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ASYMPTOTIC DYNAMICS OF SIRS EPIDEMIC MODEL

WITH DISPERSAL BUDGETS AND NONLINEAR RATES

ABOUT HETEROGENOUS ENVIRONMENTS

Soufiane Bentout1,* and Salih Djilali2

Abstract. This paper examines an SIRS epidemic model incorporating nonlinear incidence functions
and nonlocal diffusion with scaled dispersal to enhance understanding of infectious disease spread in
human populations. We establish the well-posedness of the model by proving both the existence and
uniqueness of its solution. Additionally, we demonstrate the existence of a global compact attractor
that describes the asymptotic behavior of all positive solutions. The basic reproduction number, R0, is
derived as the spectral radius of the linear and compact next-generation operator R(·). When R0 < 1,
the infection-free equilibrium (IFE) is globally asymptotically stable, leading to disease extinction,
which has significant implications for public health policies. Conversely, when R0 > 1, persistence
theory shows the system is strongly persistent, ensuring at least one positive endemic equilibrium state
(PEES). The study investigates the system’s asymptotic behavior under varying costs and scaling
parameters of the dispersal kernel, revealing that when the dispersal kernel’s support (σ) is sufficiently
small and the cost parameter m < 2, the epidemic persists, posing public health risks. These results
highlight the critical influence of scaling and cost parameters on disease dynamics.
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1. Literary works, and model formulation

Mathematical modeling plays a crucial role in analyzing the spread of infectious diseases and understand-
ing their significant effects on society. These models are crucial for studying how infections move through
populations, predicting their future course, and helping to develop strategies for controlling outbreaks. Clas-
sic models, such as SIS (Susceptible-Infected-Susceptible) [1–5], SIR (Susceptible-Infected-Recovered) [6–10],
SEIR (Susceptible-Exposed-Infected-Recovered) [11], SVIR (Susceptible-Vaccinated-Infected-Recovered) [12],
and SIRS (Susceptible-Infected-Recovered-Susceptible) [13–15], are commonly used to analyze the dynamics of
diseases.
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Epidemics can spread quickly and have devastating effects, disrupting communities and economies. Take
COVID-19, for example, which has dramatically altered our lives, causing millions of deaths worldwide. In
light of such dangers, scientists have developed mathematical models to better understand how individuals
interact and how diseases can be controlled. Epidemics like COVID-19, along with diseases such as measles,
polio, Ebola, and SARS, have placed enormous pressure on global health systems and societies. This under-
scores the urgent need for effective modeling to understand these diseases and develop ways to mitigate their
impact.

Infectious diseases profoundly affect human life, necessitating control of interactions between individuals and
the spread of disease. However, the dynamics of these interactions, particularly between susceptible and infected
individuals, remain complex and evolving. The nature of contact between these groups changes over time,
complicating the modeling process and necessitating the assumption of nonlinear interactions. Mathematical
modeling provides valuable insights into these complexities, enabling the study of infection dynamics and aiding
in the development of effective intervention strategies. Numerous studies, such as those on SIS models [5] and
SIR models [2, 16], have contributed significantly to this field, including variations like the SIRI model [17],
which indicates that the recovered become directly infected, a factor in many diseases.

A particularly interesting aspect of disease modeling is the transmission dynamics, which involve understand-
ing the interaction between susceptible and infected individuals. This requires simulating how these groups
interact, particularly within spatially heterogeneous environments. In their pioneering work, [7], introduced the
SIR model, which classified individuals into three categories: the susceptible S, infected I, and recovered R. In

practice, nonlinear incidence is used in most SIR models (see for instance [1, 3, 5]) including
βSI

S + I
. This might

not seem like the best way to describe the interaction, but it is more appropriate to assume that the denominator
depends on the total population. The spread of infectious diseases is still challenging to understand. Are we
dealing with a specific type of transmission, or does it come down to how strong the immune system is? To get
closer to an answer, this study assumes that this interaction depends on the size of the population and follows
a nonlinear pattern.

While these foundational models provide valuable insights, they often neglect the critical role of mobility and
diffusion in disease spread. Mobility, representing the movement of individuals between regions, is an essential
factor in realistic modeling. Incorporating diffusion into these models significantly enhances their ability to
capture the spatial dynamics of epidemics. Recognizing this, many studies have explored how individual mobility
can be effectively integrated into epidemic models, providing a more comprehensive understanding of disease
transmission and its spatial effects.

This work builds upon previous advancements, highlighting the critical role of spatial interactions and mobil-
ity in heterogeneous environments to develop more accurate and practical models for analyzing infectious disease
dynamics (see, for instance, [9, 13, 18–20] and references therein). While Laplacian operators are commonly used
to model local and random mobility, they provide only a limited representation of movement, as they assume
unrestricted diffusion in open areas. This assumption imposes significant limitations on the realistic depiction
of mobility. To address this, introducing nonlocal diffusion offers a more natural and realistic approach, captur-
ing the movement of individuals across nonlocal regions effectively. Moreover, to explain the effect of dispersal

budget Lσ =
1

σn
L(
z

σ
) (see [3, 21, 22]) in the area of mobility, we define the nonlocal diffusion as follows:

1

σm

∫
Ω

Lσ (x− y) [ϕ(t, y)− ϕ(t, x)] dy,

with Ω ⊂ Rn, n ≥ 1, a bounded set with a smooth boundary. Lσ(x− y) represents the probability of jumping
from y to x with Lσ representing the dispersal kernel , and

∫
Ω
Lσ (x− y)ϕ(t, y) dy interprets as the function

that represents the individuals collected at the area x. The term −ϕ(t, ·) shows the mobility of the individuals
from x to any other area. Moreover, σ represents the scaling factor on the range of dispersal and m is considered
as the cost parameter on the range of dispersal of the cost function f(z) which is proportional to |y|m with
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f0 =
C0∫

Rn L(z)|z|m dz
,
f0Lσ(z)
σm

. This nonlocal diffusion operator, driven by the general kernel Lσ ≥ 0, differs

from the fractional Laplacian (−∆)sϕ(x) = Cn,s
∫
Ω
ϕ(x)−ϕ(y)
|x−y|n+2s dy used in [23] for a SARS-CoV-2 model, which

employs a singular kernel with polynomial decay to model anomalous diffusion, whereas our flexible kernel
allows tailored dispersal patterns for the SIRS dynamics.

In the work proposed by Hu et al. [3], they considered the following nonlocal dispersal SIS epidemic model
with Neumann boundary conditions in a heterogeneous environment:


∂S
∂t = d1

σm

∫
Ω
Lσ(x− y)[S(t, y)− S(t, ·)] dy − β(·)SI

S+I + α(·)I, on Ω× R+,
∂I
∂t = d2

σm

∫
Ω
Lσ(x− y)[I(t, y)− I(t, ·)] dy + β(·)SI

S+I − α(·)I, on Ω× R+,

S(0, ·) = S0(·), I(0, ·) = I0(·), on Ω,

(1.1)

with

� S and I represent the susceptible and infected individuals at time t > 0 and location x ∈ Ω,
� d1 and d2 are the nonlocal diffusion coefficients for the susceptible and infected populations, respectively,
� Lσ(x− y) is the nonlocal dispersal kernel with a characteristic length scale σ,
� β(·) is the infection transmission rate at location x,
� γ(·) is the recovery rate at location x,
� S0(·) and I0(·) are the initial conditions of the susceptible and infected individuals, respectively.

They investigated the asymptotic behavior of the SIS epidemic model using a novel method that provides a
useful framework for understanding the dynamics of complex systems such as the SIS epidemic model. The
dynamics of the model in (1.1) were examined using this approach, which expanded on the ideas offered in [21].
Researchers from all across the world have been using nonlocal diffusion as a means of characterizing individuals’
free movement in recent years (see [5, 24–27]). This method is thought to be more realistic and indicative of
the real world. Moreover, there are many diseases that have the important characteristic of temporal immunity,
which implies that the recovered individuals can lose immunity and become susceptible again (see, for instance,
[17, 28, 29]) and the references therein. [29].

Motivated by all of these studies, but particularly by the work by [3], this study investigates a SIRS epidemic
model with a nonlinear incidence function. It is assumed that the recovered individuals lose their immunity and
become susceptible again, which is a fascinating way to explain many diseases that have been studied in the
same case. It is also assumed that the kernel dispersal could be used to calculate the “budget dispersal”, which
represents a very precise movement of individuals, and that the nonlocal diffusion could be used to describe the
mobility of individuals. Then, the model is defined as follows:

∂S(t,·)
∂t = d1

σm

∫
Ω

Lσ(x− y)[S(t, y)− S(t, ·)]dy −
β(·)SI
S + I +R

+ γ(·)R(t, ·), on Ω× R+,

∂I(t,·)
∂t = d2

σm

∫
Ω

Lσ(x− y)[I(t, y)− I(t, ·)]dy +
β(·)SI
S + I +R

− α(·)I, on Ω× R+,

∂R(t,·)
∂t = d3

σm

∫
Ω

Lσ(x− y)[R(t, y)−R(t, ·)]dy + α(·)I − γ(·)R, on Ω× R+,

S(0, ·) = S0(·), I(0, ·) = I0(·), R(0, ·) = R0(·), on Ω,

(1.2)

In this model, Ω ⊂ Rn, n ≥ 1, is a bounded domain with a smooth boundary ∂Ω, and (t, x) denote time and
location, respectively. S(t, x), I(t, x), and R(t, x) represent the susceptible, infected, and recovered individuals,
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respectively, with nonnegative initial conditions denoted as (S0, I0, R0) on Ω. The dispersal coefficients for
these groups are given by the parameters d1, d2, and d3, respectively, and β(x) represents the transmission
rate for susceptible individuals. This study makes the reasonable assumption that each group has distinct
dispersal constants, reflecting their differing mobility patterns. Based on the aforementioned research, it is more
reasonable to consider the dispersal of the three groups, using the nonlinearity of the incidence rates to model
interactions between susceptible and infected individuals. The primary focus of this study is to investigate
the asymptotic behavior of the SIRS model with nonlocal dispersal, which poses a challenge in analyzing,
particularly, the asymptotic profile of the positive endemic equilibrium states (PEES). Recent studies have
examined the asymptotic properties of the PEES with respect to the dispersal scaling parameter σ, providing
further insights into this area, see for example [3, 21].

Disease outbreaks like COVID-19 show us we need better models to track how infections spread across
space, especially when immunity doesn’t last forever. In the present model, we consider that the densities
are governed by nonlocal diffusion. This type of spatial movement is more appropriate for capturing realistic
patterns of individual mobility, especially over larger distances, compared to classical diffusion based on the
Laplace operator, which reflects only short-range displacements. We use a kernel Jσ ∈ Schwartz space; which
is smooth and drops off fast. This choice not only ensures mathematical tractability but also allows us to
model individual mobility across varying spatial scales and allows us to shape dispersal to fit real scenarios.
Furthermore, the interaction between susceptible and infected individuals is described by a nonlinear incidence

term of the form
β(x)SI
S + I +R

, which reflects the complex and saturating nature of disease transmission dynamics,

and it is a specific case of the Hattaf-Yousfi functional response [30, 31]. This formulation accounts for saturation
effects and reflects the diminishing transmission potential as the population accumulates immunity—a critical
aspect for accurately modeling SIRS-type diseases.

The main goal of this study is to investigate the dynamics of the SIRS epidemic model with nonlocal dispersal
and nonlinear incidence rates, which represents a strategy of producing few offspring that are all spread out far
from the source. The following is the paper’s structure: This study builds the model and proves that its solutions
exist and are unique in Section 2. It calculates and examines the basic reproduction number’s characteristics in
Section 3. For R0 < 1, the threshold behavior of the model (1.2) at the infection-free equilibrium is examined
in Section 4, and global stability at R0 = 1 is analyzed using a Lyapunov function weighted by the principal
eigenfunction. Additionally, this study examines the persistence conditions and the presence of positive endemic
equilibrium states (PEES) in Section 5. The subsequent section examines the asymptotic profiles of PEES as
σ → 0, with variations in m. Lastly, the final section discusses the results and provides perspectives for future
research.

2. Properties of solutions to (1.2)

As showed before, we assume that the individuals divide into three class: the susceptible individuals (S(t, ·)),
infected individuals (I(t, ·)) and recovered individuals (R(t, ·)) at time t and location x ∈ Ω. Further, we
assume that Ω ∪ Rn is assumed that bounded and smooth boundary. Moreover, we assume that the incidence

function takes the form
βSI

S + I +R
, which is a particular case of the Hattaf-Yousfi [30, 31] incidence function

βSI
γ0+γ1S+γ2I+γ3SI with γ0 = 0, γ1 = 1, γ2 = 1, γ3 = 0, and the inclusion of R to account for recovered individuals

(see [17]) which represent the contact between the susceptible and infected individuals where β represent the
transmission rate of disease. We define the term α(·)I(t, .) as the recovery rate from the infected individuals.

