)
− b1W1, x ∈ Ω,

0 = d2∆W2 + e−b4τf(x,W1)g

(
x, a2b3W2

)
− b2W2, x ∈ Ω,

∂W1

∂n = ∂W2

∂n = 0, x ∈ ∂Ω.

(6.1)

Motivated by [11, 19], for any d > 0 and m ∈ C, we let λ1(d,m) be the principal eigenvalue of the problem{
d∆ψ +mψ = λψ, x ∈ Ω,
∂ψ
∂n = 0.

(6.2)

λ1(d,m) depends continuously on d and m, and satisfies

λ1(d,m) = sup
ψ∈H2(Ω), ψ ̸=0

{∫
Ω

(−d|∇ψ|2 +mψ2)dx, with

∫
Ω

ψ2 = 1

}
. (6.3)

Clearly, λ1(d,m) is decreasing in d, and by Lemma 2.5, we have λ1(d,m) → m as d→ 0, and λ1(d,m) →
∫
Ω

hdx

as d→ +∞. Moreover, λ1(d,m) is increasing in m, with λ1(d,m1) > λ1(d,m2) if m1 ≥ m2, and m1(x) > m2(x)
for some x ∈ Ω̄, with mi ∈ C, i = 1, 2.

6.1. Profile as d1 → +∞
In this subsection, we treat d1 as independent parameter in (0,+∞). We denote

λ∗1 = λ1

(
d2, f

(
x,

∫
Ω
a1dx∫

Ω
b1dx

)
e−b4τ∂2g(x, 0)

a2
b3

− b2

)
.

Lemma 6.1. λ1 → λ∗1, as d1 → +∞, with (λ1, ϕ1(x)) is principal eigenpaire of (2.38). Moreover, R0 → R∗
0,

as d1 → +∞, and satisfies λ∗1 > 0 if and only if R∗
0 > 1.

Furthermore, R∗
0 can be expressed in the following variational form

R∗
0 = sup

ϕ∈H1(Ω),ϕ̸=0

∫
Ω

e−b4τf

(
x,

∫
Ω
a1dx∫

Ω
b1dx

)
a2
b3
∂2g(x, 0)ϕ

2dx∫
Ω

(d2|∇ϕ|2 + b2ϕ
2)dx

. (6.4)

Proof. Notice that V (x) satisfy (2.28). We define the sequence {d1,n} such that d1,n → +∞ as n → +∞, and
Vn is the corresponding solution of (2.28), and (λ1,n, ϕ1,n(x)) is the corresponding principal eigenpaire of (2.38).
We divide both sides of (2.28) over d1,n, we obtain{

∆Vn + a1
d1,n

− b1
d1,n

Vn = 0, x ∈ Ω,
∂Vn

∂n = 0, x ∈ ∂Ω.
(6.5)

Letting n → +∞, and by the elliptic regularity, we obtain that ∆V ∗ = 0, hence V ∗ is constant. Then, we

integrate both sides of (2.28), and we get V ∗ =
∫
Ω
a1dx∫

Ω
b1dx

.
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Letting n → +∞ for (2.38), we obtain that (λ1,n, ϕ1,n(x)) → (λ∗1, ϕ
∗
1(x)). Using (H5), and the value of V ∗,

we obtain that the principal eigenpaire (λ∗1, ϕ
∗
1(x)) satisfy d2∆ψ − b2ψ + a2

b3
e−b4τf

(
x,

∫
Ω
a1dx∫

Ω
b1dx

)
∂2g(x, 0)ψ = λψ, x ∈ Ω̄,

∂ψ
∂n = 0, x ∈ Ω̄.

(6.6)

For the second part of the lemma, again, we let a sequence {d1,n} that satisfy d1,n → +∞ as n→ +∞, where
Vn and (R0,n, ϕn(x)) satisfy ∆Vn + a1

d1,n
− b1

d1,n
Vn = 0, x ∈ Ω,

d2∆ϕn − b2ϕn + 1
R0,n

a2
b3
e−b4τf(x, Vn)∂2g(x, 0)ϕn = 0, x ∈ Ω,

with Neumann boundary condition. Letting n tends to +∞, then we get Vn → V ∗ and R0,n → R∗
0, with R

∗
0 is

defined by the variational form (6.4). From Lemma 2.6, we deduce that R∗
0 − 1 has the same sign as λ∗1. Hence,

we deduce the result.

