Issue
Math. Model. Nat. Phenom.
Volume 14, Number 6, 2019
Reviews in mathematical modelling
Article Number 604
Number of page(s) 13
DOI https://doi.org/10.1051/mmnp/2019059
Published online 19 December 2019
  1. V. Alzari, O. Monticelli, D. Nuvoli, J.M. Kenny and A. Mariani, Stimuli responsive hydrogels prepared by frontal polymerization. Biomacromolecules 10 (2009) 2672–2677. [Google Scholar]
  2. V. Alzari, D. Nuvoli, S. Scognamillo, M. Piccinini, E. Gioffredi, G. Malucelli, S. Marceddu, M. Sechi, V. Sanna and A. Mariani, Graphene-containing thermoresponsive nanocomposite hydrogels of poly(N-isopropylacrylamide) prepared by frontal polymerization. J. Mater. Chem. 21 (2011) 8727–8733. [Google Scholar]
  3. V. Alzari, D. Nuvoli, D. Sanna, A. Ruiu and A. Mariani, Effect of limonene on the frontal ring opening metathesis polymerization of dicyclopentadiene. J. Polym. Sci. Part A: Polym. Chem. 54 (2016) 63–68. [CrossRef] [Google Scholar]
  4. K.A. Arutiunian, S.P. Davtyan, B.A. Rozenberg and N.S. Enikolopyan, Curing of epoxy resins of bis-phenol A by amines under conditions of reaction front propagation. Dokl. Akad. Nauk SSSR 223 (1975) 657–660. [Google Scholar]
  5. M. Bazile jr., H.A. Nichols, J.A. Pojman and V. Volpert, The effect of orientation on thermoset frontal polymerization. J. Polym. Sci. Part A: Polym Chem. 40 (2002) 3504–3508. [CrossRef] [Google Scholar]
  6. V.P. Begishev, V.A. Volpert, S.P. Davtyan and A.Y. Malkin, On some features of the anionic activated e-caprolactam polymerization process under wave propagation conditions. Dokl. Phys. Chem. 279 (1985) 1075–1077. [Google Scholar]
  7. V.P. Begishev, V.A. Volpert, S.P. Davtyan and A.Y. Malkin, On some features of the process of anionic activated polymerization of e-caprolactams under condititions of wave propagation. Dokl. Akad. Nauk SSSR 208 (1973) 892–895. [Google Scholar]
  8. S. Bidali, A. Ducrot, A. Mariani and M. Rustici, Self-ignition of polymerization fronts with convection: the “Rainstorm Effect”. e-Polymers 44 (2004) 1–20. [CrossRef] [Google Scholar]
  9. D. Bomze, P. Knaack and R. Liska, Successful radical induced cationic frontal polymerization of epoxy-based monomers by C-C labile compounds. Polym. Chem. 6 (2015) 8161–8167. [Google Scholar]
  10. G. Bowden, M. Garbey, V.M. Ilyashenko, J.A. Pojman, S. Solovyov, A. Taik and V. Volpert, The effect of convection on a propagating front with a solid product: comparison of theory and experiments. J. Phys. Chem. B 101 (1997) 678–686. [Google Scholar]
  11. N.M. Chechilo, R.J. Khvilivitskii and N.S. Enikolopyan, On the phenomenon of polymerization reaction spreading. Dokl. Akad. Nauk SSSR 204 (1972) 1180–1181. [Google Scholar]
  12. N.M. Chechilo and N.S. Enikolopyan, Structure of the polymerization wave front and propagation mechanism of the polymerization reaction. Dokl. Phys. Chem. 214 (1974) 174–176. [Google Scholar]
  13. N.M. Chechilo and N.S. Enikolopyan, Effect of pressure and initial temperature of the reaction mixture during propagation of a polymerization reaction. Dokl. Phys. Chem. 230 (1976) 840–843. [Google Scholar]
  14. N.M. Chechilo and N.S. Enikolopyan, Effect of the concentration and nature of initiators on the propagation process in polymerization. Dokl. Phys. Chem. 221 (1975) 392–394. [Google Scholar]