Furthermore, the term γ(.)R(t, .) represents the recovery process from disease. Moreover, we assume that the
initial conditions S0, I0, R0 satisfy the following assumptions:

1.

∫
Ω

I0(·),
∫
Ω

R0(·) > 0, S0 ≥ 0, I0 ≥ 0, R0 ≥ 0,
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2. Supposing that ∫
Ω

S0(.) + I0(.) +R0(.) = N, (2.1)

We suppose also that the model (1.2) have the following assumptions

(C0) d1 > 0, d2 > 0, and d3 > 0.
(C1) β, α and γ are strictly positive and Hölder continuous functions on Ω.

Next, we put that X = C
(
Ω̄,R3

)
represent the continuous functions on Ω̄, endowing by the norm

||d|| = max{ sup
on Ω̄

|d1(x)|, sup
on Ω̄

|d2(x)|, sup
on Ω̄

|d3(x)|},∀d1, d2, d3 ∈ C(Ω̄,R3).

we also define X+ = C
(
Ω̄,R3

+

)
is the positive cone of X.

Furthermore, we define the following notations

m(·) = min
x∈Ω̄

m(·), m(·) = max
x∈Ω̄

m(x), (2.2)

where m ∈ {β(·), α(·), γ(·)}.To study the well-posedness of the problem, we set

AσSS =
d1
σm

∫
Ω

Lσ(x− y)[S(t, y)− S(t, ·)]dy + γ(·)R,

AσI I =
d1
σm

∫
Ω

Lσ(x− y)[I(t, y)− I(t, ·)]dy − α(·)I,

AσRR =
d1
σm

∫
Ω

Lσ(x− y)[R(t, y)−R(t, ·)]dy + α(·)I.

(2.3)

From the assumption (2), we can obtain the operators AσS ,AσI ,AσR are bounded and generates a semi-groups
(see Thm. 1.2 in [32]) {TS}, {TI} and {TR}, respectively. Furthermore, we put that

FσS(U) = −
βS(t, .)I(t, .)
S + I +R

,

FσI (U) =
βS(t, .)I(t, .)
S + I +R

,

FσR(U) = −γ(.)R(t, .),

where U(t, .) =

S(t, .)I(t, .)
R(t, .)

 . Thus, we can define the following Cauchy problem as follows

dU
dt

= AσU+ Fσ(U), U(0, x) = (S0, I0, R0)
T
,

with A =

AσS ,
AσI ,
AσR

 and F =

FσS ,
FσI ,
FσR

 .
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The existence and uniqueness of solutions to model (1.2) are established in the following Theorem.

Theorem 2.1. Let (S0, I0, R0) ∈ X+, then (1.2) admits a unique non-negative solution, that is globally defined.

Proof. We know that the operators AσS , AσI , and AσR each generate a semigroups such that



S(t, ·) = TS(t)S0(·) +
∫ t

0

TS(t− τ)(FσS(U(τ, ·))dτ, t > 0, on Ω̄,

I(t, ·) = TI(t)I0(·) +
∫ t

0

TI(t− τ)(FσI (U(τ, ·))dτ, t > 0, on Ω̄,

R(t, ·) = TS(t)R0(·) +
∫ t

0

TS(t− τ)(FσR(U(τ, ·))dτ, t > 0, on Ω̄,

(2.4)

by using the first equation of model (1.2), we get

S(t, ·) = S0(·)e
−

∫ t

0

d1
σm

∫
Ω

Lσ(x− y)[S(τ, y)− S(τ, ·)]dy + γ(·)R(τ, .)dτ

−
∫ t

0

e
−

∫ t

τ

d1
σm

∫
Ω

Lσ(x− y)[S(τ, y)− S(τ, ·)]dy + γ(·)R(τ, .)( β(·)S(τ, ·)I(τ, ·)
S(τ, ·) + I(τ, ·) +R(τ, ·)

)
,

since that S0(·) ∈ X+, L(·) > 0, on Ω, and (I,R) ∈ X+, we can deduce that S(t, ·) ∈ X+. Moreover, we
need to show that S(t, ·) > 0, on [0, Tmax), we assume by contradiction that there exists Tmax such that

S(t0, x∗) = 0,
∂S
∂t

(t, x∗)≤0 as t = t0,S(t0, .) > 0, we consider

tI = inf {t ∈ [0, Tmax) | I(t, ·) = 0} ,
tR = inf {t ∈ [0, Tmax) | R(t, ·) = 0} ,
t0 = min {tI , tR} ,

(2.5)

from the first equation of model (1.2), we have

∂

∂t
S (t0, x∗) =

d1
σm

∫
Ω

J (x∗ − y)S (t0, y) dy + γ(x∗)R(t0, x∗) > 0,

this contradicts the assumption. Hence S(t, ·) ≥ 0, for (t, ·) ∈ [0, Tmax) .

I = I0(·)e
−

∫ t

0

d2
σm

∫
Ω

Lσ(x− y)[I(τ, y)− I(τ, ·)]dy − α(·)I(τ, .)dτ

+

∫ t

0

e
−

∫ t

τ

d2
σm

∫
Ω

Lσ(x− y)[I(τ, y)− I(τ, ·)]dy − α(·)I(τ, .)( β(·)S(τ, x)I(τ, ·)
S(τ, ·) + I(τ, ·) +R(τ, ·)

)
dτ, t > 0, onΩ̄,

for all t ∈ [0, Tmax) , onΩ, we suppose that I0 ∈ X+, (S, I,R) ∈ X+, then we conclude that I(t, ·) ∈ X+ for all
t ∈ [0, Tmax) .
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We need to show the positivity of I, we assume by contradiction that I(t, .) > 0, on [0, Tmax)× Ω̄, I(t0, x∗) =

0,
∂I(t0, x∗)

∂t
< 0, if tI < tR, then t0 = tI , by the second equation of (1.2), we find that

∂

∂t
I (t0, x∗) =

d2
σm

∫
Ω

Lσ (x∗ − y) I (t0, y) dy > 0,

which means a contradiction. Consequently, I(t, ·) > 0, onΩ, t ∈ [0, Tmax) .
From the third equation of (2.4), we obtain that

R = R0(·)e
−

∫ t

0

d3
σm

∫
Ω

Lσ(x− y)[R(τ, y)−R(τ, ·)]dy + α(·)I(τ, .)dτ

+

∫ t

0

e
−

∫ t

τ

d2
σm

∫
Ω

Lσ(x− y)[R(τ, y)−R(τ, ·)]dy + α(·)I(τ, .)
(−γ(·)R(τ, .)) dτ, t > 0, onΩ̄,

from the fact that R0 ∈ X+, (S, I,R) ∈ X+ we can get that R(t, ·) ∈ X+, for all t ∈ [0, Tmax) . To show the

positivity of R, we assume by contradiction that I(t, .) > 0, on [0, Tmax) × Ω̄,R(t0, x∗) = 0,
∂R(t0, x∗)

∂t
<

0, I(t0, .) > 0 if tI ≥ tR, then t0 = tR, by third equation of (1.2), we obtain that

∂

∂t
R (t0, x

∗) =
d3
σm

∫
Ω

Lσ (x∗ − y)R (t0, y) dy + γ(·)I(t0, x∗) > 0,

we get a contradiction, it’s yields that R(t, ·) > 0, on [0, Tmax)× Ω.

It is essential to show the difference between semi−flow and Semigroup.

� A semi−flow Φ(t) : X+ → X+, t ≥ 0, is a nonlinear mapping on a metric space , satisfying identity,
semigroup property, and joint continuity. Asymptotic smoothness ensures that orbits Φ(t)B approach a
compact set.

� A semigroup T (t) : X→ X, t ≥ 0, is a linear operator on a Banach space (e.g., X = L2(Ω,R3)), satisfying
identity, semigroup property, and strong continuity. It may describe the linearized system around the
disease-free equilibrium, where compactness of T (t) aids eigenvalue analysis for R0 (Sect. 3).

We now turn to showing the global existence of solutions to system (1.2).

Theorem 2.2. We consider (S0, I0, R0) ∈ X+, then there exists an unique solution U (t, .;U0) = (S(t, .), I(t, .))
of model (1.2) on [0,∞) . Moreover, The semi-flow Φt generates by the solution U is bounded dissipative.

Proof. Let N (t, ·) = S(t, ·) + I(t, ·) +R(t, ·). By summing the equations in system (1.2), we obtain

∂N
∂t
≤ C− µ(·)N , (2.6)

with C = N supΩ×Ω Lσ
(
d1
σm + d2

σm

)
, and µ(·) = d1

σm + d2
σm

∫
Ω

Lσ(x− y)dy.
Applying constant variation method, we have

N (t, x) ≤ ||N0||+
C
µ

:= M,
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This implies that the semi−flow Φt, generated by the solutions of system (1.2), is bounded and dissipative.
As a result, the global existence of solutions to model (1.2) follows immediately.

Furthermore, we need to establish the asymptotic smoothness of the semi−flow, which is important for
establishing the validity of the constructed Lyapunov functional in proving global stability. A semiflow Φ(t) :
X+ → X+, t ≥ 0, is called asymptotically smooth if, for any closed, bounded, and positively invariant set
B ⊂ X+, there exists a compact set K ⊂ X+ such that

lim
t→∞

sup
x∈B

dist(Φ(t)x,K) = 0,

where dist(x,K) = infy∈K ∥x− y∥X (see [[33], Def. 2.25]).

Theorem 2.3. The semi-flow Φt is asymptotically smooth. Additionally, the semi-flow Φt has a global attractor
compact.

Proof. For (S0, I0, R0) ∈ X+, we have that Φt(t, (S0, I0, R0)) = (S(t, .), I(t, .),R(t, .)) , t ≥ 0.
We consider the operators (AσS ,AσI ,AσR) define as in (2.3), by using Lemma 2.1 in [25], we can find the

operators (AσS ,AσI ,AσR) have a principal eigenvalues λi, (i = S, I,R), respectively, with λI < −ω, we can rewrite
model (1.2) as

Φt(t) = T(t)ϕ0 +
∫ t

0

T(t− s)F[Φt](s) ds, ∀t ≥ 0, ϕ0 ∈ Y +.

We decompose the semi−flow Φ(t) into two components:

ΦT (t) = û(t) + ũ(t),

where

û(t) := T(t)ϕ0, and ũ(t) :=

∫ t

0

T (t− s)F[u](s) ds, ∀t ≥ 0.

with T(t) = (TS ,TI ,TR) , by applying the same approach of Theorem 5 in [34], we can conclude that ũ is
compact, we need to show that û(t) is compact. Indeed, we have

∥û(t)∥ = ∥T [ϕ0](t)∥ ≤ e−ωt∥ϕ0∥,

thus,

∥û(t)∥ ≤ e−ωt, ∀t > 0.

Consequently, for each t > 0 and u ∈ B ⊂ Y +, we observe that

ρ(Φ(t)(B)) ≤ ρ(û[B](t)) + ρ(ũ[B](t)) ≤ ∥û(t)∥ρ(B) + 0 ≤ e−ωtρ(B), t > 0.

