Issue
Math. Model. Nat. Phenom.
Volume 14, Number 6, 2019
Reviews in mathematical modelling
Article Number 603
Number of page(s) 25
DOI https://doi.org/10.1051/mmnp/2019050
Published online 19 December 2019
  1. L. Achab and S. Benhadid, Application d’une loi constitutive dans l’étude numérique de l’écoulement sanguin a travers une artère sténosée. Rhéologie 7 (2005) 28–34. [Google Scholar]
  2. Y. Adiputra and Sh.-L. Chen, Clinical Relevance of Coronary Fractional Flow Reserve: Art-of-state. Chin. Med. J. 128 (2015) 1399–1406. [Google Scholar]
  3. J. Aguado-Sierra, K.H. Parker, J.E. Davies, D. Francis, A.D. Hughes and J. Mayet, Arterial pulse wave velocity in coronary arteries. Proc. 28th IEEE EMBS Ann. Int. Conf. (2006) 867–870. [Google Scholar]
  4. A.C. Akyildiz, L. Speelman, H. van Brummelen et al., Effects of intima stiffness and plaque morphology on peak cap stress. Biomed. Eng. Online 10 (2011) 25. [CrossRef] [PubMed] [Google Scholar]
  5. J. Alastruey, K.H. Parker, J. Peiró and S.J. Sherwin, Lumped parameter outflow models for 1-D blood flow simulations: effect on pulse waves and parameter estimation. Comm. Comp. Phys. 4 (2008) 317–336. [Google Scholar]
  6. J. Alastruey, S.M. Moore, K.H. Parker, T. David, J. Peiro and S.J. Sherwin, Reduced modelling of blood flow in the cerebral circulation: Coupling 1-D, 0-D and cerebral auto-regulation models. Int. J. Num. Met. Fluids 56 (2008) 1061–1067. [CrossRef] [Google Scholar]
  7. J. Alastruey, A.W. Khir, K.S. Matthys, P. Segers, S.J. Sherwin, P.R. Verdonck, K.H. Parker and J. Peiró, Pulse wave propagation in a model human arterial network: Assessment of 1-D visco-elastic simulations against in vitro measurements. J. Biomech. 44 (2011) 2250–2258. [CrossRef] [PubMed] [Google Scholar]
  8. M. Alber, R. Gejji and B. Kazmierczak, Existence of global solutions of a macroscopic model of cellular motion in a chemotactic field. Appl. Math. Lett. 22 (2009) 1645–1648. [Google Scholar]
  9. N. Apreutesei and V. Volpert, Reaction-diffusion waves with nonlinear boundary conditions. Nonlinear Heterogeneous Medium 8 (2013) 23–35. [CrossRef] [Google Scholar]
  10. N. Apreutesei, A. Tosenberger and V. Volpert, Existence of reaction-diffusion waves with nonlinear boundary conditions. MMNP 8 (2013) 2–17. [EDP Sciences] [Google Scholar]
  11. N. Apreutesei, V. Volpert. Travelling waves for reaction-diffusion problems with nonlinear boundary conditions. Application to a model of atherosclerosis. Pure Appl. Funct. Anal. 3 (2018) 43–56. [Google Scholar]
  12. H. Asada, J. Paszkowiak, D. Teso, et al., Sustained orbital shear stress stimulates smooth muscle cell proliferation via the extracellular signal-regulated protein kinase 1/2 pathway. J. Vasc. Surg. 44 (2005) 772–780. [Google Scholar]
  13. P. Assemat, J.A. Armitage, K.K. Siu, K.G. Contreras, A.M. Dart, J.P. Chin-Dusting and K. Hourigan, Three-dimensional numerical simulation of blood flow in mouse aortic arch around atherosclerotic plaques. Appl. Math. Model. 38 (2014) 4175–4185. [Google Scholar]
  14. M.K. Banerjee, D. Nag, R. Ganguly and A. Datta, Stenotic interaction on haemodynamic parameters in double stenoses. Int. J. Comp. Fluid Dyn. 22 (2008) 609–622. [CrossRef] [Google Scholar]
  15. A.V. Belyaev, J.L. Dunster, J.M. Gibbins, M.A. Panteleev and V. Volpert, Modeling thrombosis in silico: Frontiers, challenges, unresolved problems and milestones. Phys. Life Rev. 26-27 (2018) 57–95. [Google Scholar]
  16. E.S. Bernad, S.I. Bernad and M.L. Craina, Hemodynamic parameters measurements to assess the severity of serial lesions in patient specific right coronary artery. Bio-Med. Mater. Eng. 24 (2014) 323–334. [CrossRef] [Google Scholar]
  17. N. Bessonov, E. Babushkina, S.F. Golovashchenko, A. Tosenberger, F. Ataullakhanov, M. Panteleev, A. Tokarev and V. Volpert, Numerical modelling of cell distribution in blood flow. MMNP 9 (2014) 69–84. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  18. N. Bessonov, A. Sequeira, S. Simakov, Y. Vassilevskii and V. Volpert, Methods of blood flow modelling. MMNP 11 (2016) 1–25. [Google Scholar]
  19. K. Bhaganagar, C. Veeramachaneni and C. Moreno, Significance of plaque morphology in modifying flow characteristics in a diseased coronary artery: Numerical simulation using plaque measurements from intravascular ultrasound imaging. Appl. Math. Model. 37 (2013) 5381–5393. [Google Scholar]
  20. P.J. Blanco and R.A. Feijóo, A 3D-1D-0D Computational Model for the Entire Cardiovascular System. Comp. Mech., edited by E. Dvorking, M. Goldschmit, M. Storti, vol. XXIX (2010) 5887–5911. [Google Scholar]
  21. P.J. Blanco, C.A. Bulant, L.O. Müller, G. Talou, C.G. Bezerra, P.L. Lemos and R.A. Feijóo, Comparison of 1D and 3D models for the estimation of fractional flow reserve. Sci. Rep. 8 (2018) 17275. [CrossRef] [PubMed] [Google Scholar]
  22. A.G. Boamponsem and L.K. Boamponsem, The role of inflammation in atherosclerosis. Adv. Appl. Sci. Res. 2 (2011) 194–207. [Google Scholar]
  23. A. Bouchnita and V. Volpert, A multiscale model of platelet-fibrin thrombus growth in the flow. Comp. Fluids 184 (2019) 10–20. [CrossRef] [Google Scholar]