Next, we prove the main result of this subsection through the following theorem

Theorem 6.2. Assume that R∗
0 > 1, and (H1)− (H4) holds. Then, for any fixed d2 > 0 there exists a sequence

{d1,n} that verify d1,n → +∞ as n → +∞, such that the corresponding PSS (W1,n,W2,n) of (6.1) satisfy
(W1,n,W2,n) → (W ∗

1 ,W
∗
2 ) in C, where (W ∗

1 ,W
∗
2 ) is unique, and W ∗

1 is constant.

Proof. The existence of of PSS can be deduced from Theorem 4.1. It remains to show the convergence of
(W1,n,W2,n) as n→ +∞. By the first equation of (6.1), one has

−d1∆W1 ≤ a1 − b1W1,

with Neumann boundary condition. Hence, the maximum principle implies that ||W1|| ≤ a1
b1

for all d1 > 0. Next,

we integrate both sides of the two equations of (6.1), and we multiply both sides of the first resulting equation
by e−b4τ , then, we add the resulting equations, we obtain∫

Ω

b2W2dx = e−b4τ
∫
Ω

(a1 − b1W1)dx ≤ a1|Ω|.

Therefore, ||W2||1 ≤ a1|Ω|
b2

. Next, for any p > 0, and by the second equation of (6.1), the uniform boundedness

of W1, and the assumptions (H1)− (H3), the elliptic estimate, and bootstrapping argument, there exists C > 0
such that

||W2||2,p ≤ C, for all d1 > 0. (6.7)

Fixing p > n, by the boundedness of W1 in C, and W2 in W 2,p(Ω), there exists a sequence {d1,n}, with
d1,n → +∞ such that the corresponding solution (W1,n,W2,n) of (6.1) satisfy W1,n → W ∗

1 weakly in Lp(Ω),
andW2,n →W ∗

2 weakly inW 2,p(Ω) and by the embedding theorem ofW 2,p(Ω) in C, we deduce thatW2,n →W ∗
2

strongly in C as n → +∞, for some positive W ∗
1 in Lp(Ω), and nonnegative W ∗

2 in W 2,p(Ω) as n → ∞. We
divide both sides of the first equation of (6.1) over d1,n, and we obtain

∆W1,n +
a1
d1,n

−
f(x,W1)g

(
x, a2b3W2

)
d1,n

− b1
d1,n

W1 = 0, x ∈ Ω,
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with Neumann boundary condition. Letting n→ ∞, and by the elliptic regularity, and the assumptions (H1)−
(H3), we get ∆W ∗

1 = 0, thus W ∗
1 is constant. We integrate both sides of the first equation of (6.1), and we

obtain

F (W ∗
1 ,W

∗
2 (x)) = 0, (6.8)

with

F (W ∗
1 ,W

∗
2 (x)) =

∫
Ω

a1dx−
∫
Ω

f(x,W ∗
1 )g

(
x,
a2
b3
W ∗

2

)
dx−W ∗

1

∫
Ω

b1dx.

We consider the equation F (l,W ∗
2 (x)) = 0, with a fixed function W ∗

2 (x). We show that F (l,W ∗
2 (x)) = 0 has

a unique positive solution denoted l∗. Clearly, F is strictly decreasing in l, and F (0,W ∗
2 (x)) =

∫
Ω

a1dx, and

liml→+∞ F (l,W ∗
2 (x)) = −∞. Therefore, F (l,W ∗

2 (x)) = 0 has a unique positive solution in [0,+∞) denotedW ∗
1 .

Obviously, there exists a positive function denoted h1 : C(Ω̄) → R, such that W ∗
1 = h1(W

∗
2 (x)).

Now, we claim that h1(ϕ) is decreasing in ϕ ∈ C, that is, for all ϕ1, ϕ2 ∈ C satisfying ϕ1(x) ≤ ϕ2(x) for all
x ∈ Ω̄ and ϕ1(x) < ϕ2(x) for some x ∈ Ω̄, we have h1(ϕ1(x)) ≥ h1(ϕ2(x)). We show this claim by contradiction,
and we suppose that h1 is non-decreasing in W ∗

2 (x), that is, for all ϕ1, ϕ2 ∈ C satisfying ϕ1(x) ≤ ϕ2(x) for all
x ∈ Ω̄ and ϕ1(x) < ϕ2(x) for some x ∈ Ω̄ we have h1(ϕ1(x)) ≥ h1(ϕ2(x)), and we let the constants W 1

1 ,W
2
1 that

satisfy W 1
1 = h1(ϕ1(x)), and W

2
1 = h1(ϕ2(x)), respectively. Notice that by the assumption put on h1, we have

W 1
1 ≥W 2

1 . Therefore, they satisfy the equations{
F (W 1

1 , ϕ1(x)) = 0,

F (W 2
1 , ϕ2(x)) = 0.