As a result, we investigate that the semi-flow Φt satisfies a ρ-contraction property. This implies that Φt is
asymptotically smooth. Moreover, by invoking Theorem (2.2), we know that Φt is point-dissipative. Given that
the semi-flow is also bounded and asymptotically smooth, we may apply Theorem 3.4.8 from [35] to conclude
the existence of a compact global attractor in the positive cone X+.
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3. Basic reproduction number

In this section, we aim to characterize the basic reproduction number R0 by performing a linearization of
model (1.2) around the disease-free equilibrium E0. This leads to the following linearized system:

∂S
∂t

=
d1
σm

∫
Ω

Lσ(x− y)(S(t, y)− S(t, ·))dy − γ(·)R− β(·)I, on Ω× R+,

∂I
∂t

=
d2
σm

∫
Ω

Lσ(x− y)(I(t, y)− I(t, ·))dy + β(·)I − α(·)I, on Ω× R+,

∂R
∂t

=
d3
σm

∫
Ω

Lσ(x− y)(R(t, y)−R(t, ·))dy + α(·)I(t, ·)− γ(·)R, on Ω× R+,

then, we consider the following model as follows,

∂I
∂t

=
d2
σm

∫
Ω

Lσ(x− y)(I(t, y)− I(t, ·))dy + β(·)I − α(·)I, on Ω× R+,

∂R
∂t

=
d3
σm

∫
Ω

Lσ(x− y)(R(t, y)−R(t, ·))dy + α(·)I − γ(·)R, on Ω× R+,

(3.1)

By applying the method of variation of constants to equation (3.1), we obtain the following expressions:

I(t, ·) = e

d2
σm

∫
Ω

Lσ(x− y)(I(t, y)− I(t, ·))dyt
I0(·) + I0(·)

∫ t

0

eAI(t−s) (β(·)I(τ, ·) + α(·)I(τ, ·)) dτ, (3.2)

and

R(t, ·) = e

d3
σm

∫
Ω

Lσ(x− y)(R(t, y)−R(t, ·))dyt
R0(·)

+

∫ t

0

e

d3
σm

∫
Ω

Lσ(x− y)(R(t, y)−R(t, ·))dyt
(t− s)γ(·)R(τ, ·)− α(·)I(τ, ·)dτ.

we need to construct the next generation operator R : X→ X, such as

Rψ(·) = F(·) (AσI )
−1
ϕ(·), onΩ, (3.3)

with AσI is already defined and F(ψ(·)) = (β(·)− γ(·))ψ(·), by applying Theorem 3.2 in [36], we have

(AσI )
−1
ϕ(·) =

∫ ∞

0

TσI ϕ(·)dσ, ϕ ∈ X, (3.4)

we replace (3.4) in (3.3), we obtain

Rψ(·) = F(·)
∫ ∞

0

TσI ϕ(·)dσ, onΩ, (3.5)

Hence, we define R0 as the spectral radius of R, expressed as

R0 = r(R),

with r represents the spectral radius.
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In the next, we define the problem for the first equation of (3.1), we put I(t, ·) = eλtω(·), we get that

λω(·) = d2
σm

∫
Ω

Lσ(x− y) [ω(y)− ω(·)] dy + β(·)ω(·)− α(·)ω(·), onΩ, (3.6)

To validate the existence of the principal eigenvalue λ∗, we need to assume the following assumptions.
(H1) β ̸= α and by using Theorem 2.1 in [37]() we can conclude that the problem (3.6) has a principal

eigenvalue λ∗ associated with a positive strictly ψ∗.
In the following proposition, we establish the relationship between R0 and λ∗.

Proposition 3.1. We consider s(R) = sup {Re (λ) : λ ∈ ξ(R)} , with ξ represents the spectrum of R, then R0−1
has the same sign of λ∗ = s(AσI + F).

Proof. By applying Theorem 3.1 in [36], we have that

(λI − AσI )−1ψ2 =

∫ ∞

0

e−λtTI(t)ψ2 dt, ϕ2 ∈ X.

and we choose λ = 0 which gives

(−AσI )−1φ2(·) =
∫ ∞

0

TI(t)φ2(·) dt,

Furthermore, we observe that λ∗ = s (AσI + F(·)). According to Proposition 2.4 in [38], the spectral bound

s (AσI ) is strictly negative. Recalling the definition of the basic reproduction number, we have R0 = r
(
(AσI )

−1 F
)
.

Consequently, by applying Theorem 3.5 from [36], it follows that the sign of λ∗ is determined by the expression

r
(
(AσI )

−1 F
)
− 1.

In the next step, we introduce the following eigenvalue problem as follows

d2
σm

∫
Ω

Lσ(x− y) [ψ(y)− ψ(·)] dy − α(·)ψ(·) = −λβ(·)ψ(·), x ∈ Ω, (3.7)

and by applying the same arguments as [5], we can define R0 as follows

R0 = inf
ψ∈L2(Ω)ψ ̸=0

∫
Ω

β(·)ψ(·)2dx

d2
σm

∫
Ω

Lσ(x− y) [ψ(y)− ψ(·)]2 dy +
∫
Ω

α(·)ψ2(·)dx
(3.8)

Now, we are ready to give the following Theorem.

Theorem 3.2. Let λ∗(m,σ, d2) represent the principal eigenvalue of problem (3.6). The following statements
are equivalent.

1. σ →∞ and 0 < m ≤ 2 than λ∗ → minΩ
α(·)
β(·)

2. σ → 0 and 0 < m ≤ 2 than λ∗ → minΩ
α(·)
β(·)

3. For m = 2, and we assume that α, β ∈ C0,ν(Ω) where ν > 0 and we assume that J ∈ C(Rn) is positive,
symmetric and |z|2L(z) ∈ L1 (Rn) , then we have that

lim
σ→0

λ∗ (m, d2)→ λ∗(
d2D2(J)

2N
∆),
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with

λ∗(
d2D2

2N
∆) := inf

ψ∈H1
0 (Ω),ψ ̸≡0

∫
Ω

(
D2(J)
2N |∇φ|

2(·) dx
)

∫
Ω
β(·)ψ2(·)dx

+

∫
Ω

α(·)ψ2(·)dx∫
Ω

β(·)ψ2(·)dx
,

with λ∗(
d2D2

2N
∆) is the principal eigenvalue verifies:

dSD2(J)
2N ∆S(·)− β(·)S(·)I(·)

S(·)+I(·)+R(·) + γ(·)R(·) = 0, onΩ,

dID2(J)
2N ∆I(·) + β(·)S(·)I(·)

S(·)+I(·)+R(·) − α(·)I(·) = 0, onΩ,

dID2(J)
2N ∆R(·) +−γ(·)R(·) + α(·)I(·) = 0, onΩ,

∂S
∂n = ∂I

∂n = ∂R
∂n = 0, x ∈ ∂Ω,

where D2(J) =

∫
Ω

J (z)|z|2dz.

Proof. We begin the first case when 0 < m ≤ 2 and σ → 0, by applying Lemma 4.1 in [21], we have that

λ∗(d2,m) ≤ σ2−mJ(ψ) +

∫
Ω

α(·)ψ2(·)dx∫
Ω

β(·)ψ2(·)dx
, (3.9)

with

J(ψ) := D2(J)

∫
Ω

|∇ψ(·)|2 dx, ψ ∈ L2(Ω)

and ψ ∈ H1
0 (Ω). We suppose that there exists a sequence ψn ∈ H1

0 (Ω) such that supp(ψn) ⊂ Br(xn) with Br
represents the open ball centered, by (3.9), we have

lim sup
σ→0

λ∗(d2,m) ≤

∫
Ω

α(·)ψ2(·)dx∫
Ω

β(·)ψ2(·)dx
= −

∫
Br

ψ2(·) dx, ψ ∈ L2(Ω), ≤ min
Br

α(·)
β(·)

,

then, by converging σ → 0, we obtain that lim supσ→0 λ
∗(d2,m) ≤ minΩ

α(xn)
β(xn)

, therefore

lim sup
σ→0

λ∗(d2,m, σ) ≤ min
Ω

α(·)
β(·)

+
1

n
,

for n→∞, we have that lim supσ→0 λ
∗(d2,m) ≤ minΩ

α(·)
β(·) ,

Now, we use the following test functions (λ, ψ) = (minΩ
α(·)
β(·) , 1), we can obtain that

λ∗(d2,m) ≥ min
Ω

α(·)
β(·)

,
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Then, we get

min
Ω

α(·)
β(·)

≤ lim inf
σ→0

λ∗(d2,m) ≤ lim sup
σ→0

λ∗(d2,m) ≤ min
Ω

α(·)
β(·)

.

Next, we focus to show that σ →∞, by using the same arguments as The proposition 2.3 in [21], we cann
find easily the result.

Now, we focus to show the last result, we consider the following function

ζσ(z) :=
1

σ2D2(Lσ)
Lσ(z)|z|2, then for ψ ∈ H1

0 (Ω),

with the following proprieties of ζσ

ζσ ≥ 0 in RN ,∫
RN

ζσ(z) dz = 1, ∀σ > 0,

lim
σ→0

∫
{|z|≥δ}

ζσ(z) dz = 0, ∀δ > 0,

and by using the characterization of Sobolev space (see [39]), we obtain when σ → 0,

∫
Ω×Ω

ζσ(x− y)(ψ(·)− ψ(y))2

|x− y|2
dxdy = K2,N∥∇ψ∥2L2(Ω), (3.10)

for any ψ ∈ H1
0 (Ω), with Let K2,N be defined as:

K2,N :=
1

|SN−1|

∫
SN−1

(s · e1)2 ds =
1

N
,

where SN−1 is the (N − 1)-dimensional unit sphere, e1 is the first standard basis vector, and · denotes the dot
product, and by (3.10), we obtain

lim
σ→0

λ∗(d2,m) ≤ lim
σ→0

1

∥ψ∥2L2(Ω)

 d2
2σ2

∫
Ω×Ω
Lσ(x− y)(ψ(·)− ψ(y))2 dxdy∫

Ω

β(·)ψ2(·)dx
+

∫
Ω

α(·)ψ2(·)dx∫
Ω

β(·)ψ2(·)dx

 ,

= lim
σ→0

1

∥ψ∥2L2(Ω)

D2(J)

2

∫
Ω×Ω

ζσ(x− y)(ψ(·)− ψ(y))2 dxdy

|x− y|2
∫
Ω

β(·)ψ2(·)dx
+

∫
Ω

α(·)ψ2(·)dx∫
Ω

β(·)ψ2(·)dx



= lim
σ→0

1

∥ψ∥2L2(Ω)

D2(J)

2N

∫
Ω
∥∇ψ∥2L2(Ω),dx∫
Ω

β(·)ψ2(·)dx
+

∫
Ω

α(·)ψ2(·)dx∫
Ω

β(·)ψ2(·)dx
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From the last equation, we obtain that

lim
σ→0

λ∗ (d2,m) ≤ λ∗(
d2D2(J)

2N
∆),

Now, we focus to show that

λ∗(
d2D2(J)

2N
∆) ≤ lim inf

σ→0
λ∗(d2,m).

we first claim there exists a test function ψ∗ such that

[λ∗ (d2,m)β(·) + δ∗]ψ∗(·) +
d2
σ2

∫
Ω

Lσ(x− y) [ψ∗(y)− ψ∗(·)] dy − α(·)ψ∗(·) ≥ 0, on Ω, (3.11)

we know that there exists ψ∗ that satisfies (3.11). Additionally, we define a function νσ which represents the

smooth mollifier of unit mass with supp (nuσ) ⊂ B1 with B1 is the unit ball with νσ := 1
χN νσ

(
s
χ

)
, for all χ > 0.

We define the convolution product as follows ψ = νσ ∗ ψ∗, we have that

νσ ∗
(
[λ∗ (d2,m)β(·) + δ∗]ψ∗(·) +

d2
σ2

∫
Ω

Lσ(x− y) [ψ∗(y)− ψ∗(·)] dy − α(·)ψ∗(·)
)
≥ 0, onΩ, (3.12)

we calculate the following term,

d2
σ2

∫
Ω

νστ(x− s)
∫
Ω

Lσ(s− y)ψ∗(s) dy ds =
d2
σ2

∫
Ω

Lσ(x− y)ψ(y) dy, (3.13)

and

d2
σ2

∫
Ω

νσ(x− s)
∫
Ω

Lσ(s− y)ψ∗(s) dy ds =
d2
σ2

∫
Ω

νσ(x− s)ψ∗(s)

∫
Ω

Lσ(s− y)dy ds,

=
d2
σ2

∫
Ω

νσ(x− s)ψσ(s)
∫
Ω

Lσ(x− y)dy ds

+
d2
σ2

∫
Ω

νσ(x− s)ψ∗(s)[

∫
Ω

Lσ(s− y)dy −
∫
Ω

Lσ(x− y)dy] ds.

we set Aσ(·) =
∫
Ω
Lσ(x− y)dy, then we get

d2
σ2

∫
Ω

νσ(x− s)

∫
Ω

Lσ(s− y)ψ∗(s) dy ds =
d2
σ2

∫
Ω

νσ(x− s)ψ∗(s)Aσ(·) ds+
d2
σ2

∫
Ω

νσ(x− s)ψ∗(s)[Aσ(s)−Aσ(·)] ds.