  24. A. Bouchnita, T. Galochkina, P. Kurbatova, P. Nony and V. Volpert, Conditions of microvessel occlusion for blood coagulation in flow. Int. J. Numer. Methods Biomed. Eng. 33 (2016) e2850. [CrossRef] [Google Scholar]
  25. A. Bouchnita, T. Galochkina and V. Volpert, Influence of antithrombin on the regimes of blood coagulation: insights from the mathematical model. Acta Biotheor. 64 (2016) 327–342. [CrossRef] [PubMed] [Google Scholar]
  26. A. Bouchnita, A. Tosenberger and V. Volpert, On the regimes of blood coagulation. Appl. Math. Lett. 51 (2016) 74–79. [Google Scholar]
  27. S. Boujena, O. Kafi and N. El Khatib A 2D mathematical model of blood flow and its interactions in an atherosclerotic artery. MMNP 9 (2014) 46–68. [CrossRef] [EDP Sciences] [Google Scholar]
  28. S. Boujena, O. Kafi and N. El Khatib Generalized Navier-Stokes equations with non-standard conditions for blood flow in atherosclerotic artery. 95 (2016) 1645–1670. [Google Scholar]
  29. S. Boujena, O. Kafi and A. Sequeira, Mathematical study of a single leukocyte in microchannel flow. MMNP 13 (2018) 43. [EDP Sciences] [Google Scholar]
  30. E. Boileau and P. Nithiarasu, One-dimensional modelling of the coronary circulation. Application to noninvasive quantification of fractional flow reserve (FFR). Comput. Exp. Biomed. Sci. Methods Appl. 21 (2015) 137–155. [Google Scholar]
  31. E. Boileau, S. Pant, C. Roobottom et al., Estimating the accuracy of a reduced-order model for the calculation of fractional flow reserve (FFR). Int. J. Num. Meth. Biomed. Eng. 34 (2017) e2908. [CrossRef] [Google Scholar]
  32. D.V. Burenchev, F.Y. Kopylov, A.A. Bykova, T.M. Gamilov, D.G. Gognieva, S.S. Simakov and Y.V. Vasilevsky, Mathematical modelling of circulation in extracranial brachiocephalic arteries at pre-operation stage in carotid endarterectomy. Rus. J. Cardiol. 144 (2017) 88–92. [CrossRef] [Google Scholar]
  33. E. Boileau, S. Pant, C. Roobottom, I. Sazonov, J. Deng, X. Xie and P. Nithiarasu, Estimating the accuracy of a reduced-order model for the calculation of fractional flow reserve (FFR). Int. J. Num. Meth. Biomed. Eng. 34 (2018) e2908. [CrossRef] [Google Scholar]
  34. R.L. Bratzler, C.K. Colton and K.M. Smith. Endotelium and permeability: theoretical models for transport of low-density lipoprotiens in the arterial wall. In: Atherosclerosis, edited by G.W. Manning and M. Daria-Haust. New York: Plenum (1977) 943–951. [Google Scholar]
  35. I. Campbell and W.R. Taylor, Flow and atherosclerosis. In: Hemodynamics and mechanobiology of endothelium. Edited by T.K. Hsiai, B. Blackman, H. Jo. World Scientific (2010) 1–38. [Google Scholar]
  36. S. Canić, J. Tambaca, G. Guidoboni, A. Mikelić, C.J. Hartley and A. Rosenstrauch, Modeling viscoelastic behaviour of arterial walls and their interaction with pulsatile blood flow. SIAM J. Appl. Math. 67 (2006) 164–193. [Google Scholar]
  37. A. Di Carlo, P. Nardinocchi, G. Pontrelli and L. Teresi, A heterogeneous approach for modelling blood flow in an arterial segment. Simulations in Biomedicine V, WIT Press (2003) 69–78. [Google Scholar]
  38. K. Chahour, R. Aboulaich, A. Habbal, C. Abdelkhirane and N. Zemzemi, Numerical simulation of the fractional flow reserve. MMNP 13 (2018) 1–13. [CrossRef] [EDP Sciences] [Google Scholar]
  39. Y.S. Chatzizisis, A.B. Baker, G.K. Sukhova, et al., Augmented expression and activity of extracellular matrix-degrading enzymes in regions of low endothelial shear stress colocalize with coronary atheromata with thin fibrous caps in pigs. Circulation 123 (2011) 621–630. [CrossRef] [PubMed] [Google Scholar]
  40. Y.C. Chang, T.Y. Hou, B. Merriman and S. Osher, A level set formulation of Eulerian interface capturing methods for incompressible fluid flows. J. Comput. Phys. 124 (1996) 449–464. [Google Scholar]
  41. G.C. Cheng, H.M. Loree, R.D. Kamm, M.C. Fishbein and R.T. Lee, Distribution of circumferential stress in ruptured and stable atherosclerotic lesions. A structural analysis with histopathological correlation. Circulation 87 (1993) 1179–1187. Reviews, 2018. [CrossRef] [PubMed] [Google Scholar]
  42. P.G. Ciarlet, Mathematical Elasticity. Vol. 1 of Three dimensional elasticity. Elsevier (2004). [Google Scholar]
  43. M.C. Clarke and M.R. Bennett, Cause or consequence: What does macrophage apoptosis do in atherosclerosis? Arterioscler. Thromb. Vasc. Biol. 29 (2009) 153–155. [CrossRef] [PubMed] [Google Scholar]
  44. C.A. Cobbold, J.A. Sherratt and S.R.J. Maxwell, Lipoprotein oxidation and its significance for atherosclerosis: a mathematical approach. Bull. Math. Biol. 64 (2002) 65–95. [Google Scholar]
  45. A. Coenen et al., Machine-learning-based CT Fractional Flow Reserve. Circ. Cardiovas. Imag. 11 (2018) e007217. [CrossRef] [Google Scholar]
  46. COMSOL Multiphysics, User’s Guide 4.3b, Licence 17073661, 2012. [Google Scholar]
  47. P. Conti and Y. Shaik-Dasthagirisaeb, Atherosclerosis: a chronic inflammatory disease mediated by mast cells. Cent. Eur. J. Immunol. 40 (2015) 380–386. [CrossRef] [PubMed] [Google Scholar]
  48. A. Danilov, Yu. Ivanov, R. Pryamonosov and Yu. Vassilevski, Methods of graph network reconstruction in personalized medicine. Int. J. Num. Met. Biomed. Eng. 32 (2016) e02754. [CrossRef] [Google Scholar]