  15. Y.A. Chekanov and J.A. Pojman, Preparation of functionally gradient materials via frontal polymerization. J. Appl. Polym. Sci. 78 (2000) 2398–2404. [Google Scholar]
  16. S. Chen, J. Sui, L. Chen and J.A. Pojman, Polyurethane-nanosilica hybrid nanocomposites synthesized by frontal polymerization. J. Polym. Sci. Part A Polym. Chem. 43 (2005) 1670–1680. [CrossRef] [Google Scholar]
  17. Z. Chen, P. Liu, L. Shi, Z.X. Huang and B.Y. Jiang, Preparation of nano carbon black/epoxy composite by frontal polymerization. Appl. Mech. Mater. 692 (2014) 416–419. [CrossRef] [Google Scholar]
  18. D.M.G. Commissiong, L.K. Gross and V.A. Volpert, Bifurcation analysis of polymerization fronts, edited by J.A. Pojman and Q. Tran-Cong-Miyata. Nonlinear Dynamics in Polymeric Systems, ACS Symposium Series No. 869. American Chemical Society, Washington, DC (2003) 147–159. [CrossRef] [Google Scholar]
  19. S.P. Davtyan, K.A. Arutyunyan, K.G. Shkadinskii, B.A. Rozenberg and N.S. Yenikolopyan, The mechanism of epoxide oligomer hardening by diamines under advancing reaction front conditions. Polymer Science U.S.S.R. 19 (1978) 3149–3154. [CrossRef] [Google Scholar]
  20. S.P. Davtyan, P.V. Zhirkov and S.A. Vol’fson, Problems of non-isothermal character in polymerisation processes. Russ. Chem. Rev. 53 (1984) 150–163. [CrossRef] [Google Scholar]
  21. K.F. Fazende, M. Phachansitthi, J.D. Mota-Morales and J.A. Pojman, Frontal polymerization of deep eutectic solvents composed of acrylic and methacrylic acids. J. Polym. Sci. A Polym. Chem. 55 (2017) 4046–4050. [Google Scholar]
  22. M. Garbey, A. Taik and V. Volpert, Influence of natural convection on stability of reaction fronts in liquids. Quart. Appl. Math. 56 (1998) 1–35. [CrossRef] [Google Scholar]
  23. M. Garbey, A. Taik and V. Volpert, Influence of natural convection on stability of reaction fronts in liquids. Preprint CNRS 187 (1994) 1–42. [Google Scholar]
  24. M. Garbey, A. Taik and V. Volpert, Linear stability analysis of reaction fronts in liquids. Quart. Appl. Math. 54 (1996) 225–247. [CrossRef] [Google Scholar]
  25. P.M. Goldfeder, V.A. Volpert, V.M. Ilyashenko, A.M. Khan, J.A. Pojman and S.E. Solovyov, Mathematical modeling of free-radical polymerization fronts. J. Phys. Chem. B 101 (1997) 3474–3482. [Google Scholar]
  26. K.N. Gray, Photopolymerization Kinetics of Multifunctional Acrylates. University of Southern Mississippi (1988). [Google Scholar]
  27. L.K. Gross and V.A. Volpert, Weakly nonlinear stability analysis of frontal polymerization. Stud. Appl. Math. 110 (2003) 351–376. [Google Scholar]
  28. D.S. Huh and H.S. Kim, bistability of propagating front with spin-mode in a frontal polymerization of trimethylopropane triacrylate. Polym. Int. 52 (2003) 1900–1904. [Google Scholar]
  29. T. Holt, K. Fazende, E. Jee, Q. Wu and J.A. Pojman, Cure-on-demand wood adhesive based on the frontal polymerization of acrylates, J. Appl. Polym. Sci. 133 (2016) 44064. [Google Scholar]
  30. S. Li, H. Huang, M. Tao, X. Liu and T. Cheng, Frontal polymerization preparation of poly(acrylamide-co-acrylic acid)/activated carbon composite hydrogels for dye removal. J. Appl. Poly. Sci. 129 (2013) 3737–3745. [CrossRef] [Google Scholar]
  31. Y.M. Maksimov, A.T. Pak, G.V. Lavrenchuk, Y.S. Naiborodenko and A.G. Merzhanov, Spin combustion of gasless systems. Comb. Expl. Shock Waves 15 (1979) 415–418. [CrossRef] [Google Scholar]
