Free Access
Issue
Math. Model. Nat. Phenom.
Volume 7, Number 2, 2012
Solitary waves
Page(s) 146 - 154
DOI https://doi.org/10.1051/mmnp/20127212
Published online 29 February 2012
  1. N.D. Alikakos, G. Fusco. Slow dynamics for the Cahn-Hilliard equation in higher space dimensions. I. Spectral estimates. Comm. Partial Differential Equations, 19 (1994), No. 9-10, 1397–1447. [CrossRef] [MathSciNet]
  2. N. Benkirane. Propriété d’indice en théorie Holderienne pour des opérateurs elliptiques dans . CRAS, 307, série I (1988), 577–580.
  3. L.A. Caffarelli, N.E. Muler. An L bound for solutions of the Cahn-Hilliard equation. Arch. Rational Mech. Anal., 133 (1995), No. 2, 129–144. [CrossRef] [MathSciNet]
  4. H.L. Cycon, R.G. Froese, W. Kirsch, B. Simon. Schrödinger operators with application to quantum mechanics and global geometry. Springer-Verlag, Berlin, 1987.
  5. A. Ducrot, M. Marion, V. Volpert. Systemes de réaction-diffusion sans propriété de Fredholm. CRAS, 340 (2005), 659–664.
  6. A. Ducrot, M. Marion, V. Volpert. Reaction-diffusion problems with non Fredholm operators. Advances Diff. Equations, 13 (2008), No. 11-12, 1151–1192.
  7. P.J. Flory. Thermodynamics of high polymer solutions. J.Chem.Phys., 10 (1942), 51–61. [CrossRef]
  8. P. Howard. Spectral analysis of stationary solutions of the Cahn-Hilliard equation. Adv. Differential Equations, 14 (2009), No. 1-2, 87–120. [MathSciNet]
  9. B.L.G. Jonsson, M. Merkli, I.M. Sigal, F. Ting. Applied Analysis. In preparation.
  10. T. Kato. Wave operators and similarity for some non-selfadjoint operators. Math. Ann., 162 (1965/1966), 258–279. [CrossRef] [MathSciNet]
  11. M.D. Korzec, P.L. Evans, A. Münch, B. Wagner. Stationary solutions of driven fourth- and sixth-order Cahn-Hilliard-type equations. SIAM J. Appl. Math., 69 (2008), No. 2, 348–374. [CrossRef] [MathSciNet]
  12. E. Lieb, M. Loss. Analysis. Graduate studies in Mathematics, 14. American Mathematical Society, Providence, 1997.
  13. M. Reed, B. Simon. Methods of Modern Mathematical Physics, III : Scattering Theory, Academic Press, 1979.
  14. I. Rodnianski, W. Schlag. Time decay for solutions of Schrödinger equations with rough and time-dependent potentials. Invent. Math., 155 (2004), No. 3, 451–513. [CrossRef] [MathSciNet]
  15. T.V. Savina, A.A. Golovin, S.H. Davis, A.A. Nepomnyaschy, P.W.V oorhees. Faceting of a growing crystal surface by surface diffusion. Phys. Rev. E, 67 (2003), 021606. [CrossRef]
  16. V.A. Shchukin and D. Bimberg. Spontaneous ordering of nanostructures on crystal surfaces. Rev. Modern Phys., 71 (1999), No. 4, 1125–1171. [CrossRef]
  17. V. Volpert, B. Kazmierczak, M. Massot, Z. Peradzynski. Solvability conditions for elliptic problems with non-Fredholm operators. Appl. Math., 29 (2002), No. 2, 219–238. [CrossRef] [MathSciNet]
  18. V. Vougalter, V. Volpert. Solvability conditions for some non Fredholm operators. Proc. Edinb. Math. Soc. (2), 54 (2011), No. 1, 249–271. [CrossRef] [MathSciNet]
  19. V. Vougalter, V. Volpert. On the solvability conditions for some non Fredholm operators. Int. J. Pure Appl. Math., 60 (2010), No. 2, 169–191. [MathSciNet]
  20. V. Vougalter, V. Volpert. On the solvability conditions for the diffusion equation with convection terms. Commun. Pure Appl. Anal., 11 (2012), No. 1, 365–373. [CrossRef] [MathSciNet]
  21. V. Vougalter, V. Volpert. Solvability relations for some non Fredholm operators. Int. Electron. J. Pure Appl.Math., 2 (2010), No. 1, 75–83.
  22. V. Volpert, V. Vougalter. On the solvability conditions for a linearized Cahn-Hilliard equation. To appear in Rendiconti dell’Instituto di Matematica dell’Universita di Trieste.
  23. V. Vougalter, V. Volpert. Solvability conditions for some systems with non Fredholm operators. Int. Electron. J. Pure Appl.Math., 2 (2010), No. 3, 183–187.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.