(3.14)

By adding and subtracting the term
∫
Ω
νσ(x− s)(−α(·))ψ∗(s)ds, we obtain

∫
Ω

νσ(x− s)(−α(·))ψ∗(s)ds =

∫
Ω

νσ(x− s)(−α(·))ψ∗(s)ds+

∫
Ω

νσ(x− s)ψ∗(s) [α(·)− α(s)] , (3.15)
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by replacing (3.13)-(3.14)-(3.15) in (3.12), we obtain that

[λ∗ (d2,m)β(·) + δ∗ − α(·)]ψ(·) +
d2
σ2

∫
Ω

Lσ (x− y)
[
ψ(y)− ψ(·)

]
dy +

d2
σ2

∫
Ω

ζσ(x− s)ψ∗(s) [Aσ(s)−Aσ(·)] ds

+

∫
Ω

νσ(x− s)ψ∗(s) [α(·)− α(s)] ds ≥ 0.

(3.16)
We know that α is Hölder continuous, which implies that,∣∣∣∣∫

Ω

ζσ(x− y)ψ∗(y)(α(·)− α(s)) ds
∣∣∣∣ ≤ ∫

Ω

νσ(x− y)ψ∗(y)

∣∣∣∣α(·)− α(s)|x− s|α

∣∣∣∣ |x− s|α dy,
≤ κατκψ(·),

(3.17)

and ∣∣∣∣∫
Ω

ζσ(x− s)ψ∗(s)[Aσ(s)−Aσ(·)] ds
∣∣∣∣ ≤ ∫

Ω

νσ(x− y)ψσ(y)
∣∣∣∣Aσ(s)−Aσ(·)|s− x|α

∣∣∣∣ |x− s|α dy,
≤ κAτκψ(·),

(3.18)

with κα and κA represent the Hölder semi-norms of α(·) and A, respectively. Additionally, we assume that τ

satisfies the condition τ ≤ inf
{
τ0,

(
δ∗
2κα

) 1
κ

}
and inf

{
τ0,

(
δ∗
2κA

) 1
κ

}
. By substituting (3.17)-(3.18) into (3.16), we

derive the following result:

[λ∗ (d2,m)β(·) + 3δ∗ − α(·)]ψ(·) +
d2
σ2

∫
Ω

Lσ (x− y)
[
ψ(y)− ψ(·)

]
dy ≥ 0, ∀x ∈ Ω. (3.19)

Next, we need to show the λ∗ (d2,m)→ λ∗

(
dsD2

2N

)
, we set ψ∗ := µψ, then we obtain that

[λ∗ (d2,m)β(·) + 3δ∗ − α(·)]ψ∗(·) + d2
σ2

∫
Ω

Lσ (x− y) [ψ∗(y)− ψ∗(·)] dy ≥ 0, ∀x ∈ Ω. (3.20)

with µ =

∫
Ω

ψdx∫
Ω

ψ∗dx

then,

∫
Ω

ψ∗(·)2dx∫
Ω

(ψ(·)∗)2
= 1, we multiply the first term of (3.20) by ψ∗ we obtain that

−
∫
Ω

∫
Ω

1

σ2
Lσ(x− y) (ψ∗(y)− ψ∗(·))ψ∗(·) dy dx =

d2
2σ2

∫
Ω

∫
Ω

Lσ(x− y) (ψ∗(y)− ψ∗(·))2 dx dy,

=
D2(J)

2N

∫
Ω

∫
Ω

νσ(s)
(ψ∗(s+ ·)− ψ∗(·))2

|s|2
dsdx,

(3.21)

By substituting (3.21) into (3.20), we obtain the following result

D2(J)

2N

∫
Ω

∫
Ω

νσ(s)
(ψ∗(x+ s)− ψ∗(·))2

|s|2
dsdx+

∫
Ω

α(·)(ψ∗(·))2 dx ≤ (λ∗(d2,m) + 3δ)

∫
Ω

(ψ∗(·))2 dx,
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since φσ ∈ C∞(Ω), by Taylor’s expansion, we have the following estimate:

|ψ∗(x+ s)− ψ∗(·)− s · ∇ψ∗(·)| ≤
∑

1≤i,j≤N

|xi − yi||xj − yj |
∫ 1

0

r

(∫ 1

0

|∂ijψ∗(x+ rσs)|dσ
)
dr,

≤ |s · ∇ψ∗(·)| ≤
∑

1≤i,j≤n

|sisi|
∫ 1

0

r

(∫ 1

0

|∂ijψ∗(x+ rσs)| ds
)
dr + |ψ∗(x+ s)− ψ∗(·)|.

(3.22)
Next, we apply the Hölder inequality for every ξ > 0, we obtain that

|s · ∇ψ∗(·)|2 ≤ Cξ

∑
i,j

|sisj |
∫ 1

0

r

(∫ 1

0

|∂ijφσ(x+ rσs)|dσ
)
dr

2

+ (1 + ξ)|ψ∗(x+ s)− ψ∗(·)|2,

≤ Cξ
∑
i,j

|sisj |2
∫ 1

0

∫ 1

0

r2|∂ijψ∗(x+ rσs)|2 dσ dr + (1 + ξ)|ψ∗(x+ s)− ψ∗(·)|2.

Integrating this formula in s and x over Ω× Ω, we obtain that and for σ small, supp(ρσ) ⊂ B1(0), and we
have for all x ∈ Ω,

∫
Ω

ζσ(|s|)
|s · ∇ψ∗(·)|2

|s|2
dsdx = K2,N |∇ψ∗(·)|2 =

1

N
|∇ψ∗(·)|2, (3.23)

and the following inequality holds

D2(J)

2N

∫
Ω

|∇ψ∗(·)|2dx ≤ Cξ
∫
Ω

ζσ(|s|)
∑
i,j

|sisj |2

|s|2

(∫ 1

0

∫ 1

0

r2|∂ijψ∗(x+ rσs)|2 dσ dr
)
dsdx

+ (1 + ξ)

∫
ω

ζσ(|s|)
|ψ∗(x+ s)− ψ∗(·)|2

|s|2
dsdx.

(3.24)

we divide the both terms of (3.24) by

∫
Ω

β(·)(ψ∗)2(·)dx and adding and subtracting the term

∫
Ω

α(·)(ψ∗(·))2dx,
we obtain that

D2(J)
2N

∫
Ω

|∇ψ∗(·)|2dx+

∫
Ω

α(·)ψ∗(·)dx∫
Ω

β(·)(ψ∗)2(·)dx

≤ Cξ∫
Ω

β(·)(ψ∗)2(·)dx

∫
Ω

ζσ(|s|)
∑
i,j

|sisj |2

|s|2

(∫ 1

0

∫ 1

0

r2|∂ijψ∗(x+ rσs)|2 dσ dr
)
dsdx

+
(1 + ξ)∫

Ω

β(·)(ψ∗)2(·)dx

∫
ω
ζσ(|s|) |ψ

∗(x+s)−ψ∗(·)|2
|s|2 dsdx+

∫
Ω

α(·)(ψ∗)2(·)dx∫
Ω

β(·)(ψ∗)2(·)dx
− ξ

∫
Ω

α(·)(ψ∗)
2(·)dx∫

Ω

β(·)ψ∗(·)dx
,

(3.25)



16 S. BENTOUT AND S. DJILALI

therefore, we obtain

D2(J)
2N

∫
Ω

|∇ψ∗(·)|2dx+

∫
Ω

α(·)(ψ∗)2(·)dx∫
Ω

β(·)(ψ∗)2(·)dx

≤ G(σ) +
(1 + ξ)∫

Ω

β(·)(ψ∗)2(·)dx

−d2
σ2

∫
ω
Lσ(x− y)

(
ψ∗(y)− ψ∗(·)|2

)
dsdx+

∫
Ω

α(·)(ψ∗)2(·)dx∫
Ω

β(·)(ψ∗)2(·)dx
− ξ

∫
Ω

α(·)(ψ∗)2(·)dx∫
Ω

β(·)(ψ∗)2(·)dx
,

(3.26)

with

G(σ) =
Cξd2D

2

∫
Ω

β(·)(ψ∗)2(·)dx

∫
Ω

ζσ(|s|)
∑
i,j

|sisj |2

|s|2

(∫ 1

0

∫ 1

0

r2|∂ijψ∗(x+ rσs)|2 dσ dr
)
dσ dx,

by definition, we have ∂ijψ
∗(x+ rσs) = ∂ijνσ ∗ψ∗(x+ rσs). Thus, by applying Fubini’s Theorem and employing

standard convolution estimates, we derive the following result for small σ,

G(σ) ≤ Cξd2D

2

∫
Ω

β(·)(ψ∗)2(·)dx

∑
i,j

∫
|s|≤1

∫
[0,1]2

νσ(|s|)
|sisj |2

|s|2
t2
(∫

Ω

|∂ijνσ ∗ ψσ(x+ rσs)|2dx
)
dr dσ ds,

≤ Cξd2D

2

∫
Ω

β(·)(ψ∗)2(·)dx

∫
|s|≤1

∫
[0,1]

νσ(|s|)
∑
i,j

|sisj |2

|s|2
r2 dr ds

 ∥∇2νσ∥L1(RN )∥ψσ∥2L2(RN ),

≤ 2

3
∥∇2νσ∥L1(RN )∥ψ∗∥2L2(RN )

∫
|s|≤1

νσ(|s|)|s|2dz,

(3.27)

by substituting (3.27) into (3.26), we find that

λ∗

(
d2D(J)∆

2N

)
≤ (1 + ξ) (λ∗(d2,m) + 2δ)

+
Cξd2D(Lσ)

2N

∫
Ω

β(·)(ψ∗)2(·)dx

∫
|s|≤1

∫
[0,1]

νσ(|s|)
∑
i,j

|sisj |2

|s|2
r2 dr ds

 ∥∇2νσ∥L1(RN )∥ψσ∥2L2(RN ),

≤ (1 + ξ) (λ∗(d2,m) + 2δ)

+
2

3

Cξd2D(Lσ)

2N

∫
Ω

β(·)(ψ∗)2(·)dx
∥∇2νσ∥L1(RN )∥ψ∗∥2L2(RN )

∫
|s|≤1

νσ(|s|)|s|2ds,

≤ (1 + ξ) (λ∗(d2,m) + 2δ) +
Cξd2D(Lσ)

2Nminx∈Ω̄β(·)dx
∥∇2νσ∥L1(RN )

∥ψ∗∥2L2(RN )

∥ψ∗∥2
L2(RN )

∫
|s|≤1

νσ(|s|)|s|2ds

≤ (1 + ξ) (λ∗(d2,m) + 2δ) +
Cξd2D(Lσ)

2Nminx∈Ω̄β(·)dx
∥∇2νσ∥L1(RN )

∫
|s|≤1

νσ(|s|)|s|2ds,
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applying the fact that
∫
|s|≤1

νσ(|s|)|s|2 ds ≤ σ, and letting σ → 0, we obtain that

λ∗

(
d2D(J)∆

2N

)
≤ (1 + ξ) (λ∗(d2,m) + 2δ) ,

since the last inequality it is holds for all ξ, we deduce that

λ∗

(
d2D(J)∆

2N

)
≤ (λ∗(d2,m) + 2δ) .

4. The threshold behavior

In this section, we investigate the existence of the infection-free equilibrium (IFE) and analyze the behavior
of the model (1.2) when λ∗ (d2,m) ≤ 0, which corresponds to R0 < 1. We begin by demonstrating the existence

and uniqueness of the IFE, denoted by E0 =
(

N
|Ω| , 0, 0

)
.

Proposition 4.1. The model (1.2) has an unique IFE E0 =
(

N
|Ω| , 0, 0

)
.

Proof. From the model (1.2), E0 verifies the following equation,

d2
σ

∫
Ω

Lσ (x− y)
[
S0 (y)− S0 (x)

]
dy = 0, x ∈ Ω, (4.1)

by applying the same approach as [40], we can deduce that S0 is a constant. By applying the second assumption
(2.1), we obtain that

S0(·) = N

|Ω|
.

To show uniqueness, we take that any solution S0(x) must be constant, with the constant fixed by a population
constraint. Define the operator:

A(S)(x) =

∫
Ω

Lσ(x− y) [S(y)− S(x)] dy.

then,

A(S0)(x) = 0, ∀x ∈ Ω,

we assume that there exists two solutions S0
1(x) and S

0
2(x) satisfy A(S0

1) = A(S0
2) = 0, we put w(x) = S0

1(x)−
S0
2(x), it then follows that

A(w)(x) =

∫
Ω

Lσ(x− y) [w(y)− w(x)] dy = 0,

so, ∫
Ω

Lσ(x− y)w(y) dy = w(x)

∫
Ω

Lσ(x− y) dy.
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Let k(x) =

∫
Ω

Lσ(x − y) dy, if we assume that w(x) is not constant, with a maximum at x0 ∈ Ω, so w(y) −

w(x0) ≤ 0, we obtain

A(w)(x0) =

∫
Ω

Lσ(x0 − y) [w(y)− w(x0)] dy ≤ 0.