  32. B. Manz, J. Masere, J.A. Pojman and F. Volke, Magnetic resonance imaging of spiral patterns in crosslinked polymer gels producedvia frontal polymerization. J. Polym. Sci. Part A. Polym. Chem. 39 (2001) 1075–1080. [CrossRef] [Google Scholar]
  33. A. Mariani, S. Bidali, S. Fiori, M. Sangermano, G. Malucelli, R. Bongiovanni and A. Priola, UV-ignited frontal polymerization of an epoxy resin. J. Poly. Sci. Part A. Polym. Chem. 42 (2004) 2066–2072. [CrossRef] [Google Scholar]
  34. J. Masere and J.A. Pojman, Free radical-scavenging dyes as indicators of frontal polymerization dynamics. J. Chem. Soc. Faraday Trans. 94 (1998) 919–922. [CrossRef] [Google Scholar]
  35. J. Masere, F. Stewart, T. Meehan and J.A. Pojman, period-doubling behavior in propagating polymerization fronts of multifunctional acrylates. Chaos 9 (1999) 315–322. [Google Scholar]
  36. B. Mccaughey, J.A. Pojman, C. Simmons and V.A. Volpert, The effect of convection on a propagating front with a liquid product: comparison of theory and experiments. Chaos 8 (1998) 520–529. [Google Scholar]
  37. J.D. Mota-Morales, M.C. Gutierrez, I.C. Sanchez, G. Luna-Barcenas and F. Del Monte, Frontal polymerizations carried out in deep-eutectic mixtures providing both the monomers and the polymerization medium. Chem. Comm. 47 (2011) 5328–5330. [CrossRef] [Google Scholar]
  38. L. Nuvoli, D. Sanna, V. Alzari, D. Nuvoli, V. Sanna, L. Malfatti and A. Mariani, Double responsive copolymer hydrogels prepared by frontal polymerization. J. Polym. Sci. A Polym. Chem. 54 (2016) 2166–2170. [Google Scholar]
  39. V. Ilyashenko, S. Solovyov and J.A. Pojman, Theoretical aspects of self-propagating reaction fronts in condensed medium. AIChE J. 41 (1995) 2631–2636. [Google Scholar]
  40. V.M. Ilyashenko and J.A. Pojman, Single head spin modes in frontal polymerization. Chaos 8 (1998) 285–287. [Google Scholar]
  41. B.B. Khanukaev, M.A. Kozhushner and N.S. Enikolopyan, Theory of polymerization-front propagation. Combust. Explos. Shock Waves 10 (1974) 562–568. [Google Scholar]
  42. B.B. Khanukaev, M.A. Kozhushner and N.S. Enikolopyan, Theory of the propagation of a polymerization front. Dokl. Phys. Chem. 214 (1974) 84–87. [Google Scholar]
  43. J.A. Pojman, Traveling fronts of methacrylic acid polymerization. J. Am. Chem. Soc. 113 (1991) 6284–6286. [Google Scholar]
  44. J.A. Pojman, I.P. Nagy and C. Salter, Traveling fronts of addition polymerization with a solid monomer. J. Am. Chem. Soc. 115 (1993) 11044–11045. [Google Scholar]
  45. J.A. Pojman, V.M. Ilyashenko and A.M. Khan, Spin mode instabilities in propagating fronts of polymerization. Physica D 84 (1995) 260–268. [Google Scholar]
  46. J.A. Pojman, J. Masere, E. Petretto, M. Rustici, D.-S. Huh, M.S. Kim and V. Volpert, The effect of reactor geometry on frontal polymerization spin modes. Chaos 12 (2002) 56–65. [Google Scholar]
  47. J.A. Pojman, G. Curtis and V.M. Ilyashenko, Frontal polymerization in solution. J. Am. Chem. Soc. 118 (1996) 3783–3784. [Google Scholar]
  48. J.A. Pojman, V.M. Ilyashenko and A.M. Khan, Free-radical frontal polymerization: self-propagating thermal reaction waves. J. Chem. Soc. Faraday Trans. 92 (1996) 2825–2837. [CrossRef] [Google Scholar]
  49. J.A. Pojman, G. Gunn, J. Owens and C. Simmons, Frontal dispersion polymerization. J. Phys. Chem. Part B 102 (1998) 3927–3929. [CrossRef] [Google Scholar]
