Issue
Math. Model. Nat. Phenom.
Volume 14, Number 5, 2019
Nonlocal and delay equations
Article Number 504
Number of page(s) 14
DOI https://doi.org/10.1051/mmnp/2019036
Published online 25 October 2019
  1. D.C. Bell and B. Deng, Singular perturbation of N-front travelling waves in the FitzHugh–Nagumo equations. Nonlin. Anal. Real World Appl. 3 (2002) 515–541. [CrossRef] [Google Scholar]
  2. G.A. Carpenter, A geometric approach to singular perturbation problems with applications to nerve impulse equations. J. Differ. Equ. 23 (1977) 335–367. [Google Scholar]
  3. B. Datsko and V. Gafiychuk, Mathematical modeling of traveling autosolitons in fractional-order activator-inhibitor systems. B. Pol. Acad. Sci. Tech. Sci. 66 (2018) 411–418. [Google Scholar]
  4. B. Datsko, V. Gafiychuk and I. Podlubny, Solitary travelling auto-waves in fractional reaction–diffusion systems. Commun. Nonlin. Sci. Numer. Simul. 23 (2015) 378–387. [CrossRef] [Google Scholar]
  5. B. Deng, The existence of infinitely many traveling front and back waves in the FitzHugh–Nagumo equations. SIAM J. Math. Anal. 22 (1991) 1631–1650. [CrossRef] [MathSciNet] [Google Scholar]
  6. P.C. Fife and J.B. McLeod, The approach of solutions of nonlinear diffusion equations to travelling front solutions. Arch. Ration. Mech. Anal. 65 (1977) 335–361. [Google Scholar]
  7. R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1 (1961) 445–466. [CrossRef] [PubMed] [Google Scholar]
  8. C.K.R.T. Jones, Stability of the travelling wave solution of the FitzHugh-Nagumo system. Trans. Am. Math. Soc. 286 (1984) 431–469. [Google Scholar]
  9. H.P. McKean Jr, Nagumo’s equation. Adv. Math. 4 (1970) 209–223. [CrossRef] [Google Scholar]
  10. R. Metzler and J. Klafter, The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 339 (2000) 1–77. [Google Scholar]
  11. R. Metzler and J. Klafter, The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A 37 (2004) R161–R208. [NASA ADS] [CrossRef] [Google Scholar]
  12. J. Nagumo, S. Arimoto and S. Yoshizawa, An active pulse transmission line simulating nerve axon. Proc. Inst. Radio Eng. 50 (1962) 2061–2070. [Google Scholar]
  13. A.A. Nepomnyashchy and V.A. Volpert, An exactly solvable model of subdiffusion–reaction front propagation. J. Phys. A 46 (2013) 065101. [CrossRef] [MathSciNet] [Google Scholar]
  14. J. Rinzel and J.B. Keller, Traveling wave solutions of a nerve conduction equation. Biophys. J. 13 (1973) 1313–1337. [CrossRef] [PubMed] [Google Scholar]
  15. J. Rinzel and D. Terman, Propagation phenomena in a bistable reaction-diffusion system. SIAM J. Appl. Math. 42 (1982) 1111–1137. [Google Scholar]
  16. V.A. Volpert, Y. Nec and A.A. Nepomnyashchy, Exact solutions in front propagation problems with superdiffusion. Physica D 239 (2010) 134–144. [Google Scholar]
  17. V.A. Volpert, Y. Nec and A.A. Nepomnyashchy, Fronts in anomalous diffusion–reaction systems. Philos. Trans. Royal Soc. A 371 (2013) 20120179. [CrossRef] [Google Scholar]
  18. E. Yanagida, Stability of travelling front solutions of the FitzHugh-Nagumo equations. Math. Comput. Model. 12 (1989) 289–301. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.