(6.9)

Subtracting the two equations of (6.9), and we obtain∫
Ω

[
f(x,W 2

1 )g

(
x,
a2
b3
ϕ2

)
− f(x,W 1

1 )g

(
x,
a2
b3
ϕ1

)]
dx = (W 1

1 −W 2
1 )

∫
Ω

b1dx. (6.10)

The monotonicity of f with respect to the second variable gives f(x,W 2
1 ) ≥ f(x,W 1

1 ). We substitute this result
into (6.10), we obtain

0 >

∫
Ω

f(x,W 1
1 )

[
g

(
x,
a2
b3
ϕ2

)
− g

(
x,
a2
b3
ϕ1

)]
dx ≥ (W 1

1 −W 2
1 )

∫
Ω

b1dx ≥ 0, (6.11)

which is a contradiction with the monotonicity of g. Then, h1 is decreasing in W ∗
2 (x).

By the monotonicity of f with respect to the second parameter, we deduce that f(x, h1(y)) is also decreasing
in y, y ∈ C. For simplicity, we let H1(x, y) defined by

H1(x, y) = f(x, h1(y)),

which is decreasing in y, x ∈ Ω̄, y ∈ C. By the definition of H1, and the second equation of (6.1), W ∗
2 is the

solution of the following problem d2∆U + e−b4τH1(x, U)g

(
x, a2b3 U

)
− b2U = 0, x ∈ Ω,

∂U
∂n = 0, x ∈ ∂Ω.

(6.12)
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Now, for R0 > 1, we claim that (6.12) has a unique positive solution. We prove this claim by constructing
an upper and lower solution of (6.12). We denote

Q(u) = d2∆u+H1(x, u)g

(
x,
a2
b3
u

)
− b2u.

We let ũ = εϕ∗1 with ε > 0 sufficiently small. Then, we have

Q(ũ) = εd2∆ϕ
∗
1 + e−b4τH1(x, εϕ

∗
1)g

(
x, a2b3 εϕ

∗
1

)
− b2εϕ

∗
1,

= ε

(
d2∆ϕ

∗
1 +

e−b4τH1(x,εϕ
∗
1)g

(
x,

a2
b3
εϕ∗

1

)
ε − b2ϕ

∗
1

)
.

By Lemma 6.1, we have

Q(ũ) = ε

[
λ∗1 + e−b4τ

(
H1(x,εϕ

∗
1)g

(
x,

a2
b3
εϕ∗

1

)
εϕ∗

1
− a2

b3
f

(
x,

∫
Ω
a1dx∫

Ω
b1dx

)
∂2g(x, 0)

)]
ϕ∗1.

Notice that H1(x, εϕ
∗
1) → f

(
x,

∫
Ω
a1dx∫

Ω
b1dx

)
, and

g
(
x,

a2
b3
εϕ∗

1

)
εϕ∗

1
→ a2

b3
∂2g(x, 0) as ε→ 0. Since H(x, y) and

g
(
x,y

)
y are

both decreasing in y, for all y > 0, we deduce that H1(x, εϕ
∗
1)
g
(
x,

a2
b3
εϕ∗

1

)
εϕ∗

1
− a2

b3
f

( ∫
Ω
a1dx∫

Ω
b1dx

)
∂2g(x, 0) < 0 if ε > 0

sufficiently small. Moreover, for R0 > 1 (more precisely R∗
0 > 1) we have λ∗ > 0 (Lem. 6.1), then Q(ũ) > 0

if ε > 0 is small. Thus, ũ is a lower solution of (6.12) if ε is small. Next, we let Û = A, with A is a positive
constant. Then, by (H3), and the fact that H(A) < H(0), we obtain

Q(Û) ≤
[
H1(x,A)

a2
b3

e−b4τf

(
x,

∫
Ω
a1dx∫

Ω
b1dx

)
∂2g(x, 0)− b1

]
A.