  49. M.E. DeBakey, G.M. Lawrie and D.H. Glaeser, Patterns of atherosclerosisand their surgical significance. Ann. Surg. 201 (1985) 115–131. [CrossRef] [PubMed] [Google Scholar]
  50. T. Dobroserdova, M. Olshanskii and S. Simakov, Multiscale coupling of compliant and rigid walls blood flow models. Int. J. Num. Met. Fluids 82 (2016) 799–817. [CrossRef] [Google Scholar]
  51. T. Dobroserdova, S. Simakov, T. Gamilov, R. Pryamonosov and E. Sakharova, Patient-specific blood flow modelling for medical applications. MATEC Web Conf . 76 (2016) 05001. [CrossRef] [Google Scholar]
  52. Z. Duanmu, M. Yin, X. Fan, X. Yang and X. Luo, A patient-specific lumped-parameter model of coronary circulation. Sci. Rep. 8 (2018) 874. [CrossRef] [PubMed] [Google Scholar]
  53. N. El Khatib, S. Genieys and V. Volpert, Atherosclerosis initiation modeled as an inflammatory process. MMNP 2 (2007) 126–141. [CrossRef] [EDP Sciences] [Google Scholar]
  54. N. El Khatib, S. Genieys, B. Kazmierczak and V. Volpert, Mathematical modelling of atherosclerosis as an inflammatory disease. Phil. Trans. R. Soc. A 367 (2009) 4877–4886. [CrossRef] [Google Scholar]
  55. N. El Khatib, S. Genieys, B. Kazmierczak and V. Volpert, Reaction-diffusion model of atherosclerosis development. J. Math. Biol. 65 (2012) 349–374. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  56. E. Evans and A. Yeung, Apparent viscosity and cortical tension of blood granulocytes determined by micropipet aspiration. Biophys. J. 56 (1989) 151–160. [CrossRef] [PubMed] [Google Scholar]
  57. N. Faust, F. Varas, L.M. Kelly, S. Heck and T. Graf, Insertion of enhanced green fluorescent protein into the lysozyme gene creates mice with green fluorescent granulocytes and macrophages. Blood 96 (2000) 719–726. [Google Scholar]
  58. L. Formaggia, F. Nobile, A. Quarteroni and A. Veneziani, Multiscale modelling of the circulatory system: a preliminary analysis. Comput. Visual. Sci. 2 (1999) 75–83. [CrossRef] [Google Scholar]
  59. L. Formaggia, A. Quarteroni and A. Veneziani, Vol. 1 of Cardiovascular mathematics. Springer, Heidelberg, DE (2009). [CrossRef] [Google Scholar]
  60. A. Frangi, W. Niessen, K. Vincken and M. Viergever, Multiscale vessel enhancement filtering. Lecture Notes Comput. Sci. 1496 (1998) 130–137. [CrossRef] [Google Scholar]
  61. A. Friedman and W. Hao, A mathematical model of atherosclerosis and associated risk factors. Bull. Math. Biol. (2017) 1–23. [Google Scholar]
  62. Y.C. Fung, Biomechanics: Mechanical properties of living tissues. Springer-Verlag, New York (1993). [Google Scholar]
  63. E. Galkina and K. Ley, Immune and inflammatory mechanisms of atherosclerosis. Annu. Rev. Immunol. 27 (2009) 165–197. [CrossRef] [PubMed] [Google Scholar]
  64. Z.S. Galis and J.J. Khatri, Matrix metalloproteinases in vascular remodelling and atherogenesis: the good, the bad, and the ugly. Circ. Res. 90 (2002) 251–261. [Google Scholar]
  65. T. Galochkina, M. Marion and V. Volpert, Initiation of reaction-diffusion waves of blood coagulation. Physica D 376–377 (2018) 160–170. [Google Scholar]
  66. A.M. Gambaruto, J. Janela, A. Moura and A. Sequeira, Sensitivity of hemodynamics in a patient specific cerebral aneurysm to vascular geometry and blood rheology. Math. Biosci.Eng. 8 (2011) 409–423. [CrossRef] [MathSciNet] [Google Scholar]
  67. T. Gamilov, Yu. Ivanov, P. Kopylov, S. Simakov and Yu. Vassilevski, Patient specific haemodynamic modeling after occlusion treatment in leg. MMNP 9 (2014) 85–97. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  68. T.M. Gamilov, Ph.Yu. Kopylov, R.A. Pryamonosov and S.S. Simakov, Virtual fractional flow reserve assessment in patient-specific coronary networks by 1D hemodynamic model. Rus. J. Num. Anal. Math. Mod. 30 (2015) 269–76. [Google Scholar]
  69. T. Gamilov, P. Kopylov and S. Simakov, Computational simulations of fractional flow reserve variability. Lecture Notes Comput. Sci. Eng. 112 (2016) 499–507. [CrossRef] [Google Scholar]
  70. T. Gamilov, R. Pryamonosov and S. Simakov, Modeling of Patient-Specific Cases of Atherosclerosis in Carotid Arteries. ECCOMAS Congress 2016 — Proceedings of the 7th European Congress on Computational Methods in Applied Sciences and Engineering 1 (2016) 81–89. [Google Scholar]
  71. T. Gamilov, S. Simakov and P. Kopylov, Computational modeling of multiple stenoses in carotid and vertebral arteries. Trends in Biomathematics: Modeling, Optimization and Computational Problems. Edited by R. Mondiani. Springer, Cham (2018) 301–312. [CrossRef] [Google Scholar]
  72. W.F. Ganong, Review of Medical Physiology. Appleton and Lange, Stamford, CT (1999). [Google Scholar]
  73. K. Gashi, E.M.H. Bosboom and F. van de Vosse, The influence of model order reduction on the computed fractional flow reserve using parameterized coronary geometries. J. Biomech. 82 (2018) 313–323. [CrossRef] [PubMed] [Google Scholar]
  74. X. Ge, F. Liang, Y. Vassilevski and S. Simakov, Sensitivity of coronary flow reserve to cardiovascular parameters: a computational model-based study. 2018 IEEE EMBS Conference on Biomedical Engineering and Sciences, IECBES 2018 — Proceedings 8626620 (2019) 32–35. [Google Scholar]
