Issue
Math. Model. Nat. Phenom.
Volume 14, Number 5, 2019
Nonlocal and delay equations
Article Number 506
Number of page(s) 20
DOI https://doi.org/10.1051/mmnp/2019057
Published online 17 December 2019
  1. D.M. Abrams and S.H. Strogatz, Chimera states for coupled oscillators. Phys. Rev. Lett. 93 (2004) 174102. [CrossRef] [PubMed] [Google Scholar]
  2. R. Albert and A.-L. Barabási, Statistical mechanics of complex networks. Rev. Mod. Phys. 74 (2002) 47. [Google Scholar]
  3. H. Amann, Vol. 13 of Ordinary Differential Equations: An Introduction To Nonlinear Analysis. Walter de Gruyter (1990). [CrossRef] [Google Scholar]
  4. A.L. Barabási and R. Albert, Emergence of scaling in random networks. Science 286 (1999) 509–512. [Google Scholar]
  5. P.C. Bressloff, Spatiotemporal dynamics of continuum neural fields. J. Phys. A: Math. Theor. 45 (2012) 033001. [CrossRef] [MathSciNet] [Google Scholar]
  6. A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata, A. Tomkins and J. Wiener, Graph structure in the web. Comput. Netw. 33 (2000) 309–320. [CrossRef] [Google Scholar]
  7. P. Erdös and A. Rényi, On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci. 5 (1960) 17–60. [Google Scholar]
  8. L.C. Evans, Partial differential equations. American Mathematical Society, Providence, R.I. (2010). [Google Scholar]
  9. C. Kuehn and S. Throm, Power network dynamics on graphons. SIAM J. Appl. Math. 79 (2019) 1271–1292. [Google Scholar]
  10. Y. Kuramoto and D. Battogtokh, Coexistence of coherence and incoherence in nonlocally coupled phase oscillators. Nonlinear Phenom. Complex Syst. 5 (2002) 380–385. [Google Scholar]
  11. C.R. Laing, Derivation of a neural field model from a network of theta neurons. Phys. Rev. E 90 (2014) 010901. [Google Scholar]
  12. G.S. Medvedev, The nonlinear heat equation on W-random graphs. Arch. Rat. Mech. Anal. 212 (2014) 781–803. [CrossRef] [Google Scholar]
  13. M.E.J. Newman, The structure and function of complex networks. SIAM Rev. 45 (2003) 167–256. [CrossRef] [MathSciNet] [Google Scholar]
  14. H. Silk, M. Homer and T. Gross, Design of self-organizing networks: creating specified degree distributions. IEEE Trans. Netw. Sci. Eng. 3 (2016) 147–158. [Google Scholar]
  15. M.P. Stumpf and M.A. Porter, Critical truths about power laws. Science 335 (2012) 665–666. [Google Scholar]
  16. G. Teschl, Ordinary differential equations and dynamical systems. Lecture Notes, University of Vienna (2000). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.