Math. Model. Nat. Phenom.
Volume 14, Number 2, 2019
Mathematical modelling in cardiology
Article Number 207
Number of page(s) 27
Published online 06 December 2019
  1. B. Andreianov, M. Bendahmane, K. Karlsen and C. Pierre, Convergence of discrete duality finite volume schemes for the cardiac bidomain model. Netw. Heterog. Media 6 (2011) 195–240. [CrossRef] [MathSciNet] [Google Scholar]
  2. B. Andreianov, M. Bendahmane, A. Quarteroni and R. Ruiz-Baier, Solvability analysis and numerical approximation of linearized cardiac electromechanics. Math. Models Methods Appl. Sci. 25 (2015) 959. [Google Scholar]
  3. A. Belmiloudi, Nonlinear optimal control problems of degenerate parabolic equations with logistic time varying delays of convolution type. Nonlinear Anal. 63 (2005) 1126–1152. [CrossRef] [Google Scholar]
  4. A. Belmiloudi, Stabilization, optimal and robust control. Theory and applications in biological and physical sciences. Springer-Verlag, London (2008). [Google Scholar]
  5. A. Belmiloudi, Robust control problem of uncertain bidomain models in cardiac electrophysiology. J. Coup. Syst. Multisc. Dyn. 19 (2013) 332–350. [CrossRef] [Google Scholar]
  6. A. Belmiloudi, Dynamical behavior of nonlinear impulsive abstract partial differential equations on networks with multiple time-varying delays and mixed boundary conditions involving time-varying delays. J. Dyn. Control Syst. 21 (2015) 95–146. [Google Scholar]
  7. A. Belmiloudi, Mathematical modeling and optimal control problems in brain tumor targeted drug delivery strategies. Int. J. Biomath. 10 (2017) 1750056. [CrossRef] [Google Scholar]
  8. A. Belmiloudi and S. Corre, Mathematical modeling and analysis of dynamic effects of multiple time-varying delays on electrophysiological wave propagation in the heart. Nonlinear Anal. Real World Appl. 47 (2019) 18–44. [Google Scholar]
  9. M. Bendahmane and K.H. Karlsen, Analysis of a class of degenerate reaction-diffusion systems and the bidomain model of cardiac tissue. Netw. Heterog. Media 1 (2006) 185–218. [CrossRef] [Google Scholar]
  10. M. Boulakia, M.A. Fernandez, J.-F. Gerbeau and N. Zemzemi, A coupled system of PDEs and ODEs arising in electrocardiograms modeling. Appl. Math. Res. Express 2008 (2008) abn002. [Google Scholar]
  11. M. Boulakia, S. Cazeau, M.A. Fernández, J.-F. Gerbeau and N. Zemzemi, Mathematical modeling of electrocardiograms: a numerical study. Ann. Biomed. Eng. 38 (2009) 1071–1097. [CrossRef] [PubMed] [Google Scholar]
  12. Y. Bourgault, Y. Coudiere and C. Pierre, Existence and uniqueness of the solution for the bidomain model used in cardiac electrophysiology. Nonlinear Anal. Real World Appl. 10 (2009) 458–482. [Google Scholar]
  13. N. Buric and D. Todorovic, Dynamics of FitzHugh-Nagumo excitable systems with delayed coupling. Phys. Rev. E 67 (2003) 066222. [Google Scholar]
  14. N. Buric, D. Todorovic and N. Vasovic, Dynamics of noisy FitzHugh-Nagumo neurons with delayed coupling. Chaos Solitons Fract. 40 (2009) 2405–2413. [CrossRef] [Google Scholar]
  15. S.R. Campbell and D. Wang, Relaxation oscillators with time delay coupling. Physica D 111 (1998) 151–178. [Google Scholar]
  16. J.O. Campos, R.S. Oliveira, R.W. dos Santos and B.M. Rochaac, Lattice Boltzmann method for parallel simulations of cardiac electrophysiology using GPUs. J. Comput. Appl. Math. 295 (2016) 70–82. [Google Scholar]
  17. Z. Chai and B.C. Shi, Novel Boltzmann model for the Poisson equation. Appl. Math. Model. 32 (2008) 2050–2058. [Google Scholar]
  18. P. Colli Franzone and G. Savaré, Degenerate evolution systems modeling the cardiac electric field at micro- and macroscopic level, in Evolution Equations, Semigroups and Functional Analysis, edited by A. Lorenzi, B. Ruf. Birkhauser, Basel (2002) 49–78. [CrossRef] [Google Scholar]