  75. A.R. Ghigo, S. Abou Taam, X. Wang, P.Y. Lagrée, J.M. Fullana, A one-dimensional arterial network model for bypass graft assessment. Med. Eng. Phys. 43 (2017) 39–47. [CrossRef] [PubMed] [Google Scholar]
  76. R. Glowinski, T.W. Pan and J. Periaux, A fictitious domain method for Dirichlet problem and applications. Comp. Methods Appl. Mech. Eng. 111 (1994) 283–303. [CrossRef] [MathSciNet] [Google Scholar]
  77. D.G. Gognieva, T.M. Gamilov, R.A. Pryamonosov, Y.V. Vasilevsky, S.S. Simakov, F. Liang, et al., Noninvasive assessment of the fractional reserve of coronary blood flow with a one-dimensional mathematical model. Preliminary results of the pilot study. Rus. J. Cardiol. 3 (2019) 60–68. [CrossRef] [Google Scholar]
  78. D.G. Gognieva, A.L. Syrkin, Y.V. Vassilevski, S.S. Simakov, A.V. Melerzanov, F. Liang, A.A. Lomonosova, A.A. Bykova, H.E. El Manaa and Ph.Yu. Kopylov, Noninvasive assessment of fractional flow reserve using mathematical modeling of coronary flow. Kardiologiia 58 (2018) 85–92. [Google Scholar]
  79. D. Gognieva, T. Gamilov, R. Pryamonosov, V. Betelin, S. Ternovoy, N. Serova, S. Abugov, D. Shchekochikhin, Yu. Mitina, H. El-Manaa and Ph. Kopylov, One-dimensional mathematical model-based automated assessment of fractional flow reserve in a patient with silent myocardial ischemia. Am. J. Case Rep. 19 (2018) 724–728. [CrossRef] [PubMed] [Google Scholar]
  80. M. Gottsauner-Wolf, H. Sochor, D. Moertl, M. Gwechenberger, F. Stockenhuber and P. Probst, Assessing coronary stenosis. Europ. Heart J. 17 (1996), 1167–1174. [CrossRef] [Google Scholar]
  81. S. Gross and A. Reusken, Numerical Methods for Two-phase Incompressible Flows. 1st edn. Springer Series in Computational Mathematics. Berlin (2011) 40. [Google Scholar]
  82. G.K. Hansson, P. Libby and I. Tabas, Inflammation and plaque vulnerability. J. Intern. Med. 278 (2015) 483–493. [Google Scholar]
  83. G. Holzapfel, T. Gasser and R. Ogden, A new constitutive framework for arterial wall mechanics and a comparative study of materialmodels. J. Elast. 61 (2000) 1–48. [Google Scholar]
  84. W. Huberts, A.S. Bode, W. Kroon, R.N. Planken, J.H.M. Tordoir, F.N. van de Vosse and E.M.H. Bosboom, A pulse wave propagation model to support decision-making in vascular access planning in the clinic. Med. Eng. Phys. 34 (2011) 233–248. [CrossRef] [PubMed] [Google Scholar]
  85. K. Imoto, T. Hiro, T. Fujii, et al., Longitudinal structural determinants of atherosclerotic plaque vulnerability: A computational analysis of stress distribution using vessel models and three-dimensional intravascular ultrasound imaging. J. Am. Coll. Cardiol. 46 (2005) 1507–1515. [CrossRef] [PubMed] [Google Scholar]
  86. T. Ishikawa, L.F.R. Guimaraes, S. Oshima and R. Yamane, Effect of non-Newtonian property of blood on flow through a stenosed tube. Fluid Dyn. Res. 22 (1998) 251–264. [Google Scholar]
  87. D.A. Johnson, W.C. Rose, J.W. Edwards, U.P. Naik and A.N. Beris, Application of 1D blood flow models of the human arterial network to differential pressure predictions. J. Biomech. 44 (2011) 869–876. [CrossRef] [PubMed] [Google Scholar]
  88. O. Kafi, N. El Khatib, J. Tiago and A. Sequeira, Numerical simulations of a 3D fluid-structure interaction model for blood flow in an atherosclerotic artery. Math. Biosci. Eng. 14 (2017) 179–193. [CrossRef] [PubMed] [Google Scholar]
  89. D.B. Khismatullin. The cytoskeleton and deformability of white blood cells. Leukocyte Rolling and Adhesion. Curr. Top. Membr. Transp. 64 (2009) 47–111. [CrossRef] [Google Scholar]
  90. D.B. Khismatulli and G.A. Truskey, Three-dimensional numerical simulation of receptor-mediated leukocyte adhesion to surfaces: effects of cell deformability and viscoelasticity. Phys. Fluids 17 (2005) 031505. [CrossRef] [Google Scholar]
  91. D.B. Khismatullin and G.A. Truskey, Leukocyte rolling on p-selectin: a three-dimensional numerical study of the effect of cytoplasmic viscosity. Biophys. J. 102 (2012) 1757–1766. [CrossRef] [PubMed] [Google Scholar]
  92. S.A. Kock, J.V. Nygaard, N. Eldrup, E.T. Fründ, A. Klærke, W.P. Paaske, E. Falk and W. Y. Kim, Mechanical stresses in carotid plaques using MRI-based fluid-structure interaction models. J. Biomech. 41 (2008) 1651–1658. [CrossRef] [PubMed] [Google Scholar]
  93. E. Kolaczkowska and P. Kubes, Neutrophil recruitment and function in health and inflammation. Nat. Rev. Immunol. 13 (2013) 159–175. [Google Scholar]
  94. T. Köppl, G. Santin, B. Haasdonk and R. Helmig, Numerical modelling of a peripheral arterial stenosis using dimensionally reduced models and machine learning techniques. Int. J. for Num. Met. Biomed. Eng. 34 (2018) e3095. [CrossRef] [Google Scholar]
  95. F.Y. Kopylov, A.A. Bykova, D.Y. Shchekochikhin, K.E. Elmanaa, A.N. Dzyundzya, Yu.V. Vasilevsky and S.S. Simakov, Asymptomatic atherosclerosis of the brachiocephalic arteries: Current approaches to diagnosis and treatment. Ter. Arkh. 89 (2017) 95–100. [Google Scholar]
  96. M. Kozakova and C. Palombo, Cardiovascular Mechanics, Atherosclerosis and Mechanical Forces. Edited by M.R. Labrosse. Taylor and Francis, Boca Raton (2019). [Google Scholar]