Since A(w)(x0) = 0, and Lσ ≥ 0, the integrand Lσ(x0 − y) [w(y)− w(x0)] ≤ 0 must be zero almost everywhere.
If Lσ(x0 − y) > 0 for y in a set of positive measure, then w(y) = w(x0) . We suppose the existence of the
connectivity (e.g., Lσ(x− y) > 0 for |x− y| < δ), this equality propagates across Ω, implying w(x) = constant.

Thus, S0
1(x) = S0

2(x) + c. A population constraint, such as:∫
Ω

S0(x) dx = N,

fixes the constant. We have that
∫
Ω
S0
1 dx =

∫
Ω
S0
2 dx = N, then c = 0, ensuring S0

1 = S0
2 . Hence, the solution

is unique.

In the next Theorem, we show the stability of IFE for R0 = 1.

Theorem 4.2. Let R0 = 1, then the equilibrium IFE is globally asymptotically stable.

Proof. By using (3.1) and the fact that R0 = 1, we find λσ,m = 0, we define the Lyapunov function as follows

V (t) =

∫
Ω

ψ(x)I(t, x) dx,

where ψ(x) > 0 represents the principal eigenfunction of (3.6). Next, we compute the time derivative of the
Lyapunov function

dV

dt
=

∫
Ω

ψ(x)
∂I
∂t

dx,

=

∫
Ω

ψ(x)

[
d2
σm

∫
Ω

Lσ(x− y)[I(t, y)− I(t, x)] dy +
β(x)SI
S + I +R

− α(x)I
]
dx,

=
d2
σm

∫
Ω

ψ(x)

∫
Ω

Lσ(x− y)[I(t, y)− I(t, x)] dy dx︸ ︷︷ ︸
Term 1: Diffusion

+

∫
Ω

ψ(x)

[
β(x)SI
S + I +R

− α(x)I
]
dx︸ ︷︷ ︸

Term 2: Infection and Recovery

.

(4.2)

We rewrite the following term,∫
Ω

ψ(x)

∫
Ω

Lσ(x− y)[I(t, y)−I(t, x)] dy dx =

∫
Ω

∫
Ω

Lσ(x− y)ψ(x)I(y) dy dx−
∫
Ω

∫
Ω

Lσ(x− y)ψ(x)I(x) dy dx.

Interchange x and y in the first integral, using symmetry (Lσ(x− y) = Lσ(y − x)), we get∫
Ω

∫
Ω

Lσ(x− y)ψ(x)I(y) dy dx =

∫
Ω

∫
Ω

Lσ(y − x)ψ(y)I(t, x) dy dx =

∫
Ω

∫
Ω

Lσ(x− y)ψ(y)I(t, x) dy dx,
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it then follows,

d2
σm

∫
Ω

ψ(x)

∫
Ω

Lσ(x− y)[I(t, y)− I(t, x)] dy dx =
d2
σm

∫
Ω

I(t, x)
∫
Ω

Lσ(x− y)[ψ(y)− ψ(x)] dy dx, (4.3)

by using the eigenfunction equation (3.6), we get

d2
σm

∫
Ω

Lσ(x− y)[ψ(y)− ψ(x)] dy = −[β(x)− α(x)]ψ(x), (4.4)

by multiplying (4.4) by I(t, x) and integrating over Ω, we have

d2
σm

∫
Ω

I(t, x)
[∫

Ω

Lσ(x− y)ψ(x) dy −
∫
Ω

Lσ(x− y)ψ(y) dy
]
dx = −

∫
Ω

[β(x)− α(x)]ψ(x)I(t, x) dx,

by using (4.3), the first term becomes,

d2
σm

∫
Ω

ψ(x)

∫
Ω

Lσ(x− y)[I(t, y)− I(t, x)] dy dx = −
∫
Ω

[β(x)− α(x)]ψ(x)I(t, x) dx, (4.5)

we also have, ∫
Ω

ψ(x)

[
β(x)SI
S + I +R

− α(x)I
]
dx =

∫
Ω

ψ(x)I(t, x)
[
β(x)

S
S + I +R

− α(x)
]
dx, (4.6)

we rewrite the term (4.6) as follows,∫
Ω

ψ(x)

[
β(x)SI
S + I +R

− α(x)I
]
dx =

∫
Ω

ψ(x)I(t, x)
[
β(x)

(
S

S + I +R
− 1

)
+ β(x)− α(x)

]
dx, (4.7)

by combining (4.5) and (4.7) , we get

dV

dt
=

∫
Ω

ψ(x)I(t, x)
[
β(x)

(
S

S + I +R
− 1

)]
dx,

Since S
S+I+R = 1− I+R

S+I+R , then

S
S + I +R

− 1 = − I +R
S + I +R

≤ 0,

thus, ∫
Ω

ψ(x)Iβ(x)
(
− I +R
S + I +R

)
dx ≤ 0,

thus, we find dV
dt ≤ 0, and strictly negative unless I = 0, solutions converge to the invariant set where I = 0. To

confirm R → 0, we consider the Lyapunov function W (t) = 1
2

∫
Ω
R(t, x)2 dx, we compute the time derivative of

W , we have

dW

dt
=

∫
Ω

R
[
d3
σn

∫
Ω

Jσ(x− y)[R(t, y)−R(t, x)] dy + α(x)I − γ(x)R
]
dx,



20 S. BENTOUT AND S. DJILALI

the first term gives,

d3
σn

∫
Ω

R(t, x)
∫
Ω

Jσ(x− y)[R(t, y)−R(t, x)] dy dx, (4.8)

we rewrite (4.8), we have

d3
σn

∫
Ω

∫
Ω

Jσ(x− y)R(t, x)R(t, y) dy dx−
d3
σn

∫
Ω

R(t, x)2
∫
Ω

Jσ(x− y) dy dx, (4.9)

by applying the following,

−2R(t, x)R(t, y) = [R(t, y)−R(t, x)]2 −R(t, y)2 −R(t, x)2,

we obtain,∫
Ω

∫
Ω

Jσ(x− y)R(t, x)R(t, y) dy dx = −1

2

∫
Ω

∫
Ω

Jσ(x− y)[R(t, y)−R(t, x)]2 dy dx+

∫
Ω

R(t, x)2
∫
Ω

Jσ(x− y) dy dx,

(4.10)

by replacing (4.10) into (4.9), we get

− d3
2σn

∫
Ω

∫
Ω

Jσ(x− y)[R(t, y)−R(t, x)]2 dy dx ≤ 0,

we conclude that

dW

dt
≤ −2γW (t),

thus, R → 0 in L2(Ω), and smoothing ensures C(Ω) convergence. Hence, we get that W (t) → 0, which gives
R → 0 in L1(Ω), and nonlocal smoothing ensures R → 0 in C(Ω). Since I,R → 0, the first equation of (1.2)

reduces to ∂S
∂t ≈

d1
σm

∫
Ω
Jσ(x− y)[S(t, y)− S(t, x)] dy, driving S → S0.

Before presenting the main result of this section, we need to establish the following proposition.

Proposition 4.3. Let us consider (S(t, ·), I(t, ·),R(t, ·)) be the solution of (1.2), then if S0(·) ≤ S0(·) for onΩ,
we get that S(t, ·) ≤ S0(·), ∀x ∈ Ω.

Proof. By subtracting the equation (4.1) and the first equation of (1.2) and we set that S (t, x) = S (t, x) −
S0 (x) , we obtain that

∂S
∂t

=
d2
σm

∫
Ω

Lσ (x− y) [S (t, y)− S (t, x)] dy −
β(·)S(t, ·)I(t, ·)
S + I +R

+ γ(·)R(t, ·), ∀onΩ,

∂S
∂t

= AσSS −
β(·)S(t, ·)I(t, ·)
S + I +R

+ γ(·)R(t, ·), ∀x ∈ Ω,

(4.11)

since the operator AσS generates a positive semi-group {TS}t>0 by solving the last equation (4.11), we find that

S(t, ·) = TS(t)S0(·)−
∫ t

0

TS(t− s)
[
β(·)S(τ, ·)I(τ, ·)
S + I +R

]
dτ, (4.12)

given that S0(·) ≤ 0, it follows that S ≤ 0, which implies that S(t, ·) ≤ S0(·) for all x ∈ Ω.
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Now, we are ready to establish the global stability of IFE (GAS).

Theorem 4.4. Let R0 < 1, then the IFE is GAS.

Proof. By applying Proposition (4.3), we have that S(t, ·) ≤ S0(·), ∀onΩ, t ≥ 0, and if we suppose that
(I,R) ≤ (U1, U2) using the comparison principle on the second equation of (1.2), we have

∂U1

∂t
=

d2
σm

∫
Ω

Lσ (x− y) [I(t, y)− I(t, ·)] dy +
β(·)S0(·) + εU1

S0(·) + ε+ U1 + U2
− α(·)U1,

∂U2

∂t
=

d3
σm

∫
Ω

Lσ (x− y) [R(t, y)−R(t, ·)] dy − γ(·)U2,

from the fact that
S0(·) + ε

S0(·) + ε+ U1 + U2
≤ 1, by using again the comparison principle, we obtain that

∂V1
∂t

=
d2
σm

∫
Ω

Lσ (x− y) [V1(t, y)− V1(t, ·)] dy + β(·)V1 − α(·)V2,∈ Ω,

∂V2
∂t

=
d3
σm

∫
Ω

Lσ (x− y) [V2(t, y)− V2(t, ·)] dy − γ(·)V2 + α(·)V1,
(4.13)

we define the semi-group denoted as TI,R associated to the linear problem (4.13) such that

∥TI,R∥ ≤ C∗e
λ∗(d2,m)t,

by applying the proposition (3.1) since R0 < 1, which gives that λ∗ < 0. Consequently, we get that
(V1, V2) → (0, 0) , onΩ, ast → ∞. Furthermore, we obtain that (U1, U2) → (0, 0) , onΩ, ast → ∞. Thus,
(I,R) → (0, 0) , onΩ, ast → ∞. By using the first equation of (1.2), we need to show that S(t, ·) → S0(·),
uniformly for onΩ, as t→∞. Since (I,R)→ (0, 0) , as t→∞, the first equation of model (1.2) can be written
as follows,


∂S
∂t = d1

σm

∫
Ω

Lσ (x− y) [S(t, y)− S(t, ·)] dy,∫
Ω

S0(·)dx = N,

Now, we set that s(t, x) = S(t, ·)− S0(·), with s(t, ·) satisfies the following equation,

∂s

∂t
=

d1
σm

∫
Ω

Lσ(x− y) [s(t, y)− s(t, ·)] dy −
β(·)SI

S + I +R
+ γ(·)R(t, ·), (4.14)

we know that β(·), α(·) are a holder continuous then there exists a constant C > 0 such that

|γ(·)R(t, ·)− β(·)S(t, ·)I(t, ·)
S(t, ·) + I(t, ·) +R(t, ·)

| ≤ Ce−
1
4λ

∗(d1,m)t,



22 S. BENTOUT AND S. DJILALI

we also define V(t) =
∫
Ω

s2(t, ·) dx. By computing its derivative, we obtain,

dV(t)
dt

= 2

∫
s(t, ·)∂s(t, ·)

∂t
dx

= 2

∫
s(t, ·)

(
d2
σm

∫
Lσ(x− y) [s(t, y)− s(t, ·)] dy −

β(·)SI
S + I +R

+ γ(·)R(t, ·)
)

= 2
d2
σm

(∫ ∫
Lσ(x− y) (s(t, y)− s(t, ·))2 −

∫
s2(t, y) dy

)
+ 2

∫
Ω

s(t, ·)
(
γ(·)R(t, ·)− β(·)SI

S + I +R

)
dx

≤ −2 d2
σm
C∗V(t) + 2CNe−

1
4λ

∗(d1,m)t,

(4.15)

by integrating (4.15), we get that

V(t) ≤ V(0)e−2
d2
σm C∗t + 2e−2

d2
σm C∗tC∗N

∫ t

0

e(2
d2
σm C− 1

4λ
∗(d1,m))σdσ, (4.16)

we put A = −2 d2
σm C∗, B = 2C∗N, and C = 1

4λ
∗ (d1,m). Thus, by a simple computation, we get

V(t) ≤

{
(V(0) + 2Bt) eAt if C = A

2 ,(
V(0)eA

2 t + 2B
C−A

2

eCt
)
C ̸= A

2 ,
(4.17)

using (4.14), we obtain

s(t, ·) = s0(·)e−
d2
σm t + e−

d2
σm t

∫ t

0

e
d2
σm τ

(∫
Ω

Lσ(x− y)s(τ, y) dy + γ(·)R(τ, x)− β(·)SI
S + I +R

)
dτ,

it then follows from the Hölder’s inequality, we obtain∫
Ω

Lσ(x− y)s(τ, y) dy ≤ C∗∗ |V(t)|L2 ,

for C∗∗ > 0, we get

|s(t, ·)| ≤

{
α1e

− d1
σm t + (α2t+ α3)e

A
2 t + α4e

Ct if C = A
2 ,

α5e
− d1

σm t + α6e
A
2 t + α7e

Ct if C ̸= A
2 ,

with αi (for i = 1, . . . , 7) represent a positive constants. In fact that s(t, ·) ∈ C(Ω× (0,∞)), it follows that

s(t, ·)→ 0 uniformly on Ω as t→∞.