  19. S. Corre and A. Belmiloudi, Coupled lattice boltzmann modeling of bidomain type models in cardiac electrophysiology, in Mathematical and Computational Approaches in Advancing Modern Science and Engineering, edited by J. Bélair, I. Frigaard, H. Kunze, R. Melnik, J. Spiteri. Springer (2016) 209–221. [Google Scholar]
  20. S. Corre and A. Belmiloudi, Coupled lattice Boltzmann method for numerical simulations of fully coupled Heart and Torso bidomain system in electrocardiology. J. Coupl. Syst. Multisc. Dyn. Am. Sci. Publ. 4 (2016) 207–229. [CrossRef] [Google Scholar]
  21. H. Dal, S. Goktepe, M. Kaliske and E. Kuhl, A fully implicit finite element method for bidomain models of cardiac electromechanics. Comput. Methods Appl. Mech. Eng. 253 (2013) 323–336. [PubMed] [Google Scholar]
  22. S. Dellacherie, Construction and analysis of lattice Boltzmann methods applied to a 1d convection-diffusion equation. Acta. Appl. Math. 131 (2014) 69–140. [Google Scholar]
  23. K. Djabella, M. Landau and M. Sorine, A two-variable model of cardiac action potential with controlled pacemaker activity and ionic current interpretation. 46th IEEE Conf. Decis. Control (2007) 5186–5191. [Google Scholar]
  24. M. Dupraz, S. Filippi, A. Gizzi, A. Quarteroni and R. Ruiz-Baier, Finite element and finite volume-element simulation of pseudo-ECGs and cardiac alternans. Math. Methods Appl. Sci. 38 (2015) 1046–1058. [Google Scholar]
  25. Z. Fan, Y. Zhao, A. Kaufman and Y. He, Adapted unstructured LBM for flow simulation on curved surfaces, in Procs. ofthe 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation (2005) 245–254. [CrossRef] [Google Scholar]
  26. L. Glass, Synchronization and rhythmic processes in physiology. Nature 410 (2001) 277–284. [Google Scholar]
  27. C.-B. Gan, P. Matjaz and Q.-Y. Wang, Delay-aided stochastic multiresonances on scale-free FitzHugh Nagumo neuronal networks. Chin. Phys. B 19 (2010). [Google Scholar]
  28. A. Hoff, J.V. dos Santos, C. Manchein and H.A. Albuquerque, Numerical bifurcation analysis of two coupled FitzHugh-Nagumo oscillators. Eur. Phys. J. B (2014) 87–151. [EDP Sciences] [Google Scholar]
  29. J. Jia, H. Liu, C. Xu and F. Yan, Dynamic effects of time delay on a coupled FitzHugh-Nagumo neural system. Alexand. Eng. J. 54 (2015) 241–250. [CrossRef] [Google Scholar]
  30. K. Karimi and K.B. Nakshatrala, Do current lattice Boltzmann methods for diffusion and advection-diffusion equations respect maximum principle and the non-negative constraint? Commun. Comput. Phys. 20 (2016) 374–404. [Google Scholar]
  31. M. Rioux and Y. Bourgault, A predictive method allowing the use of a single ionic model in numerical cardiac electrophysiology. ESAIM: M2AN 47 (2013) 987–1016. [CrossRef] [EDP Sciences] [Google Scholar]
  32. R.F. Sandra and M.A. Savi, An analysis of heart rhythm dynamics using a three-coupled oscillator model. Chaos Solitons Fract. 41 (2009) 2553–2565. [CrossRef] [Google Scholar]
  33. E. Scholl, G. Hiller, P. Hovel and M.A. Dahlem, Time-delayed feedback in neurosystems. Phil. Trans. R. Soc. A. 367 (2009) 1079–1096. [CrossRef] [Google Scholar]
  34. O. Sharomi and R. Spiteri, Convergence order vs. parallelism in the numerical simulation of the bidomain equations. J. Phys.: Conf. Ser. 385 (2012) 1–6. [CrossRef] [Google Scholar]
  35. P. Valero-Lara and J. Jansson, A non-uniform staggered Cartesian grid approach for lattice-Boltzmann method. Proc. Comput. Sci. 51 (2015) 296–305. [CrossRef] [Google Scholar]
  36. M. Veneroni, Reaction-diffusion systems for the macroscopic bidomain model of the cardiac electric field. Nonlinear Anal. Real World Appl. 10 (2009) 849–868. [Google Scholar]
  37. D. Wu and S. Zhu, Stochastic resonance in FitzHugh-Nagumo system with time-delayed feedback. Phys. Let. A 3721 (2008) 5299–5304. [CrossRef] [Google Scholar]
  38. X. Yang, B.C. Shi and Z. Chai, Coupled lattice Boltzmann method for generalized Keller-Segel chemotaxis model. Comput. Math. Appl. 12 (2014) 1653–1670. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.