By the definition of H1, we have limA→∞H1(x,A) = 0 for all x ∈ Ω̄, then, there exists a positive constant A > 0
sufficiently large such that Q(Û) < 0. Hence, Û is an upper solution of (6.12). Thus, the upper-lower solution
method implies that (6.12) has at least one positive solution.

Next, we show the uniqueness of the solution for (6.12). We suppose by contradiction that (6.12) has two
positive solutions U1, U2, we choose ε sufficiently small, and A sufficiently large such that Ui ∈ [ũ, Û ], i = 1, 2.
The lower-upper solution method implies the existence of a minimal solution Um, and maximal solution UM ,
such that ũ ≤ Um ≤ U1, U2 ≤ UM ≤ Û . We multiply both sides of (6.12) with U = Um by UM , and both sides
of (6.12) with U = UM by Um, and subtracting the resulting equations, and we integrate both sides of the
obtained equation on Ω we get

∫
Ω

a2
b3
UmUM

[
H1(x, Um)

g
(
x, a2b3 Um

)
a2
b3
Um

−H1(x, UM )
g
(
x, a2b3 UM

)
a2
b3
UM

]
dx = 0.

By (H4), we have g(x,y)
y is non-increasing in y, y ∈ C, with g(x,y1)

y1
> g(x,y2)

y2
if y1 ≤ y2, and y1(x) < y2(x) for

some x ∈ Ω̄, and yi, i = 1, 2 ∈ C. The monotonicity of H1(x, y), and
g(x,y)
y with respect to y, for all x ∈ Ω̄,

which implies that Um = UM as UM ≥ Um, thus, (6.12) has a unique positive solution denoted W ∗
2 . The proof

is completed.
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6.2. Profile as d2 → +∞
Here, we consider d1 as independent parameter in (0,+∞). We define h2 : R+ → R+, with h2(y) =∫

Ω

f(x, y)dx, y > 0, since ∂2f(x, y) > 0 for all x ∈ Ω̄, y > 0, then h2 is invertible, and its inverse is denoted

h−1
2 .

Theorem 6.3. Assume that R−
0 > 1, and (H1) − (H5), holds, and

f(x,y)
y is non-increasing in y, x ∈ Ω̄, and

y > 0. Then, for any fixed d1 > 0, there exists a sequence {d2,n} satisfy d2,n → +∞ as n→ +∞ such that the
PSS (W1,n,W2,n) of (6.1) verify (W1,n,W2,n) → (W ∗

1 ,W
∗
2 ) in C, with W

∗
2 is a constant and satisfying

W ∗
2 = e−b4τ

∫
Ω

a1dx−
∫
Ω

b1W
∗
1 dx∫

Ω

b2dx

,

and W ∗
1 is the unique positive solution of the problem

{
d1∆U + a1 − f(x, U)g

(
x, a2b3 e

−b4τ
∫
Ω
a1dx−

∫
Ω
b1Udx∫

Ω
b2dx

)
− b1U = 0, x ∈ Ω,

∂U
∂n = 0, x ∈ ∂Ω.

(6.13)

Proof. Theorem 4.1 implies the existence of PSS. Then, we check the convergence of (W1,n,W2,n) as n→ +∞.
By the first equation of (6.1), and performing similar reasoning to the proof of Theorem 6.2, we obtain that
{W1}d2>0 is uniformly bounded in C, and {W2}d2>0 is uniformly bounded in W 2,p(Ω). (H1) − (H5) and the
elliptic estimate implies that (W1,n,W2,n) the solution of (6.1) satisfies (W1,n,W2,n) → (W ∗

1 ,W
∗
2 ) weakly in

W 2,p(Ω)×W 2,p(Ω) as n→ +∞. By the second equation of (6.1), we obtain that ∆W ∗
2 = 0, which means W ∗

2

is constant. By integrating both sides of the second equation of (6.1), we obtain

e−b4τ
∫
Ω

f(x,W ∗
1 )g

(
x,
a2
b3
W ∗

2

)
dx−W ∗

2

∫
Ω

b2dx = 0. (6.14)

Then, two cases appear

(i) W ∗
2 = 0 and e−b4τ

∫
Ω
f(x,W ∗

1 )
a2
b3
∂2g(x, 0)dx−

∫
Ω
b2dx ̸= 0;

(ii) W ∗
2 ̸= 0 and e−b4τ

∫
Ω
f(x,W ∗

1 )
g
(
x,

a2
b3
W∗

2

)
W∗

2
dx−

∫
Ω
b2dx = 0.