Remark 4.5. In the preceding theorem, we demonstrated that, in practice, the epidemic will eventually be
eradicated from our community. This approach serves as a valuable method for eliminating the transmission of



ASYMPTOTIC DYNAMICS OF SIRS EPIDEMIC MODEL WITH DISPERSAL BUDGETS 23

infectious diseases among the population. Additionally, it provides effective tools for controlling and halting the
spread of epidemics.

5. Positive endemic equilibrium states (PEES)

In this section, we aim to establish both the existence and uniqueness of the PEES, along with the corre-
sponding asymptotic profiles related to this phenomenon. Specifically, we will examine scenarios in which the
parameter σ influences the spread of disease within the community. The PEES satisfies the following system,


0 =

d1
σm

∫
Ω

Lσ(x− y)[S(y)− S(·)] dy −
β(·)S(·)I(·)
S + I +R

+ γ(·)R(·), onΩ,

0 =
d2
σm

∫
Ω

Lσ(x− y)[I(y)− I(·)] dy +
β(·)S(·)I(·)
S + I +R

− α(·)I(·), onΩ,

0 =
d3
σm

∫
Ω

Lσ(x− y)[R(y)−R(·)] dy − γ(·)R(·) + α(·)I(·), onΩ.

(5.1)

Furthermore, by summing the first and second equations of (1.2) and subsequently integrating the resulting
equation over Ω, we obtain the following result,

∂

∂t

∫
Ω

[S(t, ·) + I(t, ·) +R(t, ·)] dx = 0, ∀t ≥ 0. (5.2)

which implies that ∫
Ω

[S(t, ·) + I(t, ·) +R(t, ·)] dx = N, ∀t ≥ 0. (5.3)

Thus, we can deduce that (S(·), I(·),R(·)) verifies the following equation,∫
Ω

[S(·) + I(·) +R(·)] dx = N, (5.4)

by adding the three equations of (5.1), we get∫
Ω

Lσ(x− y)
[
(d1S

∗(y) + d2I(y) + d3R
∗)−

(
d1Ŝ(·) + d2Î(·) + d3R̂

)]
= 0, (5.5)

by using the same arguments as the Proposition (3.3) in [40], we obtain that

(d1S
∗(·) + d2I

∗(·) + d3R
∗(·)) = C∗, (5.6)

then, by setting that S̃∗ = S∗

C∗ , Ĩ∗ = d2I
∗

C∗ , R̃
∗ = d3R

∗

C∗ , it then follows that

(d1S
∗(·) + I∗(·) +R∗(·)) = 1, on ∈ Ω.

We proceed to show the existence at least of (PEES), denoted by E∗ = (S∗, I∗, R∗). This analysis utilizes
Theorem 3 from [41], as detailed in the following theorem.
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Theorem 5.1. We assume that R0 > 1, it then follows as there exists an at least solution
(
Ŝ∗, Î∗, R̂∗

)
of model

(5.1), and the model (1.2) is uniformly persistent which means that there exist δ > 0 such that

lim inf
t→∞

S(t, .) > δ, lim inf
t→∞

I(t, .) > δ, lim inf
t→∞

R(t, .) > δ

Furthermore, there exists at least at least of (PEES), Ẽ∗.

Proof. To proceed, we must confirm that all claims of Theorem 4.2 in [35] are satisfied. Let us define

X0 : = {ψ = (ψ1, ψ2, ϕ3) ∈ X+ : ψ2(·) ̸≡ 0 and ψ3(·) ̸≡ 0},
∂X0 = {ψ = (ψ1, ψ2, ψ3) ∈ X+ : ψ2(·) ≡ 0 or ψ3(·) ≡ 0},
M =

{
(S0, I0, R0) ∈ X+ : (S, I,R) ∈ ∂X0

}
.

(5.7)

To address the first claim, we define the following sets: ω(S0, I0, R0), representing the limit set of the orbit
{Φt(S0, I0, R0) : t ≥ 0}, and W s(S0, 0, 0), which denotes the stable set of the IFE . Moreover, we need to prove
that ΦtX0 ⊂ X0, ∀t ≥ 0. We consider (ψ1, ψ2, ψ3) ∈ X0, by applying the variation constant method into the
model (1.2), we get

S(t, ·) = ϕ1e
−

∫ t

0

d1
σm

∫
Ω

; /.Lσ (x− y) dy +
β(·)S(σ, ·)I(σ, ·)

S + I +R
dσ

+

∫ t

0

(
d1
σm

∫
Ω

Lσ(x− y)S(σ, y) dy + γ(·)R(σ, ·)
)
e
−

∫ t

σ

d1
σm

∫
Ω

Lσ (x− y) dy +
β(·)S(σ, ·)I(σ, ·)

S + I +R
dσ

dσ,

I(t, ·) = ϕ2e
−

 d2
σm

∫
Ω

Lσ (x− y) dy + α(·)
t

+

∫ t

0

(
d2
σm

∫
Ω

Lσ(x− y)I(σ, y) dy +
β(·)S(σ, ·)I(σ, ·)

S + I +R

)
e
−

 d2
σm

∫
Ω

Lσ (x− y) dy + α(·)
(t−σ)

dσ,

R(t, ·) = ϕ3e
−

 d3
σm

∫
Ω

Lσ (x− y) dy + γ(·)
t

+

∫ t

0

(
d3
σm

∫
Ω

Lσ(x− y)R(σ, y) dy + α(·)I(σ, ·)
)
e
−

 d3
σm

∫
Ω

Lσ (x− y) dy + γ(·)
(t−σ)

dσ,

(5.8)
Since this implies that S(t, ·), I(t, ·),R(t, ·) > 0 for all t ≥ 0 and x ∈ Ω, we can conclude that

(S(t, ·), I(t, ·),R(t, ·)) ∈ X0, with the property that ΦtX0 ⊂ X0.
In the second claim, it remains to establish that ω(ϕ) =

{
S0(·), 0, 0

}
for every initial condition (S0, I0, R0) ∈

M. We suppose by contradiction thatM ⊂
{
ψ1 ∈ C

(
R+, Ω̄

)
: (ψ1, 0, 0)

}
. Indeed, we have two cases I ≡ 0, R ̸=≡

0 and I ̸=≡ 0, R ≡ 0. In the first case, we assume that R ̸=≡ 0, since we have ΦtX0 ⊂ X0 then we obtain that
I(t, ·) > 0,∀onΩ, t > 0, which contradicts with the fact that I ∈M. In the second case, by (5.8), we obtain that
I(t, ·) > 0,R(t, ·)∀t ≥ 0, ∀onΩ, then we conclude that Φt (ψ) ∈ X0, which implies that ψ ∈M. Moreover, we
have ω(ψ) =

(
S0(·), 0, 0

)
,∀x ∈ Ω.
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In the last claim , we focus to investigate that E0(·) =
(
S(·), 0, 0

)
is a uniform weak repeller which means

there exists ε > 0, such that

lim sup
t→∞

∥∥Φt (S0, I0, R0)−
(
S0(·), 0, 0

)∥∥ ≥ ε, ∀ (S, I,R) ∈ X0.

We suppose by contradiction that there exists a ϵ > 0 such that

lim sup
t→∞

∥∥Φt (S0, I0, R0)−
(
S0(·), 0, 0

)∥∥ < ε,∀ (S, I,R) ∈ X0.

Moreover, we can find a t̃ > 0, with ∀t ≥ t̃, such that:

S0(·)− ε ≤ S(t, ·) 0 ≤ I(t, ·) ≤ δ̄, 0 ≤ I(t, ·) ≤ ε, 0 ≤ R(t, ·) ≤ ε, x ∈ Ω.

Since R0 > 1, applying Proposition (3.1) implies that λ(ε) > 0 for sufficiently small values of ε. Based on
this, we propose a model where I serves as an upper solution to the following model

The system under consideration is given by:

∂U
∂t =

d2
σm

∫
Ω

Lσ (x− y) (U(t, y)− U(t, ·)) dy + β(·) S
0(·)− ε

S0(·) + 2ε
U(t, ·)− α(·)U(t, ·), t > t̃, onΩ,

∂V
∂t =

d3
σm

∫
Ω

Lσ (x− y) (V (t, y)− V (t, ·)) dy + γ(·)V − α(·)U, onΩ,

U(t̃, ·) = I(t̃, ·) > 0, onΩ,

V (t̃, ·) = R(t̃, ·) > 0, onΩ,

by selecting a sufficiently small ε > 0 such that ε (ϕε2, ϕ
ε
3) ≤

(
I(t̃, · : ϕ2),R(t̃, · : ϕ3)

)
in Ω̄, it follows that (U, V ) =

εeλ
∗(ε)

(
ϕε1(t− t̃), ϕε2(·)(t− t̃)

)
serves as a subsolution to the system. Since λ(ε) > 0, which yields that U →

∞, V →∞, as t→∞. Additionally, we obtain that I →∞ and R→∞ as t→∞, which gives a contradiction
against Theorem (2.2).

Next, we use Theorem 3 in [41], we set the following function Ξ : X+ → R+ such that Ξ(ϕ) :=
min {minx∈Ω ϕ2(·),minx∈Ω ϕ3(·)} , ϕ ∈ X+, with ϕ2 = I, ϕ3 = R, we have that Ξ (Φt(ϕ)) > 0, ∀t > 0,
or Ξ (Φt(ϕ)) = 0,∀t > 0, it then follows that Ξ generalized a distance of Φt. By using the first claim, we can
deduce that ⋃

ϕ∈∂X0

ω(ϕ) = {E0}, and W s(E0) ∩ Ξ−1(0,∞) = ∅,

where W s(E0) represents the stable set of E0, then {E0} is an isolated invariant set in XH , and no subset of
{Q0} forms a cycle in ∂XH0 . Therefore, by [41], Theorem 3, there exists ς > 0 such that

min
ϕ∈L

Ξ(ϕ) > ς,

where L ⊂ X0 \ {E0} is any compact chain-transitive set. This result implies that

lim sup
t→∞

I(t, .) ≥ ς, lim sup
t→∞

R(t, .) ≥ ς,

for any non-zero initial value

(
I0
R0

)
∈ X0.
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By combining this with [42], Theorem 4.7, we conclude that system (1.2) possesses at least one PEES E∗,
in X0.

6. Asymptotic profiles of PEES

In this section, we examine the asymptotic behavior of PEES, demonstrating that the model converges to
PEES under the condition of sufficiently small of σ.

Theorem 6.1. Assuming that R0 > 1, and we suppose that m = 2, and σ → 0+, then we have

(S(·), I(·),R(·))→ (S∗(·), I∗(·), R∗(·)) ,

where (S∗(·), I∗(·), R∗(·)) represents a unique positive smooth solution to the following system:



d1D2(J )
2N ∆S∗(·)− β(·)S∗(·)I∗(·)

S∗(·)+I∗(·)+R∗(·) + γ(·)R∗(·) = 0, onΩ,

d2D2(J )
2N ∆I∗(·) + β(·)S∗(·)I∗(·)

S∗(·)+I∗(·)+R∗(·) − α(·)I
∗(·) = 0, on Ω,

d3D2(J )
2N ∆R∗(·) + α(·)I∗(·)− γ(·)R∗(·) = 0, onΩ,

∂S∗

∂n = ∂I∗

∂n = ∂R∗

∂n = 0, x ∈ ∂Ω,

where ∂/∂n represents the normal derivative on the boundary ∂Ω.

