Issue
Math. Model. Nat. Phenom.
Volume 14, Number 5, 2019
Nonlocal and delay equations
Article Number 507
Number of page(s) 15
DOI https://doi.org/10.1051/mmnp/2019060
Published online 17 December 2019
  1. A. Ashyralyev and P.E. Sobolevskii, Vol. 69 of Well-Posedness of Parabolic Difference Equations. Birkhauser Verlag, Basel-Boston-Berlin (1994). [CrossRef] [Google Scholar]
  2. A. Ashyralyev and P.E. Sobolevskii, Vol. 148 of New Difference Schemes for Partial Differential Equations. Operator Theory: Advances and Applications. Birkhauser, Verlag, Basel, Boston, Berlin (2004). [Google Scholar]
  3. A. Ashyralyev, On well-posedness of the nonlocal boundary value problems for elliptic equations. Numer. Funct. Anal. Optim. 24 (2003) 1–15. [Google Scholar]
  4. A. Ashyralyev, I. Karatay and P.E. Sobolevskii, On well-posedness of the nonlocal boundary value problem for parabolic difference equations. Discr. Dyn. Nat. Soc. 2 (2004) 273–286. [CrossRef] [Google Scholar]
  5. A. Ashyralyev, A note on the Bitsadze-Samarskii type nonlocal boundary value problem in a Banach space. J. Math. Anal. Appl. (1) 344 (2008) 557–573. [CrossRef] [Google Scholar]
  6. A. Ashyralyev, A survey of results in the theory of fractional spaces generated by positive operators. TWMS J. Pure Appl. Math. 6 (2015) 129–157. [Google Scholar]
  7. A. Ashyralyev and A. Hamad, Fractional powers of strongly positive operators and their applications. AIP Conf. Proc. 1880 (2017) 050001. [Google Scholar]
  8. A. Ashyralyev and A. Hamad, A note on fractional powers of strongly positive operators and their applications. Fract. Calc. Appl. Anal. 22 (2019). [Google Scholar]
  9. A. Ashyralyev and A. Hamad, Numerical solution of nonlocal elliptic problems. AIP Conf. Proc. 1997 (2018) 020081. [Google Scholar]
  10. A. Ashyralyev and A. Hamad, On the well-posedness of the nonlocal boundary value problem for the differential equation of elliptic type. AIP Conf. Proc. 1997 (2018) 020068. [Google Scholar]
  11. A. Boucherif and R. Precup, Semilinear evolution equations with nonlocal initial conditions. Dyn. Syst. Appl. 16 (2007) 507–516. [Google Scholar]
  12. R. Čiupaila, M. Sapagovas and O. Štikonienė, Numerical solution of nonlinear elliptic equation with nonlocal condition. Nonlin. Anal. Model. Control 18 (2013) 412–426. [CrossRef] [Google Scholar]
  13. F. Ivanauskas, T. Meskauskas and M. Sapagovas, Stability of difference schemes for two-dimensional parabolic equations with non-local boundary conditions. Appl. Math. Comput. 215 (2009) 2716–2732. [Google Scholar]
  14. F.F. Ivanauskas, Yu.A. Novitski and M.P. Sapagovas, On the stability of an explicit difference scheme for hyperbolic equations with nonlocal boundary conditions. Differ. Equ. 49 (2013) 849–856. [CrossRef] [Google Scholar]
  15. J. Jachimavičienė, M. Sapagovas, A. Štikonas and O. Štikonienė, On the stability of explicit finite difference schemes for a pseudoparabolic equation with nonlocal conditions. Nonlinear Anal. Model. Control 19 (2014) 225–240. [CrossRef] [Google Scholar]
  16. M.A. Krasnosel’skii, P.P. Zabreiko, E.I. Pustyl’nik and P.E. Sobolevskii, Integral Operators in Spaces of Summable Functions [in Russian] (1966). [Google Scholar]
  17. A. Lunardi, textitAnalytic Semigroups and Optimal Regularity in Parabolic Problems. Birkhauser Verlag, Basel, Boston, Berlin (1995). [Google Scholar]
  18. M. Sapagovas and K. Jakubelienė, Alternating direction method for two-dimensional parabolic equation with nonlocal integral condition. Nonlin. Anal. Model. Control 17 (2012) 91–98. [CrossRef] [Google Scholar]
  19. M. Sapagovas, V. Griskoniene and O. Štikonienė, Application of M-matrices theory to numerical investigation of a nonlinear elliptic equation with an integral condition. Nonlin. Anal. Model. Control 22 (2017) 489–504. [CrossRef] [Google Scholar]
  20. V. Shakhmurov and H. Musaev, Maximal regular convolution-differential equations in weighted Besov spaces. Appl. Comput. Math. 16 (2017) 190–200. [Google Scholar]
  21. A.L. Skubachevskii, Vol. 91 of Elliptic Functional Differential Equations and Applications. Springer Science, Business Media (1997). [Google Scholar]
  22. Yu.A. Smirnitskii and P.E. Sobolevskií, Positivity of difference operators, in Spline Methods. Novosibirsk (1981) (Russian). [Google Scholar]
  23. P.E. Sobolevskii, A new method of summation of Fourier series converging in C-norm. Semigroup Forum 71 (2005) 289–300. [CrossRef] [Google Scholar]
  24. H. Triebel, Interpolation Theory, Function Spaces. Differential Operators, North-Holland, Amsterdam-New York (1978). [Google Scholar]
  25. Y. Wang and S. Zheng, The existence and behavior of solutions for nonlocal boundary problems. Boundary Value Probl. 2009 (2009) 484879. [Google Scholar]
  26. F. Zouyed, F. Rebbani and N. Boussetila, On a class of multitime evolution equations with nonlocal initial conditions. Abstr. Appl. Anal. 2007 (2007) 16938. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.