For (i), we let W̃2,n =
W2,n

∥W2,n∥ . Notice that as n → +∞, W2,n → 0, and the definition of the derivative (and

(H1)) gives limy→0
G(x,ay)

y = a∂2g(x, 0) for all x ∈ Ω̄. Then, W̃2,n satisfy

d2,n∆W̃2,n + e−b4τf(x,W1,n)
g
(
x, a2b3W2,n

)
∥W2,n∥

− b2W̃2,n = 0, (6.15)

with Neumann boundary condition. By a similar reasoning as above we have W̃2,n → 1 as n→ +∞. Integrating
the two sides of (6.15), we obtain e−b4τ

∫
Ω
f(x,W ∗

1 )
a2
b3
∂2g(x, 0)dx−

∫
Ω
b2dx = 0, which is a contradiction.
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For (ii), W ∗
1 and W ∗

2 satisfy
d1∆W

∗
1 + a1 − f(x,W ∗

1 )g(x,
a2
b3
W ∗

2 )− b1W
∗
1 = 0, x ∈ Ω,

e−b4τ
∫
Ω

f(x,W ∗
1 )
g(x, a2b3W

∗
2 )

W ∗
2

dx−
∫
Ω

b2dx = 0,

∂W∗
1

∂n = 0, x ∈ ∂Ω.

(6.16)

Integrating both sides of the first equation of (6.16) on Ω, we obtain∫
Ω

a1dx−W ∗
2

∫
Ω

f(x,W ∗
1 )
g(x, a2b3W

∗
2 )

W ∗
2

dx−
∫
Ω

b1W
∗
1 dx = 0.

Using the second equation of (6.16), we obtain∫
Ω

a1dx− eb4τW ∗
2

∫
Ω

b2dx−
∫
Ω

b1W
∗
1 dx = 0.

Hence,

W ∗
2 = e−b4τ

∫
Ω

a1dx−
∫
Ω

b1W
∗
1 dx∫

Ω

b2dx

.

Substituting this result into the first equation of (6.16), we get (6.13). It remains to show the existence and the
uniqueness of the solution for (6.13). By similar reasoning to the proof of Theorem 6.2, we can define the lower
solution ũ = ε with ε > 0 is a small constant, and Û = A, with A > 0 is a sufficiently large constant. Then, we
guarantee the existence of at least one positive solution of (6.13). For uniqueness, we assume by contradiction
that (6.16) has two positive solutions U1, U2, and the existence of a minimal solution Um, and maximal solution
UM , such that ũ ≤ Um ≤ U1, U2 ≤ UM ≤ Û . We multiply both sides of (6.13) with U = Um by UM , and both
sides of (6.13) with U = UM by Um, and subtracting the resulting equations, and we integrate both sides of the
obtained equation. Then, we have∫

Ω

UmUM

(
f(x, UM )

UM
g

(
x,
a2
b3

e−b4τ
∫
Ω
a1dx−

∫
Ω
b1UMdx∫

Ω
b2dx

)
− f(x, Um)

Um
g

(
x,
a2
b3

e−b4τ
∫
Ω
a1dx−

∫
Ω
b1Umdx∫

Ω
b2dx

))
dx

+

∫
Ω

a1(Um − UM )dx = 0,

By (H3), we have g
(
x, a2b3 e

−b4τ
∫
Ω
a1dx−

∫
Ω
b1ydx∫

Ω
b2dx

)
is decreasing in y, with g(x, y1) > g(x, y2) if y1 ≤ y2, and

y1(x) < y2(x) for some x ∈ Ω̄, and yi, i = 1, 2 ∈ C, and, since that f(x,y)
y is non-increasing in y, x ∈ Ω̄, and

y > 0, we deduce that that Um = UM as UM ≥ Um.

6.3. Profile as d1, d2 → +∞
Here, we treat both d1, d2 as independent parameters in (0,+∞). We let

R∗∗
0 =

∫
Ω
a2e

−b4τ

b3
f
(
x,

∫
Ω
a1dx∫

Ω
b1dx

)
∂2g(x, 0)dx∫

Ω
b2dx
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By similar prove to Lemma 6.1, and Lemma 2.5, we have the following result

Lemma 6.4. R0 → R∗∗
0 , as d1, d2 → +∞.