  97. W. Kroon, W. Huberts, M. Bosboom and F. van de Vosse, A Numerical method of reduced complexity for simulating vascular hemodynamics using coupled 0D lumped and 1D Wave propagation models. Comp. Math. Met. Med. 2012 (2012) 156094. [Google Scholar]
  98. P. Kubes and S.M. Kerfoot, Leukocyte recruitment in the microcirculation: the rolling paradigm revisited. News Physiol. Sci. 16 (2001) 76–80. [PubMed] [Google Scholar]
  99. I. Larrabidea, P.J. Blanco, S.A. Urquiza, E.A. Dari, M.J. Véneref, N.A. de Souza e Silvac and R.A. Feijóo, HeMoLab. Hemodynamics modelling laboratory: an application for modelling the human cardiovascular system. Comput. Biol. Med. 42 (2012) 993–1004. [CrossRef] [PubMed] [Google Scholar]
  100. T. Lawrence. The Nuclear Factor NF-κB Pathway in Inflammation. Cold Spring Harb Perspect Biol. 1 (2009) a001651. [CrossRef] [PubMed] [Google Scholar]
  101. J.M. Lee, G. Choi D. Hwang, et al., Impact of longitudinal lesion geometry on location of plaque rupture and clinical presentations. JACC Cardiovasc. Imaging 10 (2017) 677–688. [CrossRef] [PubMed] [Google Scholar]
  102. Z.Y. Luo, F. Xu, T.J. lu and B.F. Bai, Direct numerical simulation of single leukocyte deformation in microchannel flow for disease diagnosis. J. Med. Syst. 35 (2011) 869–876. [Google Scholar]
  103. Z.Y Luo, L. He, S.Q. Wang, S. Tasoglu, F. Xu, U Demirci and B.F. Bai. Two-dimensional numerical study of flow dynamics of a nucleated cell tethered under shear flow. Chem. Eng. Sci. 119 (2014) 236–244. [Google Scholar]
  104. S. Le Floc’h, J. Ohayon, P. Tracqui, G. Finet, A.M. Gharib, R.L. Maurice, G. Cloutier and R.I. Pettigrew, Vulnerable atherosclerotic plaque elasticity reconstruction based on a segmentation-driven optimization procedure using strain measurements: theoretical framework. IEEE Trans. Med. Imaging 28 (2009) 1126–1137. [CrossRef] [PubMed] [Google Scholar]
  105. Z.Y. Li, S. Howarth, T. Tang and J.H. Gillard, How critical is fibrous cap thickness to carotid plaque stability? A flow plaque interaction model. Stroke 37 (2006) 1195–1196. [CrossRef] [PubMed] [Google Scholar]
  106. Z.Y. Li, S. Howarth, R.A. Trivedi, J.M. U-King-Im, M.J. Graves, A. Brown, L. Wang and J.H. Gillard, Stress analysis of carotid plaque rupture based on in vivo high resolution MRI. J. Biomech. 39 (2006) 2611–2622. [CrossRef] [PubMed] [Google Scholar]
  107. X. Li, X. Liu, X. Li, L. Xu, X. Chen and F. Liang, Tortuosity of the superficial femoral artery and its influence on blood flow patterns and risk of atherosclerosis. Biomech. Mod. Mechanobiol. 18 (2019) 883–896. [CrossRef] [Google Scholar]
  108. F. Liang, M. Oshima, H. Huang, H. Liu and S. Takagi, Numerical Study of Cerebroarterial Hemodynamic Changes Following Carotid Artery Operation: A Comparison Between Multiscale Modeling and Stand-Alone ThreeDimensional Modeling. J. Biomech. Eng. 137 (2015) 1–12. [Google Scholar]
  109. F. Liang, S. Takagi, R. Himeno and H. Liu, Multi-scale modeling of the human cardiovascular system with applications to aortic valvular and arterial stenoses. Med. Biol. Eng. Comput. 47 (2009) 743–755. [CrossRef] [PubMed] [Google Scholar]
  110. F. Liang, K. Fukasaku, H. Liu and S. Takagi. A computational model study of the influence of the anatomy of the circle of willis on cerebral hyperperfusion following carotid artery surgery. BioMed. Eng. OnLine 10 (2011) 84. [CrossRef] [PubMed] [Google Scholar]
  111. P. Libby, Inflammation in atherosclerosis. Nature 420 (2002) 868–874. [Google Scholar]
  112. P. Libby, P.M. Ridker and A. Maseri. Circulation 105 (2002) 1135–1142. [CrossRef] [PubMed] [Google Scholar]
  113. K. Logana, R. Balossino, F. Migliavacca, G. Pennati, E.L. Bove, M.R. Leval and G. Dubini, Multiscale modeling of the cardiovascular system: application to the study of pulmonary and coronary perfusion in the univentricular circulation. J. Biomech. 38 (2005) 1129–1141. [CrossRef] [PubMed] [Google Scholar]
  114. R. Magid, T.J. Murphy and Z.S. Galis, Expression of matrix metalloproteinase-9 in endothelial cells is differentially regulated by shear stress. Role of c-Myc. J. Biol. Chem. 278 (2003) 32994–32999. [CrossRef] [PubMed] [Google Scholar]
  115. M. Marion and V. Volpert, Existence of pulses for the system of competition of species. J. Dyn. Diff. Equ. 31 (2019) 1653–1670. [CrossRef] [Google Scholar]
  116. R.E. Mates, R.L. Gupta, A.C. Bell and F.J. Klocke, Fluid dynamics of coronary artery stenosis. Circ. Res. 42 (1978) 152–162. [Google Scholar]
  117. V. Milisić and A. Quarteroni. Analysis of lumped parameter models for blood flow simulations and their relation with 1D models. ESAIM: M2AN 38 (2004) 613–632. [CrossRef] [EDP Sciences] [Google Scholar]
  118. M.A. Mittleman and E. Mostofsky, Physical, psychological and chemical triggers of acute cardiovascular events: Preventive strategies. Circulation 124 (2011) 346–354. [CrossRef] [PubMed] [Google Scholar]
  119. M. Mofrad and R. Kamm, Cytoskeletal Mechanics: Models and Measurements in Cell Mechanics. Cambridge Texts in Biomedical Engineering. Cambridge University Press, Cambridge (2006). [Google Scholar]