Proof. For m = 2, and by applying (3) in Theorem (3.2), we know that

λ∗(
d2D2

2N
∆) := inf

ψ∈H1
0 (Ω),ψ ̸≡0

∫
Ω

(
D2(J)
2N |∇φ|

2(·) dx
)

∫
Ω
β(·)ψ2(·)dx

+

∫
Ω

α(·)ψ2(·)dx∫
Ω

β(·)ψ2(·)dx
,

since R0 > 1, it then follows from (5.1) and (5.6), we have that

||S||L∞ ≤ C1
∗, ||I||L∞ ≤ C2

∗, ||R||L∞ ≤ C3
∗, (6.1)

and we set the following functions f(·) = − β(·)SI
S + I +R

+ γ(·)R, on Ω, and g(·) = β(·)SI
S + I +R

−α(·)I, on Ω, h =

α(·)I − γ(·)R, on Ω, by (6.1) and since β, α, γ are a Hölder continuous, then we obtain

||f ||L∞(Ω) ≤ C3
∗, ||g||L∞(Ω) ≤ C4

∗, ||h||L∞(Ω) ≤ C5
∗ (6.2)

where C3
∗,C

4
∗,C

5
∗ are a positive constants.



ASYMPTOTIC DYNAMICS OF SIRS EPIDEMIC MODEL WITH DISPERSAL BUDGETS 27

By multiplying the first, second and third equations of (5.1) by Sn, In, Rn, respectively, we get that

d1D2(Lσ)
2σnm

∫
Ω

∫
Ω

Jσn(x− y) [Sn(·)− Sn(y)]
2
dy dx =

∫
Ω

Sn(·)fn(·) dx,

d2D2(Lσ)
2σnm

∫
Ω

∫
Ω

Jσn
(x− y) [In(·)− In(y)]2 dy dx =

∫
Ω

In(·)gn(·) dx.

d3D2(Lσ)
2σnm

∫
Ω

∫
Ω

Jσn
(x− y) [Rn(·)−Rn(y)]2 dy dx =

∫
Ω

Rn(·)hn(·) dx,

(6.3)

we have that ζσ = 1
σ2D2(Lσ)

Jσn(z)|z|2, by using (6.3)−(5.6) and (6.2), we obtain that



D(Lσ)
2

∫
Ω

∫
Ω

ζσn
(z)

[Sn(·)− Sn(y)]2

|z|2
dy dx ≤ σm−2C3

∗
d1

,

D(Lσ)
2

∫
Ω

∫
Ω

ζσn
(z)

[In(·)− In(y)]2

|z|2
dy dx ≤ σm−2C4

∗
d2

.

D(Lσ)
2

∫
Ω

∫
Ω

ζσn
(z)

[Rn(·)−Rn(y)]2

|z|2
dy dx ≤ σm−2C5

∗
d3

,

since m = 2, we obtain that



D(Lσ)
2

∫
Ω

∫
Ω

ζσn
(z)

[Sn(·)− Sn(y)]2

|z|2
dy dx ≤ C3

∗
d1
,

D(Lσ)
2

∫
Ω

∫
Ω

ζσn
(z)

[In(·)− In(y)]2

|z|2
dy dx ≤ C4

∗
d2
.

D(Lσ)
2

∫
Ω

∫
Ω

ζσn
(z)

[Rn(·)−Rn(y)]2

|z|2
dy dx ≤ C5

∗
d3
.

Now, by employing the same arguments as Theorems 1.2 and 1.3 in [43], we find that a subsequence
(Snk

, Ink
, Rnk

) , such that

(Snk
(·), Ink

(·), Rnk
)← (S∗(·), I∗(·), R∗(·)) , ∈ L2(Ω), as k →∞,

where (S∗(·), I∗(·), R∗(·)) ∈W 1,2(Ω)×W 1,2(Ω)×W 1,2(Ω).
Next, we apply the Proposition 5.4 in [22], we obtain the following result

d1D2(Lσ)
2

∫
|z|<δ

∫
Ω

ζσn(z)
1

|z|2
Sn(·)

[
ϕS(x− z)− 2ϕS(·) + ϕS(x+ z)

]
dxdz −

∫
Ω

ϕS(·)fn(·) dx = 0,

dID2(J)

2

∫
|z|<δ

∫
Ω

ζσn(z)
1

|z|2
In(·)

[
ϕI(x− z)− 2ϕI(·) + ϕI(x+ z)

]
dxdz −

∫
Ω

gn(·)φI(·)dx = 0,

d3D2(J)

2

∫
|z|<δ

∫
Ω

ζσn
(z)

1

|z|2
Rn(·)

[
ϕR(x− z)− 2ϕR(·) + ϕR(x+ z)

]
dxdz −

∫
Ω

hn(·)ϕR(·)dx = 0,
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with the functions fn, gn, and hn are as previously defined in equation (6.3). By adding and substraction the
term ζσn

(z) 1
|z|2Sn(·)

[
zD2ϕSz

T
]
, with D2 = {∂ij}i,j , we find that

d1D2(Lσ)
2

∫
|z|<δ

∫
Ω

ζσn(z)
1

|z|2
Sn(·)

[
zD2ϕSz

T
]
dxdz −

∫
Ω

fn(·)ϕS(·)dx

= −d1D2(Lσ)
2

∫
|z|<δ

∫
Ω

ζσn
(z)

1

|z|2
Sn(·)

[
ϕS(x− z)− 2ϕS(·) + ϕS(x+ z)− zD2ϕSz

T
]
dxdz,

d2D2(Lσ)
2

∫
|z|<δ

∫
Ω

ζσn(z)
1

|z|2
In(·)[zD2ϕSz

T ]dxdz +

∫
Ω

gn(·)ϕI(·)dx

= −d2D2(Lσ)
2

∫
|z|<δ

∫
Ω

ζσn
(z)

1

|z|2
In(·)

[
ϕI(x− z)− 2ϕI(·) + ϕI(x+ z)− zD2ϕIz

T
]
dxdz,

d3D2(Lσ)
2

∫
|z|<δ

∫
Ω

ζσn(z)
1

|z|2
In(·)[zD2φIz

T ]dxdz +

∫
Ω

hn(·)ϕI(·)dx

= −d3D2(Lσ)
2

∫
|z|<δ

∫
Ω

ζσn
(z)

1

|z|2
Rn(·)

[
ϕR(x− z)− 2ϕR(·) + ϕR(x+ z)− zD2ϕRz

T
]
dxdz,

(6.4)

since the function ζσn
is radially symmetric, by apply the same approach as the proof of Theorem 1.4 in [22],

we can rewrite the following formulas:

d1D2(Lσ)
2

∫
|z|<δ

∫
Ω

ζσn
(z)

1

|z|2
Sn(·)[zD2ϕSz

T ]dxdz =
d1D2(Lσ)K2,N

2

∫
Ω

Sn(·)∆ϕS(·)dx,

d2D2(Lσ)
2

∫
|z|<δ

∫
Ω

ζσn(z)
1

|z|2
In(·)[zD2φIz

T ]dxdz =
d2D2(Lσ)K2,N

2

∫
Ω

In(·)∆ϕI(·)dx,

d3D2(Lσ)
2

∫
|z|<δ

∫
Ω

ζσn
(z)

1

|z|2
In(·)[zD2ϕRz

T ]dxdz =
d3D2(Lσ)K2,N

2

∫
Ω

Rn(·)∆ϕR(·)dx,

(6.5)

where K2,N =

∫
SN−1

(s · e1)2ds =
1

N
.

By substituting (6.5) into (6.4), we have

d1D2(Lσ)
2N

∫
Ω

Sn(·)∆ϕS(·)dx+

∫
Ω

fn(·)ϕS(·)dx,

= −d1D2(Lσ)
2

∫
|z|<δ

∫
Ω

ζσn
(z)

1

|z|2
Sn(·)

[
ϕS(x− z)− 2ϕS(·) + ϕS(x+ z)− zD2ϕSz

T
]
dxdz,

d2D2(Lσ)
2N

∫
Ω

In(·)∆φI(·)dx+

∫
Ω

gn(·)ϕI(·)dx,

= −d2D2(Lσ)
2

∫
|z|<δ

∫
Ω

ζσn(z)
1

|z|2
In(·)

[
ϕI(x− z)− 2ϕI(·) + ϕI(x+ z)− zD2ϕIz

T
]
dxdz,

d2D2(Lσ)
2N

∫
Ω

Rn(·)∆ϕR(·)dx+

∫
Ω

hn(·)ϕI(·)dx,

= −d3D2(Lσ)
2

∫
|z|<δ

∫
Ω

ζσn
(z)

1

|z|2
In(·)

[
ϕI(x− z)− 2ϕI(·) + ϕI(x+ z)− zD2ϕIz

T
]
dxdz,
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given that (Sn, In, Rn)→ (S∗(·), I∗, R∗) , ∈ L2(Ω), we obtain

∫
Ω

fn(·)ϕS(·)dx→
∫
Ω

f(·)ϕS(·)dx =

∫
Ω

−
[
β(·) S∗I∗

S∗ + I∗ +R∗ + γ(·)R∗
]
ϕSdx,∫

Ω

gn(·)φI(·)dx→
∫
Ω

g(·)φI(·)dx =

∫
Ω

[
β(·) S∗I∗

S∗ + I∗ +R∗ − α(·)I
∗
]
ϕIdx∫

Ω

hn(·)φR(·)dx→
∫
Ω

h(·)ϕR(·)dx =

∫
Ω

− [α(·)I∗ − γ(·)R∗]ϕRdx.

Since ϕS , ϕI , ϕR ∈ C∞
c (Ω), there exist constants C(ϕS), C(ϕI), and C(ϕR). We also define the characteristic

functions ∞B(ϕS), ∞B(ϕI), and ∞B(ϕR) corresponding to the sets B(ϕS), B(ϕI), and B(ϕR), respectively, such
that the following inequalities are satisfied,

∣∣ϕS(x− z)− 2ϕS(·) + ϕS(x+ z)− zD2ϕSz
T
∣∣ ≤ C(ϕS)|z|3∞B(ϕS),∣∣ϕI(x− z)− 2ϕI(·) + ϕI(x+ z)− zD2ϕIz

T
∣∣ ≤ C(ϕI)|z|3∞B(ϕS),∣∣ϕS(x− z)− 2ϕS(·) + ϕS(x+ z)− zD2ϕSz
T
∣∣ ≤ C(ϕR)|z|3∞B(ϕR),

(6.6)

we have that Sn(·), In(·), Rn(·) are uniformly bounded with respect to n, it then follows as

∣∣∣∣∣d1D2(Lσ)
2

∫
|z|<δ

∫
Ω

ζσn(z)|z|2Sn(·)
[
ϕS(x− z)− 2ϕS(·) + ϕS(x+ z)− zD2ϕSz

T
]
dx dz

∣∣∣∣∣
≤ ∥Sn∥L∞(Ω)C(ϕS)

∫
Ω

ζσn(z)|z|dz

≤ C1σn,

and

∣∣∣∣∣d2D2(Lσ)
2

∫
|z|<δ

∫
Ω

ρσn(z)|z|2In(·)
[
ϕI(x− z)− 2ϕI(·) + ϕI(x+ z)− zD2ϕIz

T
]
dxdz

∣∣∣∣∣
≤ ∥In∥L∞(Ω)C(ϕI)

∫
Ω

ζσn(z)|z|dz

≤ C2σn,

and

∣∣∣∣∣d3D2(Lσ)
2

∫
|z|<δ

∫
Ω

ζσn
(z)|z|2Rn(·)

[
ϕR(x− z)− 2ϕR(·) + ϕR(x+ z)− zD2ϕIz

T
]
dxdz

∣∣∣∣∣
≤ ∥Rn∥L∞(Ω)C(ϕR)

∫
Ω

ζσn
(z)|z|dz

≤ C3σn,

(6.7)
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as n→∞, we obtain σn → 0, which leads to the following system of equations,

d1D(Lσ)
2N

∫
Ω

S(·)∆ϕS(·) dx+

∫
Ω

fn(·)ϕS(·) dx = 0,

d2D(Lσ)
2N

∫
Ω

I(·)∆ϕI(·) dx+

∫
Ω

gn(·)φI(·) dx = 0,

d3D(Lσ)
2N

∫
Ω

I(·)∆ϕR(·) dx+

∫
Ω

hn(·)φI(·) dx = 0,

(6.8)

which implies that

d1D(Lσ)
2N

∆S∗(·)− β(·) S∗(·)I∗(·)
S∗(·) + I∗(·) +R∗(·)

+ γ(·)R∗(·) = 0, on ∈ Ω,

d2D(Lσ)
2N

∆I∗(·) + β(·) S∗(·)I∗(·)
S∗(·) + I∗(·) +R∗(·)

− α(·)I(·) = 0, on ∈ Ω,

d3D(Lσ)
2N

∆R∗(·)− γ(·)R∗(·) + α(·)I(·) = 0, on ∈ Ω,

(6.9)

with Neumann conditions:

∂S∗

∂n
=
∂I∗

∂n
=
∂R∗

∂n
= 0, on ∈ ∂Ω.