Then we have the principal result of this subsection

Theorem 6.5. Assume that R∗∗
0 > 1. Then there exists sequences {d1,n}, {d2,n} that satisfy d1,n → +∞,

and d1,n → +∞ as n → +∞, such that the corresponding PSS (W1,n,W2,n) of (6.1) satisfy (W1,n,W2,n) →
(W ∗

1 ,W
∗
2 ) in C, with W

∗
1 ,W

∗
2 is unique and both are constants, and satisfy W ∗

1 = h1(W
∗
2 ),

e−b4τ
∫
Ω
a2
b3
H1(x,W

∗
2 )

g
(
x,

a2
b3
W∗

2

)
a2
b3
W∗

2
dx−

∫
Ω
b2dx = 0.

(6.17)

Proof. We check the convergence of (W1,n,W2,n) as n → +∞. By a routine calculation as in the proof of
Theorem 4.1, and we get the uniform the boundedness of W1 in C and W2 in W 2,p(Ω) for all d1 > 0 and d2 > 0.
The elliptic estimate implies that (W1,n,W2,n) → (W ∗

1 ,W
∗
2 ) weakly in W 2,p(Ω)×W 2,p(Ω) as n→ +∞. By the

equations of (6.1), we have ∆W ∗
1 = 0, and ∆W ∗

2 = 0, hence, both W ∗
1 and W ∗

1 are constant. We integrate both
sides of the two equation of (6.1), we get W ∗

1 = h1(W
∗
2 ),

e−b4τ
∫
Ω
a2
b3
H1(x,W

∗
2 )

g
(
x,

a2
b3
W∗

2

)
a2
b3
W∗

2
dx−

∫
Ω
b2dx = 0.

(6.18)

We define H3 : R+ → R+, by

H3(y) = e−b4τ
∫
Ω

a2
b3
H1(x, y)

g
(
x, a2b3 y

)
a2
b3
y

dx−
∫
Ω

b2dx.

Clearly, limy→0H3(y) = R∗∗
0 − 1 > 0, and limy→+∞H3(y) = −

∫
Ω
b2dx < 0. Note that the second limit is

obtained from the fact that g(x,y)
y is bounded for all x ∈ Ω̄ and y > 0, and H1(x, y) is decreasing in y for all

x ∈ Ω̄, and satisfy H1(x, y) → 0 as y → 0 for all x ∈ Ω̄. Since H1 is decreasing with respect to the second

variable, and g(x,y)
y is also decreasing in the second variable, we obtain that H ′

3(y) < 0, then H3(y) = 0 has a
unique positive solution W ∗

2 , which guarantee the existence and the uniqueness of PSS as d1, d2 → +∞. The
proof is completed.

6.4. Profile as d1 → 0

In this subsection, we consider that d1 is an independent parameter in (0,+∞), and investigate the asymptotic
profile of PSS as d1 → 0. The result of this subsection generalizes the obtained result in [11], Lemme 4.1, and
Theorem 4.2. We define h2 : Ω× C(Ω) → R+ by

h2(x, y) :=
a1(x)− b1(x)y

f(x, y)
,

by (H2), we have h2(x, y) is decreasing in y, y ∈ C, with h2(x, y1) ≤ h2(x, y2) for all x ∈ Ω̄, if y1 ≥
y2, and y1(x) > y2(x) for some x ∈ Ω̄, and yi, i = 1, 2 ∈ C. Clearly, the equation h2(x, y) = z has a unique
positive solution for all z > 0, and x ∈ Ω̄, which we will refer this solution by h−1

2 (x, z).
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We let

R̃∗
0 = sup

ϕ∈H1(Ω),ϕ ̸=0

∫
Ω

e−b4τf

(
x,
a1
b1

)
a2
b3
∂2g(x, 0)ϕ

2dx∫
Ω

(d2|∇ϕ|2 + b2ϕ
2)dx

, (6.19)

and

λ∗∗1 := λ1

(
d2, f

(
x,
a1
b1

)
e−b4τ∂2g(x, 0)

a2
b3

− b2

)
.

By similar reasoning to the proof of Lemma 2.5, we obtain for d1 → 0, λ1 → λ∗∗1 , and R0 → R̃∗
0. We let ϕ∗∗1

is the corresponding eigenfunction to the eigenvalue λ∗∗1 .

