Math. Model. Nat. Phenom.
Volume 14, Number 6, 2019
Reviews in mathematical modelling
Article Number 602
Number of page(s) 12
Published online 04 December 2019
  1. K. Allali, F. Bikany, A. Taik and V. Volpert, Numerical simulations of heat explosion with convection in porous media. Combust. Sci. Technol. 187 (2015) 384–395. [Google Scholar]
  2. K. Allali, Y. Joundy, A. Taik and V. Volpert, Heat explosion in porous media using radial basis functions. MATEC Web of Conf. 83 (2016) 07002. [CrossRef] [EDP Sciences] [Google Scholar]
  3. K. Allali, Y. Joundy, A. Taik and V. Volpert, Influence of natural convection on the heat explosion in porous media. Combus. Explos. Shock Waves 53 (2017) 134–139. [CrossRef] [Google Scholar]
  4. V. Balakotaiah and P. Pourtalet, Natural convection effects on thermal ignition in a porous medium. I. Semenov model. Proc. R. Soc. Lond. A 429 (1990) 533–554. [CrossRef] [Google Scholar]
  5. M. Belk and V. Volpert, Modeling of heat explosion with convection. Chaos 14 (2004) 263–273. [CrossRef] [Google Scholar]
  6. H. Benard, Les tourbillons cellulaires dans une nappe liquide. Revue Gen. Sci. Pur. Appl. 11 (1900) 1261–1271, 1309–1328. [Google Scholar]
  7. A. Ducrot and V. Volpert, Modelling of convective heat explosion. J. Tech. Phys. 46 (2005) 129–143. [Google Scholar]
  8. T. Dumont, S. Genieys, M. Massot and V. Volpert, Interaction of thermal explosion and natural convection: critical conditions and new oscillating regimes. SIAM J. Appl. Math. 63 (2002) 351–372. [CrossRef] [Google Scholar]
  9. D.A. Frank-Kamenetskii, Temperature distribution in a reactive vessel and stationary theory of heat explosion. Dokl. Akad. Nauk. SSSR 18 (1938) 411–412. [Google Scholar]
  10. D.A. Frank-Kamenetskii, Diffusion and Heat Transfer in Chemical Kinetics. Plenum Press, New York (1969). [Google Scholar]
  11. J.E. Gatica, H. Viljoen and V. Hlavacek, Stability analysis of chemical reaction and free convection in porous media. Int. Commun. Heat Mass Transfer 14 (1987) 391–403. [CrossRef] [Google Scholar]
  12. I. Iglesias, D. Moreno-Boza, A.L. Sanchez, A. Linan and F.A. Williams, Thermal explosions in spherical vessels at large Rayleigh numbers. Int. J. Heat Mass Transfer 115 (2017) 1042–1053. [CrossRef] [Google Scholar]
  13. L. Kagan, H. Berestycki, G. Joulin and G. Sivashinsky, The effect of stirring on the limit of thermal explosion. Combust. Theory Modell. 1 (1997) 97–111. [CrossRef] [Google Scholar]
  14. S.I. Khudyaev, E.A. Shtessel and K.V. Pribytkova, Numerical solution of the heat explosion problem with convection. Combust. Explosion Shock Waves 2 (1971) 167. [Google Scholar]
  15. W. Kordylewski and Z. Krajewski, Convection effects on thermal ignition in porous media. Chem. Eng. Sci. 39 (1984) 610–612. [CrossRef] [Google Scholar]
  16. A. Lazarovici, V. Volpert and J.H. Merkin, Steady states, oscillations and heat explosion in a combustion problem with convection. Eur. J. Mech. B 24 (2005) 189–203. [CrossRef] [Google Scholar]
  17. T.-Y. Liu, A.N. Campbell, A.N. Hayhurst and S.S. Cardoso, On the occurrence of thermal explosion in a reacting gas: the effects of natural convection and consumption of reactant. Combust. Flame 157 (2010) 230–239. [CrossRef] [Google Scholar]
  18. M. Menzinger and R. Wolfgang, The meaning and use of the Arrhenius activation energy. Angew. Chem. Int. 8 (1969) 438–444. [CrossRef] [Google Scholar]
  19. A.S. Merzhanov and E.A. Shtessel, Free convection and thermal explosion in reactive systems. Acta Astronaut. 18 (1973) 191–193. [Google Scholar]
  20. V. Novozhilov, Effects of initial and boundary conditions on thermal explosion development. AIP Conf. Proc. 1798 (2017) 020114. [CrossRef] [Google Scholar]
  21. A.I. Osipov, A.V. Uvarov and N.A. Roschina, Influence of natural convection on the parameters of thermal explosion in the horizontal cylinder. Int. J. Heat Mass Transfer 50 (2007) 5226–5231. [CrossRef] [Google Scholar]
  22. Y. Pomeau and P. Manneville, Intermittent transition to turbulence in dissipative dynamical systems. Commun. Math. Phys. 74 (1980) 189–197. [CrossRef] [Google Scholar]
  23. L. Rayleigh, LIX. On convectioncurrents in a horizontal layer of fluid, when the higher temperature is on theunder side. Philos. Mag. Ser. 6 32 (1916) 192, 529–546. [CrossRef] [Google Scholar]
  24. N.N. Semenov, To the theory of combustion processes. Zhurnal Fizicheskoi Himii 4 (1933) 4–17. [Google Scholar]
  25. A.N. Sharkovskii, Existence of cycles of continuous transformation of the real line in itself. Ukr. Mat. Zh. 26 (1964) 61–71. [Google Scholar]
  26. E.A. Shtessel, K.V. Pribytkova and A.G. Merzhanov, Numerical solution of the problem of a thermal explosion taking account of free convection. Combust. Expl. Shock Waves 7 (1971) 167–178. [CrossRef] [Google Scholar]
  27. P.H. Thomas, Effect of reactant consumption on the induction period and critical condition for a thermal explosion. Proc. R. Soc. Lond. A 262 (1961) 192–206. [CrossRef] [Google Scholar]
  28. H. Viljoen and V. Hlavacek, Chemically driven convection in a porous medium. AIChE J. 33 (1987) 1344–1350. [CrossRef] [Google Scholar]
  29. H.J. Viljoen, J.E. Gatica and V. Hlavacek, Induction times for thermal explosion and natural convection in porous media. Chem. Eng. Sci. 43 (1988) 2951–2956. [CrossRef] [Google Scholar]
  30. C. Yang, X. Li, Y. Ren, Y. Zhao and F. Zhu, Statistical analysis and countermeasures of gas explosion accident in coal mines. Proc. Eng. 84 (2014) 166–171. [CrossRef] [Google Scholar]
  31. Ya.B. Zeldovich, G.I. Barenblatt, V.B. Librovich and G.M. Makhviladze, The Mathematical Theory of Combustion and Explosions, Plenum, New York (1985). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.