Issue
Math. Model. Nat. Phenom.
Volume 12, Number 2, 2017
Eco-epidemiology
Page(s) 133 - 161
DOI https://doi.org/10.1051/mmnp/201712208
Published online 21 April 2017
  1. V. Ajraldi, M. Pittavino, E. Venturino. Modelling herd behavior in population systems. Nonlinear Anal. Real World Appl., 12 (2011), 2319–2338. [Google Scholar]
  2. S. Belvisi, E. Venturino. An ecoepidemic model with diseased predators and prey group defense. SIMPAT, 34 (2013), 144–155. [Google Scholar]
  3. P.A. Braza. Predator-prey dynamics with square root functional responses. Nonlinear Anal. Real World Appl., 13 (2012), 1837–1843. [Google Scholar]
  4. E. Cagliero, E. Venturino. Ecoepidemics with infected prey in herd defense: the harmless and toxic cases. Int. J. Comp. Math., 93(1) (2016), 108–127. [CrossRef] [Google Scholar]
  5. S. Chakraborty, B.W. Kooi, B. Biswas, J. Chattopadhyay. Revealing the role of predator interference in a predator-prey system with disease in prey population. Ecol. Complex., 21 (2015), 100–111. [CrossRef] [Google Scholar]
  6. A. Dhooge, W. Govaerts, Yu.A. Kuznetsov. MatCont: A MATLAB package for numerical bifurcation analysis of ODEs. ACM Transactions on Mathematical Software, 29 (2003), 141–164. [CrossRef] [MathSciNet] [Google Scholar]
  7. A. Dhooge, W. Govaerts, Yu.A. Kuznetsov, H.G.E. Meijer, B. Sautois. New features of the software MATCONT for bifurcation analysis of dynamical systems. Mathematical and Computer Modelling of Dynamical Systems, 14 (2008), 147–175. [CrossRef] [MathSciNet] [Google Scholar]
  8. O. Diekmann, J.A.P. Heesterbeek. Mathematical Epidemiology of Infectious Diseases, Model building, analysis and interpretation. Wiley 2000. [Google Scholar]
  9. O. Diekmann, J.A.P. Heesterbeek, J.A.J. Metz. On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations. J. Math Biol, 28 (1990), 365–382. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  10. E.J. Doedel, B. Oldeman. Auto 07p: Continuation and bifurcation software for ordinary differential equations. Technical report, Concordia University. Montreal, Canada, 2009. [Google Scholar]
  11. J-P. Françoise, J. Llibre. Analytical study of a triple Hopf bifurcation in a tritrophic food chain model. Applied Mathematics and Computation, 217 (2011), 7146–7154. [CrossRef] [MathSciNet] [Google Scholar]
  12. N. Ferrari, R. Rosà, P. Lanfranchi, K.E. Ruckstuhl. Effect of sexual segregation on host-parasite interaction: Model simulation for abomasal parasite dynamics in alpine ibex (Capra ibex) International Journal for Parasitology, 40 (2010) 1285–1293. [CrossRef] [PubMed] [Google Scholar]
  13. G. Gimmelli, B.W. Kooi, E. Venturino. Ecopidemic models with prey group defense and feeding saturation. Ecol. Complex., 22 (2015), 50–58. [CrossRef] [Google Scholar]
  14. K.P. Hadeler, P. van den Driessche. Backward bifurcation in epidemic control. Math. Biosc, 146 (1997), 15–35. [Google Scholar]
  15. J.A.P. Heesterbeek. A brief history of R0 and a recipe for its calculation. Acta Biotheoretica, 50 (2002), 189–204. [CrossRef] [PubMed] [Google Scholar]
  16. F.M. Hilker, H. Malchow. Strange periodic attractors in a prey-predator system with infected prey. Math. Popul. Stud., 13 (2006), 119–134. [CrossRef] [MathSciNet] [Google Scholar]
  17. F.M. Hilker, H. Malchow, M. Langlais, S.V. Petrovskii. Oscillations and waves in a virally infected plankton system Part II: Transition from lysogeny to lysis. Ecol. Complex., 3 (2006), 200–208. [CrossRef] [Google Scholar]
  18. W.O. Kermack, A.G. McKendrick. A contribution to the mathematical theory of epidemics. Proc R Soc Lond, 115 (1927), 700–721. [Google Scholar]
  19. B.W. Kooi, E. Venturino. Ecoepidemic predator-prey model with feeding satiation, prey herd behavior and abandoned infected prey. Math. Biosc, 274 (2016), 58–72. [Google Scholar]
  20. M. Kot. Elements of Mathematical Ecology Cambridge University Press. Cambridge, 2001. [Google Scholar]
  21. Yu.A. Kuznetsov, S. Rinaldi. Remarks on food chain dynamics. Math Biosci, 124 (1996), 1–33. [CrossRef] [Google Scholar]
  22. J. Li, D. Blakeley, R.J. Smith. The Failure of R0. Computational and Mathematical Methods in Medicine, (2011), 1–17. [CrossRef] [Google Scholar]
  23. Maple Software. Maplesoft: Waterloo, Ontario, Canada, 2016. [Google Scholar]
  24. X. Ma, Y. Shao, Z. Wang, M. Luo, X. Fang, Z. Ju. An impulsive two-stage predator-prey model with stage-structure and square root functional responses. Mathematics and Computers in Simulation, 119 (2016), 91–107. [CrossRef] [MathSciNet] [Google Scholar]
  25. D. Melchionda, E. Pastacaldi, C. Perri, E. Venturino. Modelling pack hunting and prey herd behavior. Proceedings of the 2013 International Conference on Computational and Mathematical Methods in Science and Engineering 3, Editors: I.P. Hamilton et al. Almeria, Spain, (2013), 1017–1028. [Google Scholar]
  26. E. Venturino, S. Petrovskii. Spatiotemporal behavior of a prey-predator system with a group defense for prey. Ecological Complexity, 14 (2013), 37–47. [Google Scholar]
  27. M.L. Rosenzweig. Paradox of enrichment: destabilization of exploitation ecosystems in ecological time. Science, 171 (1971), 385–387. [CrossRef] [PubMed] [Google Scholar]
  28. B. Sahoo. Role of additional food in eco-epidemiological system with disease in the prey. Applied Mathematics and Computation, 259 (2015), 61–79. [CrossRef] [MathSciNet] [Google Scholar]
  29. K.V.I. Saputra, L. van Veen, G.R.W. Quispel. The saddle-node-transcritical bifurcation in a population model with constant rate harvesting. Dynamics of Continuous Discrete and Impulsive Systems-Series B-Mathematical Analysis, 14 (2010), 233–250. [CrossRef] [Google Scholar]
  30. S. Sun, C. Guo, C. Qin. Dynamic behaviors of a modified predator-prey model with state-dependent impulsive effects. Advances in Difference Equations, 14 (2016), 2016:50. [CrossRef] [Google Scholar]
  31. T.R. Thieme. Mathematics in Population Biology. Princeton University Press 2003. [Google Scholar]
  32. E. Venturino. A minimal model for ecoepidemics with group defense. Journal of Biological Systems, 19(4) (2011), 763–785. [CrossRef] [MathSciNet] [Google Scholar]
  33. E. Venturino. Ecoepidemiology: a more comprehensive view of population interactions. Mathematical Modelling of Natural Phenomena, 11(1) (2016), 49–90. [Google Scholar]
  34. G.A.K. van Voorn, B.W. Kooi. Smoking epidemic eradication in a eco-epidemiological dynamical model. Ecological Complexity, 8 (2013), 180–189. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.