Theorem 6.6. Assume that R̃∗
0 > 1, and (H1) − (H5) holds. Then, for any fixed d2 > 0, there exists a

sequence {d1,n} that satisfy d1,n → 0, as n → +∞, such that the corresponding PSS (W1,n,W2,n) of (6.1)
satisfy (W1,n,W2,n) → (W ∗

1 ,W
∗
2 ) in C, with W

∗
1 satisfy

W ∗
1 = h−1

2 (x, g(x,
a2
b3
W ∗

2 )), (6.20)

and W ∗
2 is the unique positive solution of the following nonlinear problem d2∆u+ f

(
x, h−1

2 (x, g(x, a2b3 u))

)
g

(
x, a2b3 u

)
− b2u = 0, x ∈ Ω,

∂u
∂n = 0, x ∈ ∂Ω.

(6.21)

Proof. Notice that V is the solution of (2.28), and satisfy V → a1
b1

as d1 → 0. We investigate the convergence of
(W1,n,W2,n) as n→ +∞. From the proof of Theorem 6.2, we have the uniform the boundedness ofW1 in C and
the uniform boundeness of W2 in W 2,p(Ω) for all d1 > 0 and d2 > 0. Therefore, W1,n → W ∗

1 weakly in Lp(Ω),
and W2,n → W ∗

2 weakly in W 2,p(Ω) and by the embedding theorem of W 2,p(Ω) in C, we have W2,n → W ∗
2

strongly in C as n→ +∞, for some positive W ∗
1 in Lp(Ω), and nonnegative W ∗

2 in W 2,p(Ω) as n→ ∞, where
Wi, i = 1, 2 satisfy

a1 − f(x,W ∗
1 )g

(
x,
a2
b3
W ∗

2

)
− b1W

∗
1 = 0. (6.22)

Hence, (6.22) can be rewritten as

W ∗
1 = h−1

2 (x, g(x,
a2
b3
W ∗

2 )). (6.23)

We let yi, i = 1, 2 such that y1 ≥ y2, and y1(x) > y2(x) for some x ∈ Ω̄, and yi, i = 1, 2 ∈ C. Hence, the
monoticity of g implies that h−1

2 (x, g(x, y1)) ≤ h−1
2 (x, g(x, y2)), hence h

−1
2 (x, g(x, y)) is decreasing in y. By

(6.23), and the second equation of (6.1), we have W ∗
2 is the nonnegative solution of (6.21). Now, we show that

for R0 > 1, the problem (6.21) has a unique positive solution W ∗
2 . As in the proof of Theorem 6.2, we construct

an upper and lower solution for (6.21). Notice that as d1 → 0, we have λ1 → λ∗∗1 , and R0 → R̃∗
0, as d1 → 0.

By letting ũ = εϕ∗∗1 with ε sufficiently small constant , we get that ũ is a lower solution for (6.21), and we put
Û = A, with A is sufficiently large constant, we obtain that Û = A is an upper solution for (6.21). Therefore,
we guarantee the existence of solution for (6.21). By performing a similar reasoning in the last part of the proof



42 S. DJILALI

Figure 1. The dynamics of the solution for d2 = 0, and the global stability of the positive
steady state.

of Theorem 6.2, we deduce that the solution of (6.21) is unique. Therefore, for R̃∗
0 > 1 the problem (6.21) has

a unique positive solution.

7. Numerical simulation

In this section, we utilize the numerical simulations to validate the theoretical findings and provide the
proprieties of the basic reproduction number. Moreover, we determine the effect of the distinct diffusion coef-
ficient on the temporal behavior of the solution. Motivated by [1], We consider that the spatial domain Ω is
one-dimensional interval Ω = [0mm, 2mm], and we let b1(x) = 0.02 day−1, a1(x) = 10 day−1mm−3, and we
suppose that b2, b3, a2 are space dependent and notice that these coefficients have the same unit as b1, and
expressed as a2(x) = 24(1 − 0.5x), b2(x) = 0.24(1 + x), and b3(x) = 2.4(1 + x). Moreover, we consider that
the nonlinear incidence function takes the bilinear form, that is G(x,W1,W3) = β(x)W1W3, with β is a C1(Ω̄)
function is the transmission rate. In this section, we vary β, and the dispersal rates d1, d2 to distinguish the
effect of the transmission rate on the pathogen distribution and verify the theoretical results. From Lemma 2.5,
R0 is a decreasing function of d2, where the maximum value can be reached for d2 = 0, then, by the same lemma
we have R+

0 = limt→0+ R0. However, the lowest value can be reached when d2 tends to +∞, and by Lemma 2.5,
we have R−

0 = limd2→+∞R0. In the followed numerical simulations, we choose value of d1 and β in such a way
R0 is larger than one for d2 = 0 and less than one as d2 → +∞.