Finally, to show the regularity of the PEES (S∗(·), I∗(·), R∗(·)), we have that these functions are already
known to be bounded. By invoking elliptic regularity theory, we conclude that (S∗(·), I∗(·), R∗(·)) are in fact
smooth. Moreover, since σ → 0 (with σ being arbitrary), it follows that

(S(·), I(·),R(·))→ (S∗(·), I∗(·), R∗(·)) .

The following theorem investigates the asymptotic behavior of model (5.1) for m > 2.

Theorem 6.2. Assume that R0 > 1 and

∫
Ω

β(·)− α(·)dx > 0. Additionally, suppose that m > 2 and the kernel

Lσ is radially symmetric. Then, the solution (S(·), I(·),R(·)) of model (5.1) converges to (S∗(·), I∗(·), R∗(·)) as
σ → 0 with (S∗(·), I∗(·), R∗(·)) verifies

N

|Ω|
− C2

|Ω|

(
1 +

∫
Ω

α(·)
γ(·)

dx

)
,
N

|Ω|

∫
Ω

(β(·)− α(·)) dx

(
1 +

∫
Ω

α(·)
γ(·)

dx

)
∫
Ω

β(·)dx

|Ω|
+

∫
Ω

α(·)dx
(
1− 1

Ω

)
,

∫
Ω

α(·)
γ(·)

dxC2


.

Proof. Since R0 > 1, by using Theorem (5.1), there exists at least one PEES Ẽ∗ of the model (5.1). Next, we
consider (Sn, In, Rn) the solutions of the model (5.1), and we consider {σn} a sequence of σ such that σn → 0+

as n→∞.
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Using a similar approach as in (6.3), we obtain

D2(Lσ)
2

∫
Ω

∫
Ω

ζσn
(z)

[Sn(·)− Sn(y)]2

|z|2
dy dx ≤ σm−2C3

∗
d1

,

D2(Lσ)
2

∫
Ω

∫
Ω

ζσn
(z)

[In(·)− In(y)]2

|z|2
dy dx ≤ σm−2C4

∗
d2

.

D2(Lσ)
2

∫
Ω

∫
Ω

ζσn
(z)

[Rn(·)−Rn(y)]2

|z|2
dy dx ≤ σm−2C5

∗
d3

,

(6.10)

where ζσn
= 1

σ2D2(Lσ)
Jσn

(z)|z|2.
By applying the same reasoning as in Theorems 1.2 and 1.3 of [43], we conclude the existence of a subsequence

(Snk
, Ink

, Rnk
) such that

(Snk
(·), Ink

(·), Rnk
(·))→ (S∗(·), I∗(·), R∗(·)) in L2(Ω), as k →∞,

with (S∗(·), I∗(·), R∗(·)) ∈W 1,2(Ω)×W 1,2(Ω)×W 1,2(Ω).
We use (6.10), we can conclude ∫

Ω

|∇S∗|2 dx ≤ σm−2C3
∗

d1
,∫

Ω

|∇I∗|2 dx ≤ σm−2C4
∗

d2
,∫

Ω

|∇R∗|2 dx ≤ σm−2C5
∗

d3
.

(6.11)

Letting σ → 0+ in the inequalities (6.11), we obtain∫
Ω

|∇S∗|2 dx = 0,∫
Ω

|∇I∗|2 dx = 0,∫
Ω

|∇I∗|2 dx = 0,

which implies that S∗, I∗, R∗ are constants, we denoted these constants by C1,C2,C3, respectively, we deduce
that

Sn → C1, In → C2, Rn → C3, in L2(Ω). (6.12)

Next, it is essential to show that C1,C2,C3 are positive. The verification process is organized into distinct
cases, outlined as follows:

Case 1: In this scenario, we assume that the constants are all zero, implying C1 = C2 = C3 = 0, which
directly contradicts equation (5.3).

Case 2: We suppose that C1 > 0,C2 = C3 = 0, from the second equation of (5.1), we define Î as

În :=
In
||In||∞

,
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it is easy to get that ||În||∞ = 1, ∀n ∈ N, and În satisfies the equation

d2
σm

∫
Ω

Lσ(x− y)
[
În(y)− În(·)

]
dy + β(·) Sn(·)În(·)

Sn(·) + In(·) +Rn(·)
− α(·)În(·) = 0, on ∈ Ω, (6.13)

by using a method analogous to Theorems 1.2 and 1.3 of [43], it can be shown that limn→∞ În → 1.

By integrating both sides of (6.13) over Ω and taking the limit as n → ∞ we can obtain

∫
Ω

β(·) dx =∫
Ω

γ(·) dx, which gives a contradiction.

Case 3: In this scenario, we assume that C1 > 0, C2 > 0, C3 = 0, by intergrading the third equation of

(5.1), we get that

∫
Ω

α(·)dx = 0 which implies a contradiction.

Case 4: We assume that C1 = C2 = 0, C3 > 0, we integrate the first equation of (5.1), we obtain that∫
Ω

γ(·)dx = 0 which is also a contradiction.

Case 5: By assuming that C1 = C3 = 0, C2 > 0, by using also the second equation we obtain that

−
∫
Ω

α(·)dx = 0, which gives also a contradiction.

Case 6: in this case, we assume that C1 > 0, C2 > 0, C3 > 0,
by using the first-second and third equations of (5.1), we obtain that



∫
Ω

(C1 + C2 + C3) = N,

C1C2

∫
Ω

β(·)dx

C1 + C2 + C3
= C2

∫
Ω

α(·)dx,

C2

∫
Ω

α(·)dx = C3

∫
Ω

γ(·)dx,

(6.14)

which implies



C1 =
N

|Ω|
− C2

|Ω|

(
1 +

∫
Ω

α(·)
γ(·)

dx

)
,

C2 =
N

|Ω|

∫
Ω

(β(·)− α(·)) dx

(
1 +

∫
Ω

α(·)
γ(·)

dx

)
∫
Ω

β(·)dx

|Ω|
+

∫
Ω

α(·)dx
(
1− 1

Ω

)
,

C3 =

∫
Ω

α(·)
γ(·)

dxC2.
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7. Discussion and conclusion

In this work, we have established a SIRS epidemic model incorporating both nonlinear incidence which write

as
β(·)SI
S + I +R

and the nonlocal diffusion with a scaling factor σ and a cost parameter m. The principal results

outcomes are abstracted in the following points:

� Firstly, we have proved the existence-uniqueness of the solutions of (1.2) by constructing (1.2) as a Cauchy
system . Furthermore, we employ the semi-group theories to demonstrate the global existence of solutions.

� We have shown R0 . By applying the same methodology akin to [3], we can get the same formula of (3.8)
which have a relationship the principal eigenvalue λ∗, the difficult task in this model is to show that model
(1.2) has an uniqe PEES . Specifically, if R0 < 1, then we conclude that the infectious is predicted to be
extinct; otherwise, when R0 > 1, then the epidemic persists.

� We have showed the persistence of the model for R0 > 1, which can be very important in showing the
existence of at least one PEES.

� The main objective of this paper was to provide the asymptotic dynamics of SIRS epidemic model when
for a small σ and a nonlinear incidence rates.

The study of asymptotic profiles in epidemic models has garnered increasing attention in recent years (e.g.,
[3, 5, 17, 29]). The mobility of individuals plays a critical role in the spread of infectious diseases. Our analysis
highlights that when the scaling parameter σ is very small, the coexistence of individuals is guaranteed, lead-
ing to the persistence of infections. Such findings have significant implications for mathematical modeling in
epidemiology and other applications, including SIS epidemic model (see, for instance, [3, 5]).

In this work, we considered nonlinear incidence functions where the denominator is the total population,
providing a more realistic representation of interactions between susceptible and infected individuals. Future
research could extend this framework to incorporate generalized incidence functions of the form f(S, I,R).
Exploring such extensions may yield new insights into the dynamics of epidemic models and offer a broader
perspective on interaction mechanisms (see [5, 16, 44]).

Our results also emphasize the significant impact of nonlocal diffusion on the epidemic model (1.2). When
the scaling factor σ is small, and the cost parameter m > 2, we identified high-risk regions defined by:{

x ∈ Ω :

∫
Ω

(β(·)− α(·)) dx > 0

}
,

where the basic reproduction number R0 > 1. In such regions, the spread of the epidemic poses a severe
threat, as susceptible individuals entering these areas are likely to contribute to further disease transmission.
Furthermore, the model predicts that recovered individuals may lose their immunity, presenting additional
challenges for disease control.

To mitigate these risks, it is crucial for governments to identify and control these high-risk regions. Measures
such as restricting the movement of susceptible and recovered individuals into these areas through confinement,
combined with public awareness campaigns via media, can be effective in reducing the spread of the epidemic.
These strategies are vital for minimizing potential harm and ensuring public health safety.

It is worth emphasizing that the diffusion patterns of individuals are not uniform, and the scaling factors for
dispersal kernels vary among different groups. It is more logical and reasonable to consider distinct dispersal
kernels and scaling factors for different individuals, as this approach better reflects natural movement behaviors.
This modeling perspective is both insightful and practical, offering a more realistic description of individual
movement. In the future, exploring such differentiated movement dynamics could provide valuable insights and
open new avenues for research.

For R0 < 1, we have demonstrated that the infection-free equilibrium (IFE) is globally asymptotically stable,
indicating the eventual elimination of the epidemic. This aligns with the results obtained by Allen et al. [1]
in the context of models involving local diffusion. However, our framework incorporates reinfection and spatial
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heterogeneity, which strengthens the conclusion that uniform intervention strategies remain effective across
the spatial domain Ω. The proposed model broadens classical SIRS-type formulations by introducing nonlocal
dispersal, spatial variability in parameters, and a nonlinear transmission term. This allows for a more nuanced
representation of epidemic behavior in heterogeneous environments. Our results on the role of dispersal σ
contribute new perspectives to the existing body of work. Notably, the analysis related to the dispersal scale
provides important insights relevant to public health. In comparison with models based on local diffusion [1, 13–
15], metapopulation frameworks [45], and spatially homogeneous nonlocal systems [3], our study captures richer
spatial effects that are particularly pertinent for emerging infectious diseases. From a practical standpoint, the
result that R0 < 1 ensures disease elimination is encouraging. At the same time, the possibility of persistence
for small dispersal values σ points to the threat of localized outbreaks.

These observations are consistent with previous studies such as [13, 14], which highlighted the importance
of spatial factors in epidemic control, and Pan et al. [15], who examined the SIRS model in a heterogeneous
setting with logistic growth. Overall, our work emphasizes the importance of large-scale public health actions,
such as travel restrictions, in preventing the spatial propagation of infection.

In our research, we have constructed the asymptotic behavior of the model (1.2) based on the notion that
the kernel scaling σ is very small which represents to a plan of dispersing many offspring on a local range,
which is considered to be quite significant. We will, however, demonstrate the behavior for scaling in the future,
which is quite enormous which considered to maximize the analysis of the environment at the expense of the
number of hers dispersed. The asymptotic behavior of the model and the potential impact of environmental
exploration on the number of scattered offspring may be demonstrated, in fact, by employing the identical
arguments developed in the cited work [21]. Age structure has a significant effect in the influence of infectious
diseases (see, for example, [44, 46]) on the model’s behavior; we will investigate this strategy further in the
future.

Our SIRS model with nonlocal diffusion and spatial heterogeneity establishes a robust framework for under-
standing infectious disease dynamics, as demonstrated by our results on well-posedness, global attractors, and
the role of dispersal parameters. To further enhance the realism of our model, an future work is to incorporate
memory effects to describe how individuals’ knowledge of a disease effect its spread. As individuals acquire
information about past infectious (e.g., through media or personal experience), their behaviors, such as social
distancing or vaccination uptake, may depend on historical disease states. Replacing the classical time deriva-
tives in (1.2) with the Hattaf mixed fractional derivative or fractal-fractional derivative, as introduced
in [47, 48], could model these memory effects. These advanced operators show the temporal nonlocality and
fractal structures, potentially revealing delayed or persistent epidemic dynamics driven by biological memory.
Such an extension would complement our nonlocal spatial diffusion, offering deeper insights into diseases like
COVID-19, where public awareness significantly transmission. We aim to pursue these fractional approaches in
future work strengthen the model’s utility for public health strategies.

Data availability statement

No new data/codes were created or analyzed in this study.
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