Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

This article has been cited by the following article(s):

Industrial Mathematics and Complex Systems

Maria Skopina
Industrial and Applied Mathematics, Industrial Mathematics and Complex Systems 141 (2017)
DOI: 10.1007/978-981-10-3758-0_8
See this article

Framelets and Wavelets

Bin Han
Applied and Numerical Harmonic Analysis, Framelets and Wavelets 1 (2017)
DOI: 10.1007/978-3-319-68530-4_1
See this article

Framelets and Wavelets

Bin Han
Applied and Numerical Harmonic Analysis, Framelets and Wavelets 67 (2017)
DOI: 10.1007/978-3-319-68530-4_2
See this article

Framelets and Wavelets

Bin Han
Applied and Numerical Harmonic Analysis, Framelets and Wavelets 153 (2017)
DOI: 10.1007/978-3-319-68530-4_3
See this article

Framelets and Wavelets

Bin Han
Applied and Numerical Harmonic Analysis, Framelets and Wavelets 245 (2017)
DOI: 10.1007/978-3-319-68530-4_4
See this article

Framelets and Wavelets

Bin Han
Applied and Numerical Harmonic Analysis, Framelets and Wavelets 371 (2017)
DOI: 10.1007/978-3-319-68530-4_5
See this article

Framelets and Wavelets

Bin Han
Applied and Numerical Harmonic Analysis, Framelets and Wavelets 485 (2017)
DOI: 10.1007/978-3-319-68530-4_6
See this article

Framelets and Wavelets

Bin Han
Applied and Numerical Harmonic Analysis, Framelets and Wavelets 579 (2017)
DOI: 10.1007/978-3-319-68530-4_7
See this article

New constructions of nonseparable tight wavelet frames

Youngmi Hur and Zachary Lubberts
Linear Algebra and its Applications 534 13 (2017)
DOI: 10.1016/j.laa.2017.08.002
See this article

Duality for Frames

Zhitao Fan, Andreas Heinecke and Zuowei Shen
Journal of Fourier Analysis and Applications 22 (1) 71 (2016)
DOI: 10.1007/s00041-015-9415-0
See this article

On construction of multivariate Parseval wavelet frames

M. Skopina
Applied Mathematics and Computation 301 1 (2017)
DOI: 10.1016/j.amc.2016.12.013
See this article

Compactly Supported Tight and Sibling Frames Based on Generalized Bernstein Polynomials

Ting Cheng and Xiaoyuan Yang
Mathematical Problems in Engineering 2016 1 (2016)
DOI: 10.1155/2016/2463673
See this article

Homogeneous wavelets and framelets with the refinable structure

Bin Han
Science China Mathematics 60 (11) 2173 (2017)
DOI: 10.1007/s11425-017-9145-4
See this article

Directional compactly supported box spline tight framelets with simple geometric structure

Bin Han, Tao Li and Xiaosheng Zhuang
Applied Mathematics Letters 91 213 (2019)
DOI: 10.1016/j.aml.2018.12.016
See this article

Quasi-tight framelets with high vanishing moments derived from arbitrary refinable functions

Chenzhe Diao and Bin Han
Applied and Computational Harmonic Analysis (2018)
DOI: 10.1016/j.acha.2018.12.001
See this article