  120. P.D. Morris, D. Ryan, A.C. Morton, et al., Virtual fractional flow Reserve from coronary angiography: modeling the significance of coronary lesions. JACC: Cardiovasc. Interv. 6 (2013) 149–157. [CrossRef] [Google Scholar]
  121. P.D. Morris, F.N. van de Vosse, P.V. Lawford, D.R. Hose and J.P. Gunn, “Virtual” (computed) fractional flow reserve: current challenges and limitations. J. Am. Coll. Cardiol. Intv. 8 (2015) 1009–1017. [CrossRef] [PubMed] [Google Scholar]
  122. P.D. Morris, A. Narracott, H. von Tengg-Kobligk, D.A.S. Soto, S. Hsiao, A. Lungu, P. Evans, N.W. Bressloff, P.V. Lawford. D.R. Hose and J.P. Gunn, Computational fluid dynamics modelling in cardiovascular medicine. Heart 102 (2016) 18–28. [CrossRef] [PubMed] [Google Scholar]
  123. L.O. Müller, C. Parés and E. Toro, Well-balanced high-order numerical schemes for one-dimensional blood flow in vessels with varying mechanical properties. J. Comp. Phys. 242 (2013) 53–85. [CrossRef] [Google Scholar]
  124. L.O. Müller and E. Toro, A global multiscale mathematical model for the human circulation with emphasis on the venous system. Int. J. Num. Met. Biomed. Eng. 30 (2014) 681–725. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  125. J.P. Mynard and P. Nithiarasu, A 1D arterial blood flow model incorporating ventricular pressure, aortic valve and regional coronary flow using the locally conservative Galerkin (LCG) method. Commun. Numer. Methods Eng. 24 (2008) 367–417. [Google Scholar]
  126. F. Nobile, Numerical approximation of fluid-structure interaction problems with application to haemodynamics. Ph.D. thesis, Ecole Polytechnique Federale de Lausanne (EPFL) (2001). [Google Scholar]
  127. M.S. Olufsen, C.S. Peskin, W.Y. Kim, E.M. Pedersen, A. Nadim and J. Larsen, Numerical simulation and experimental validation of blood flow in arteries with structured-tree outflow conditions. An. Biomed. Eng. 28 (2000) 1281–1299. [CrossRef] [PubMed] [Google Scholar]
  128. A.N. Orekhov. Atherosclerosis. Palmarium Academic Publishing, Russian (2013). [Google Scholar]
  129. M. Oshima, R. Torii, S. Tokuda, S. Yamada and A. Koizumi, Patient-specific modeling and multi-scale blood simulation for computational hemodynamic study on the human cerebrovascular system. Curr. Pharm. Biotechnol. 13 (2012) 2153–2165. [CrossRef] [PubMed] [Google Scholar]
  130. L. Page, B. Riegel, S.B.K. Kern III, et al., ACC/AHA/SCAI 2005 Guideline update for percutaneous coronary intervention: A report of the American college of cardiology / American heart association task force on practice guidelines. J. Am. Coll. Cardiol. 47 (2006) e1–121. [PubMed] [Google Scholar]
  131. A.V. Panfilov, H. Dierckx and V. Volpert, Reaction-diffusion waves in cardiovascular diseases. Physica D 399 (2019) 1–34. [Google Scholar]
  132. C.S. Peskin, Numerical analysis of blood flow in the heart. J. Comput. Phys. 25 (1977) 220–252. [Google Scholar]
  133. C.S. Peskin and D.M. McQueen, A three-dimensional computational method for blood flow in the heart - I Immersed elastic fibers in a viscous incompressible fluid. J. Comput. Phys. 81 (1989) 372–405. [Google Scholar]
  134. Q. Pan, R. Wang, B. Reglin, G. Cai, J. Yan, A.R. Pries and G. Ning. A one-dimensional mathematical model for studying the pulsatile flow in microvascular networks. J. Biomed. Eng. 136 (2014) 011009. [Google Scholar]
  135. M.I. Papafaklis, T. Muramatsu, Y. Ishibashi, L.S. Lakkas, et.al., Fast virtual functional assessment of intermediate coronary lesions using routine angiographic data and blood flow simulation in humans: Comparison with pressure wire - fractional flow reserve. Euro Interven. 10 (2014) 574–583. [Google Scholar]
  136. A. Parton, V. McGilligan, M.O. Kane, F.R. Baldrick and S. Watterson, Computational modelling of atherosclerosis. Brief. Bioinform. 17 (2016) 562–575. [CrossRef] [PubMed] [Google Scholar]
  137. R.N. Pralhad and D.H. Schultz, Modeling of arterial stenosis and its applications to blood diseases. Math. Biosci. 190 (2004) 203–220. [Google Scholar]
  138. R.N. Poston and D.R.M. Poston, Typical atherosclerotic plaque morphology produced in silico by an atherogenesis model based on self-perpetuating propagating macrophage recruitment. MMNP 2 (2007) 142–149. [EDP Sciences] [Google Scholar]
  139. D.N. Riahi and R. Roy, S. Cavazos, On arterial blood flow in the presence of an overlapping stenosis. MMNP 54 (2011) 2999–3006. [Google Scholar]
  140. R. Rajani, Y. Wang, A. Uss, D. Perera, et al., Virtual fractional flow reserve by coronary computed tomography: hope or hype? Euro Interven. 9 (2013) 277–284. [Google Scholar]
  141. M. Rosar and C. Peskin, Fluid flow in collapsible elastic tubes: a three-dimensional numerical model. New York J. Math. 7 (2001) 281–302. [Google Scholar]
  142. M. Roy, B.S. Sikarwar, M. Bhandwal and P. Ranjan, Modelling of blood flow in stenosed arteries. Procedia Comput. Sci. 115 (2017) 821–830. [Google Scholar]
  143. G. Ruiz-Ares, B. Fuentes, P. Martinez-Sanchez and E. Diez-Tejedor, A prediction model for unstable carotid atheromatous plaque in acute ischemic stroke patients: proposal and internal validation. Ultrasound in Med. Biol. 40 (2014) 1958–1965. [CrossRef] [Google Scholar]