  50. J.A. Pojman and I.R. Epstein, Convective effects on chemical waves. 1. Mechanisms and stability criteria. J. Phys. Chem. 94 (1990) 4966–4972. [Google Scholar]
  51. J.A. Pojman, I.R. Epstein, Y. Karni and E. Bar-Ziv, Stochastic coalescence-redispersion model for molecular diffusion and chemical reactions. 2. Chemical waves. J. Phys. Chem. 95 (1991) 3017–3021. [Google Scholar]
  52. I.D. Robertson, H.L. Hernandez, S.R. White and J.S. Moore, Rapid stiffening of a microfluidic endoskeleton via frontal polymerization. ACS Appl. Mater. Interfaces 6 (2014) 18469–18474. [Google Scholar]
  53. I.D. Robertson, M. Yourdkhani, P.J. Centellas, J.E. Aw, D.G. Ivanoff, E. Goli, E.M. Lloyd, L.M. Dean, N.R. Sottos, P.H. Geubelle, J.S. Moore and S.R. White, Rapid energy-efficient manufacturing of polymers and composites via frontal polymerization. Nature 557 (2018) 223–227. [Google Scholar]
  54. S. Scognamillo, V. Alzari, D. Nuvoli, J. Illescas, S. Marceddu and A. Mariani, Thermoresponsive super water absorbent hydrogelsprepared by frontal polymerization of N-isopropyl acrylamide and 3-sulfopropyl acrylate potassium salt. J. Polym. Sci. PartA: Polym. Chem. 49 (2011) 1228–1234. [CrossRef] [Google Scholar]
  55. S. Scognamillo, C. Bounds, M. Luger, A. Mariani and J.A. Pojman, Frontal cationic curing of epoxy resins. J. Polym. Sci. Part A: Polym. Chem. 48 (2010) 2000–2005. [CrossRef] [Google Scholar]
  56. S. Scognamillo, C. Bounds, S. Thakuri, A. Mariani, Q. Wu and J.A. Pojman, Frontal cationic curing of epoxy resins in the presence of defoaming or expanding compounds. J. Appl. Polym. Sci. 131 (2014) 40339–40349. [Google Scholar]
  57. D.A. Shult and V.A. Volpert, Int. J. SHS 8 (1999) 417–440. [Google Scholar]
  58. K.G. Shkadinsky, B.I. Khaikin and A.G. Merzhanov, Propagation of pulsating exothermic reaction front in the condensed phase. Combust. Explos. Shock Waves 1 (1971) 15–22. [Google Scholar]
  59. S.E. Solovyov, V.M. Ilyashenko and J.A. Pojman, Numerical modeling of self-propagating fronts of addition polymerization: the role of kinetics on front stability. Chaos 7 (1997) 331–340. [Google Scholar]
  60. C.A. Spade and V.A. Volpert, Linear stability analysis of nonadiabatic free radical polymerization waves. Combus. Theory Model. 5 (2001) 21–39. [CrossRef] [Google Scholar]
  61. N.F. Surkov, S.P. Davtyan and F.S. Dyatchkovskii, On some questions of polymerizationfilling (1985). [Google Scholar]
  62. N.P. Totaro, Z.D. Murphy, A.E. Burcham, C.T. King, T.F. Scherr, C.O. Bounds, V. Dasa, J.A. Pojman and D.J. Hayes, In vitro evaluation of thermal frontally polymerized thiol-ene composites as bone augments, J. Biomed. Mater. Res. Part A: Appl. Biomater. 104 (2016) 1152–1160. [CrossRef] [Google Scholar]
  63. G.R. Tryson and A.R. Shultz, A calorimetric study of acrylate photopolymerization. J. Polym. Sci. Polym. Phys. Ed. 17 (1979) 2059–2075. [CrossRef] [Google Scholar]
  64. V.A. Volpert and S.P. Davtyan, Existence of the polymerization wave with crystallization of the initial substance. Dokl. Akad. Nauk SSSR 273 (1983) 1155–1158. [Google Scholar]
  65. V.A. Volpert, I.N. Mergabova, S.P. Davtyan and V.P. Begishev, Propagation of the caprolactam polymerization wave. Combust. Explos. Shock Waves 21 (1986) 443–447. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.