For a further understanding the asymptotic profile of the positive steady state as d2 → 0, we consider a small
diffusion rate d2 = 0.0001mm2day−1. In Figure 3, it is obtained that the positive steady state is stable (which is
the result of the numerical results only), and the concentration of the pathogen particles is focused in a specific
region which is referred to as a high-risk region. Hence, the intervention can be limited to this region only.
Now, we fix d1 = 0.02 mm2 day−1, and β = 2.4 × 10−4 mm3 day−1. Therefore, the highest value of the basic
reproduction number can be obtained for d2 = 0mm2 day−1 (see Fig. 1) where in this case R0 = R+

0 = 5 > 1 (R+
0
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Figure 2. The dynamics of the solution for d2 = 0.4, and the global stability of the pathogen
free steady state.
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Figure 3. The asymptotic profile of the positive steady state as d2 → 0.

is defined in Lem. 2.5). The numerical findings show that the positive steady state is globally asymptotically
stable, however, in our mathematical analysis we proved the attraction for some particular cases, namely,
homogeneous case, and d1 = 0, d2 > 0. Notice that Figure 1B shows the profile positive steady state, where two
principal regions can be distinguished, the first is the highly-risked region, which represents the favorites sites
for pathogen reproduction, and the lowly-risked region, which represents the regions with a small concentration
of pathogen particles. Therefore, the efforts must focus on the high-risk region to reduce the concentration of the
pathogen particles instead of the overall domain. Moreover, as d2 → +∞ we obtain that R0 → R−

0 = 0.0166 < 1,
hence there exists d∗0 > 0 such that at d2 = d∗2 ≈ 0.37, R0− 1 switch signs. However, for d2 = 0.4 < d∗2, we obtain
that R0 < 1, and by Theorem 3.4 we deduce that the PFSS is globally asymptotically stable.

For a further understanding the asymptotic profile of the positive steady state as d2 → 0, we consider a small
diffusion rate d2 = 0.0001mm2day−1. In Figure 3, we obtained that the positive steady state is stable (which is
the result of the numerical results only), and the concentration of the pathogen particles is focused in a specific
region which is referred by a high-risk region, and hence the intervention can be limited in this region only.
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8. Conclusion

In this paper, we investigated a global dynamics and profiles of a delayed reaction-diffusion host–pathogen
system. In addition to the existence of the solution, we proved that the semiflow Ψ(t) has a global attractor by
applying [12], Theorem 2.4.6. The basic reproduction number R0 is identified with its threshold role, if R0 ≤ 1
the PFSS is globally asymptotical stable, and for R0 > 1 the semiflow Ψ(t) is strongly uniformly persistent, and
there exists at least one positive steady state, which it is confirmed using numerical simulations Figure 2.

The main purpose of this study is the investigate the asymptotic profile of the PSS as the dispersal rates
tend to zero or infinity in the case of a generalized incidence function G(s, x1, x2). Notice that this study is a
generalization of the findings [11]. In this research, we investigated the large diffusion rates (means d1 → +∞,
or d2 → +∞ or d1, d2 → +∞). However, due to the nonlinearity of the incidence function, we couldn’t provide
information on the asymptotic profile as d2 → 0. The asymptotic profile of the PSS is very important to show
the feverous sites of reproduction of the pathogen particles, as is shown in the numerical simulation (Fig. 3).
As in [19], we can define the high-risk, low-risk regions associated to the generalized system (1.3) as follows

Ωhigh = {x ∈ Ω|a2
b3

e−b4τ∂3G(x, V (x), 0)− b2(x) > 0},

Ωlow = {x ∈ Ω|a2
b3

e−b4τ∂3G(x, V (x), 0)− b2(x) < 0},

respectively. Identifying the probable places where pathogens reproduce emphasizes how crucial it is to focus
efforts in these directions in order to successfully stop the spread of infection among hosts, the probable places
are mostly the highly risk regions Ωhigh. As such, choosing resources to these areas can greatly improve infection
control strategies.
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