  144. A.S. Silva-Herdade, G. Andolina, C. Faggio, Â. Calado and C. Saldanha, Erythrocyte deformability – A partner of the inflammatory response. Microvasc. Res. 107 (2016), 34–38. [Google Scholar]
  145. A.S. Silva, C. Saldanha, and J. Martins e Silva, Effects of velnacrine maleate in the leukocyte-endothelial cell interactions in rat cremaster microcirculatory network. Clin. Hemorheol. Microcirc. 36 (2007) 235–246. [Google Scholar]
  146. S.S. Simakov and A.S. Kholodov, Computational study of oxygen concentration in human blood under low frequency disturbances. Math. Mod. Comp. Sim. 1 (2009) 283–295. [Google Scholar]
  147. S.S. Simakov, T.M. Gamilov and Y.N. Soe. Computational study of blood flow in lower extremities under intense physical load. Rus. J. Num. Anal. Math. Mod. 28 (2013) 485–504. [Google Scholar]
  148. S.S. Simakov, T.M. Gamilov, F.Y. Kopylov and Y.V. Vassilevski, Evaluation of hemodynamic significance of stenosis in multiple involvement of the coronary vessels by mathematical simulation. Bull. Exp. Biol. Med. 162 (2016) 111–114. [CrossRef] [PubMed] [Google Scholar]
  149. S.S. Simakov, Modern methods of mathematical modeling of blood flow using reduced order methods. Computer Research and Modeling 10 (2018) 581–604. [CrossRef] [Google Scholar]
  150. S. Simakov and T. Gamilov, in Computational study of the cerebral circulation accounting for the patient-specific anatomical features. Vol. 133 of Smart Modeling for Engineering Systems. GCM50 2018. Smart Innovation, Systems and Technologies. Springer, Cham (2019) 309–330. [Google Scholar]
  151. A.K. Singh, Effects of shape parameter and length of stenosis on blood flow through improved generalized artery with multiple stenoses. Adv. Appl. Math. Biosci. 3 (2012) 41–48. [Google Scholar]
  152. L.G. Spagnoli, E. Bonanno, G. Sangiorgi and A. Mauriello, Role of inflammation in atherosclerosis. J. Nucl. Med. 48 (2007) 1800–1815. [CrossRef] [PubMed] [Google Scholar]
  153. B. Spronck, E. Martens, E. Gommer and F. van de Vosse, A lumped parameter model of cerebral blood flow control combining cerebral autoregulation and neurovascular coupling. Am. J. Physiol. Heart Circ. Physiol. 303 (2012) H1143–H1153. [Google Scholar]
  154. D.K. Stangeby and C.R. Ethier, Coupled computational analysis of arterial LDL transport – effects of hypertension. Comput. Methods Biomech. Biomed. Eng. 5 (2002) 233–241. [CrossRef] [Google Scholar]
  155. H.C. Stary, A.B. Chandler, R.E. Dinsmore et al., A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation 92 (1995) 1355–1374. [CrossRef] [PubMed] [Google Scholar]
  156. N. Stergiopulos, D.F. Young and T.R. Rogge, Computer simulation of arterial flow with applications to arterial and aortic stenosis. J. Biomech. 25 (1992) 1477–1488. [CrossRef] [PubMed] [Google Scholar]
  157. B. Thomas and K.S. Sumam, Blood flow in human arterial aystem - a review. Procedia Technol. 24 (2016) 339–346. [CrossRef] [Google Scholar]
  158. D. Tang, C. Yang, J. Zheng, P.K. Woodard, G.A. Sicard, J.E. Saffitz and C. Yuan, 3D MRI-based multicomponent FSI models for atherosclerotic plaques. Ann. Biomed. Eng. 32 (2004) 947–960. [CrossRef] [PubMed] [Google Scholar]
  159. C.A. Taylor, T.A. Fonte and J.K. Min, Computational fluid dynamics applied to cardiac computed tomography for noninvasive quantification of fractional flow reserve. J. Am. Col. Cardiol. 61 (2013) 2233–2241. [CrossRef] [Google Scholar]
  160. K. Theodorou and R.A. Boon. Endothelial Cell Metabolism in Atherosclerosis. Front. Cell Dev. Biol. 6 (2018) 82. [CrossRef] [PubMed] [Google Scholar]
  161. M. Thiriet, G. Martin-Borret and F. Hecht, Ecoulement rhéofluidifiant dans un coude et une bifurcation plane symétrique. Application à l’écoulement sanguin dans la grande circulation. J. Phys. 6 (1996) 529–542. [Google Scholar]
  162. O. Tricot, Z. Mallat, C. Heymes, J. Belmin, G. Leseche and A. Tedgui, Relation between endothelial cell apoptosis and blood flow direction in human atherosclerotic plaques. Circulation 101 (2000) 2450–2453. [CrossRef] [PubMed] [Google Scholar]
  163. S. Tu, E. Barbato, Z. Köoszegi, et al, Fractional flow reserve calculation from 3-dimensional quantitative coronary angiography and TIMI frame count: a fast computer model to quantify the functional significance of moderately obstructed coronary arteries. JACC Cardiovasc. Interven. 7 (2014) 768–777. [CrossRef] [PubMed] [Google Scholar]
  164. A. Tuttolomondo, D. Di Raimondo, R. Pecoraro, V. Arnao, A. Pinto and G. Licata, Atherosclerosis as an dnflammatory Disease. Curr. Pharm. Des. 18 (2012) 4266–4288. [CrossRef] [PubMed] [Google Scholar]
  165. S. Urquiza, P. Blanco, M. Venere and R. Feijóo, Multidimensional modelling for the carotid artery blood flow. Comp. Met. Appl. Mech. Eng. 195 (2006) 4002–4017. [CrossRef] [MathSciNet] [Google Scholar]
  166. Y. Vassilevski, S. Simakov, V. Salamatova, Y. Ivanov and T. Dobroserdova, Vessel wall models for simulation of atherosclerotic vascular networks. MMNP 6 (2011) 82–99. [Google Scholar]
  167. Y. Vassilevski, S. Simakov, V. Salamatova, Y. Ivanov and T. Dobroserdova, Blood flow simulation in atherosclerotic vascular network using fiber-spring representation of diseased wall. MMNP 6 (2011) 333–349. [CrossRef] [EDP Sciences] [Google Scholar]
