Free Access
Issue
Math. Model. Nat. Phenom.
Volume 7, Number 2, 2012
Solitary waves
Page(s) 146 - 154
DOI https://doi.org/10.1051/mmnp/20127212
Published online 29 February 2012
  1. N.D. Alikakos, G. Fusco. Slow dynamics for the Cahn-Hilliard equation in higher space dimensions. I. Spectral estimates. Comm. Partial Differential Equations, 19 (1994), No. 9-10, 1397–1447. [CrossRef] [MathSciNet] [Google Scholar]
  2. N. Benkirane. Propriété d’indice en théorie Holderienne pour des opérateurs elliptiques dans . CRAS, 307, série I (1988), 577–580. [Google Scholar]
  3. L.A. Caffarelli, N.E. Muler. An L bound for solutions of the Cahn-Hilliard equation. Arch. Rational Mech. Anal., 133 (1995), No. 2, 129–144. [CrossRef] [MathSciNet] [Google Scholar]
  4. H.L. Cycon, R.G. Froese, W. Kirsch, B. Simon. Schrödinger operators with application to quantum mechanics and global geometry. Springer-Verlag, Berlin, 1987. [Google Scholar]
  5. A. Ducrot, M. Marion, V. Volpert. Systemes de réaction-diffusion sans propriété de Fredholm. CRAS, 340 (2005), 659–664. [Google Scholar]
  6. A. Ducrot, M. Marion, V. Volpert. Reaction-diffusion problems with non Fredholm operators. Advances Diff. Equations, 13 (2008), No. 11-12, 1151–1192. [Google Scholar]
  7. P.J. Flory. Thermodynamics of high polymer solutions. J.Chem.Phys., 10 (1942), 51–61. [CrossRef] [Google Scholar]
  8. P. Howard. Spectral analysis of stationary solutions of the Cahn-Hilliard equation. Adv. Differential Equations, 14 (2009), No. 1-2, 87–120. [MathSciNet] [Google Scholar]
  9. B.L.G. Jonsson, M. Merkli, I.M. Sigal, F. Ting. Applied Analysis. In preparation. [Google Scholar]
  10. T. Kato. Wave operators and similarity for some non-selfadjoint operators. Math. Ann., 162 (1965/1966), 258–279. [CrossRef] [MathSciNet] [Google Scholar]
  11. M.D. Korzec, P.L. Evans, A. Münch, B. Wagner. Stationary solutions of driven fourth- and sixth-order Cahn-Hilliard-type equations. SIAM J. Appl. Math., 69 (2008), No. 2, 348–374. [CrossRef] [MathSciNet] [Google Scholar]
  12. E. Lieb, M. Loss. Analysis. Graduate studies in Mathematics, 14. American Mathematical Society, Providence, 1997. [Google Scholar]
  13. M. Reed, B. Simon. Methods of Modern Mathematical Physics, III : Scattering Theory, Academic Press, 1979. [Google Scholar]
  14. I. Rodnianski, W. Schlag. Time decay for solutions of Schrödinger equations with rough and time-dependent potentials. Invent. Math., 155 (2004), No. 3, 451–513. [CrossRef] [MathSciNet] [Google Scholar]
  15. T.V. Savina, A.A. Golovin, S.H. Davis, A.A. Nepomnyaschy, P.W.V oorhees. Faceting of a growing crystal surface by surface diffusion. Phys. Rev. E, 67 (2003), 021606. [CrossRef] [Google Scholar]
  16. V.A. Shchukin and D. Bimberg. Spontaneous ordering of nanostructures on crystal surfaces. Rev. Modern Phys., 71 (1999), No. 4, 1125–1171. [CrossRef] [Google Scholar]
  17. V. Volpert, B. Kazmierczak, M. Massot, Z. Peradzynski. Solvability conditions for elliptic problems with non-Fredholm operators. Appl. Math., 29 (2002), No. 2, 219–238. [CrossRef] [MathSciNet] [Google Scholar]
  18. V. Vougalter, V. Volpert. Solvability conditions for some non Fredholm operators. Proc. Edinb. Math. Soc. (2), 54 (2011), No. 1, 249–271. [CrossRef] [MathSciNet] [Google Scholar]
  19. V. Vougalter, V. Volpert. On the solvability conditions for some non Fredholm operators. Int. J. Pure Appl. Math., 60 (2010), No. 2, 169–191. [MathSciNet] [Google Scholar]
  20. V. Vougalter, V. Volpert. On the solvability conditions for the diffusion equation with convection terms. Commun. Pure Appl. Anal., 11 (2012), No. 1, 365–373. [CrossRef] [MathSciNet] [Google Scholar]
  21. V. Vougalter, V. Volpert. Solvability relations for some non Fredholm operators. Int. Electron. J. Pure Appl.Math., 2 (2010), No. 1, 75–83. [Google Scholar]
  22. V. Volpert, V. Vougalter. On the solvability conditions for a linearized Cahn-Hilliard equation. To appear in Rendiconti dell’Instituto di Matematica dell’Universita di Trieste. [Google Scholar]
  23. V. Vougalter, V. Volpert. Solvability conditions for some systems with non Fredholm operators. Int. Electron. J. Pure Appl.Math., 2 (2010), No. 3, 183–187. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.