  168. Yu.V. Vassilevski, S.S. Simakov S, V.Yu. Salamatova, Yu.A. Ivanov and T.D. Dobroserdova, Numerical issues of modelling blood flow in networks of vessels with pathologies. Rus. J. Num. Anal. Math. Mod. 26 (2012) 605–622. [Google Scholar]
  169. Y.V. Vassilevski, V.Y. Salamatova and S.S. Simakov, On the elasticity of blood vessels in one-dimensional problems of hemodynamics. Comp. Math. Math. Phys. 55 (2015) 1567–1578. [CrossRef] [Google Scholar]
  170. Yu.V. Vassilevski, A.A. Danilov, T.M. Gamilov, Yu.A. Ivanov, R.A. Pryamonosov and S.S. Simakov, Patient-specific anatomical models in human physiology. Rus. J. Num. Anal. Math. Mod. 30 (2015) 185–201. [Google Scholar]
  171. M.A. Vis, P.H. Bovendeerd, P. Sipkema, N. Westerhof. Effect of ventricular contraction, pressure, and wall stretch on vessels at different locations in the wall. Am. J. Physiol. Heart Circ. Physiol. 272 (1997) H2963–H2975. [Google Scholar]
  172. A. Volpert and V. Volpert, Existence of multidimensional travelling waves and systems of waves. Comm. PDE 26 (2001) 421–459. [CrossRef] [Google Scholar]
  173. V. Volpert and A. Volpert, Spectrum of elliptic operators and stability of travelling waves. Asymptotic Analysis 23 (2000) 111–134. [Google Scholar]
  174. V. Volpert, in Elliptic partial differential equations. Vol. 2 of Reaction-diffusion Equations. Springer, Birkhäuser (2014). [Google Scholar]
  175. F.N. van de Vosse and N. Stergiopulos, Pulse wave propagation in the arterial tree. Ann. Rev. Fluid Mech. 43 (2011) 467–499. [CrossRef] [Google Scholar]
  176. A.C. van der Wal, A.E. Becker, C.M. van der Loos and P.K. Das, Site of intimal rupture or erosion of thrombosed coronary atherosclerotic plaques is characterized by an inflammatory process irrespective of the dominant plaque morphology. Circulation 89 (1994) 36–44. [CrossRef] [PubMed] [Google Scholar]
  177. C.R. White, T.A. Brock, L.Y. Chang et al., Superoxide and peroxynitrite in atherosclerosis. PNAS 91 (1994) 1044–1048. [CrossRef] [Google Scholar]
  178. C.J. World, G. Garin and B. Berk, Vascular shear stress and activation of inflammatory genes. Curr. Atheroscler. Rep. 8 (2006) 240–244. [CrossRef] [PubMed] [Google Scholar]
  179. G. Yang, P. Kitslaar, M. Frenay, J. Dijkstra, et. al., Automatic centerline extraction of coronary arteries in coronary computed tomographic angiography. Int. J. Cardiovasc. Imag. 28 (2012) 921–933. [CrossRef] [Google Scholar]
  180. A. Yeung and E. Evans, Cortical shell-liquid core model for passive flow of liquid-like spherical cells into micropipets. Biophys. J. 56 (1989) 139–149. [CrossRef] [PubMed] [Google Scholar]
  181. Y.E. Yoon and B.K. Koo, Non-invasive functional assessment using computed tomography: when will they be ready for clinical use? Cardiovasc. Diagn. Ther. 2 (2012) 106–112. [Google Scholar]
  182. D. Young and F. Tsai, Flow characteristics in models of arterial stenoses – ii. unsteady flow. J. Biomech. 6 (1973) 547–559. [CrossRef] [PubMed] [Google Scholar]
  183. D.F. Young, N.R. Cholvin, R.L. Kirkeeide and A.C. Roth, Hemodynamics of arterial stenoses at elevated flow rates. Circ. Res. 41 (1977) 99–107. [Google Scholar]
  184. T. Zand, A.H. Hoffman, B.J. Savilonis, et al., Lipid deposition in rat aortas with intraluminal hemispherical plug stenosis. A morphological and biophysical study. Am. J. Pathol. 155 (1999) 85–92. [CrossRef] [PubMed] [Google Scholar]
  185. C.K. Zarins, C.A. Taylor and J.K. Min, Computed fractional flow Reserve (FFTCT) derived from coronary CT angiography. J. Cardiovasc. Trans. Res. 6 (2013) 708–714. [CrossRef] [Google Scholar]
  186. H. Zhang, N. Fujiwara, M. Kobayashi, S. Yamada, F. Liang, S. Takagi and M. Oshima, Development of a numerical method for patient-specific cerebral circulation using 1D-0D simulation of the entire cardiovascular system with SPECT data. Ann. Biomed. Eng. 44 (2015) 2351–2363. [CrossRef] [PubMed] [Google Scholar]
  187. J.-M. Zhang, T. Luo, S.Y. Tan, et al., Hemodynamic analysis of patient-specific coronary artery tree. Int. J. Num. Met. Biomed.Eng. 31 (2015) e02708. [CrossRef] [Google Scholar]
  188. J.-M. Zhang, L. Zhong, T. Luo, A.M. Lomarda, Y. Huo, J. Yap, et al., Simplified models of non-invasive fractional flow reserve based on CT images. PLoS One 11 (2016) e0153070. [CrossRef] [PubMed] [Google Scholar]
  189. H. Zhang, N. Fujiwara, M. Kobayashi, S. Yamada, F. Liang, S. Takagi and M. Oshima, Development of patient-specific 1D-0D simulation based on MRI and SPECT data. J. Biorheol. 32 (2018) 2–8. [CrossRef] [Google Scholar]
  190. L. Zeng, A. Zampetaki and Q. Xu, Endothelial cell proliferation and differentiation in response to shear stress. In: Hemodynamics and mechanobiology of endothelium, edited by T.K. Hsiai, B. Blackman, H. Jo. World Scientific, Singapore (2010) 213–247. [CrossRef] [Google Scholar]
  191. D.P. Zipes, P. Libby, R.O. Bonow, E. Braunwald, Braunwald’s Heart Disease: a Textbook of Cardiovascular Medicine (7th edn.) Elsevier Saunders, Pennsylvania, USA (2005) 921–929. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.