Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Non-Markovian Persistent Random Walk Model for Intracellular Transport

Nickolay Korabel, Hamed Al Shamsi, Alexey O. Ivanov and Sergei Fedotov
Fractal and Fractional 7 (10) 758 (2023)
https://doi.org/10.3390/fractalfract7100758

Anomalous dielectric relaxation with multispecies linear reaction dynamics

Tao Hong, Shu Peng, Yu Peng, Zhengming Tang and Kama Huang
Physica A: Statistical Mechanics and its Applications 613 128511 (2023)
https://doi.org/10.1016/j.physa.2023.128511

Encounter-based reaction-subdiffusion model II: partially absorbing traps and the occupation time propagator

Paul C Bressloff
Journal of Physics A: Mathematical and Theoretical 56 (43) 435005 (2023)
https://doi.org/10.1088/1751-8121/acfcf4

Local Stability, Global Stability, and Simulations in a Fractional Discrete Glycolysis Reaction–Diffusion Model

Tareq Hamadneh, Amel Hioual, Omar Alsayyed, Yazan Alaya AL-Khassawneh, Abdallah Al-Husban and Adel Ouannas
Fractal and Fractional 7 (8) 587 (2023)
https://doi.org/10.3390/fractalfract7080587

Numerical investigation of two models of nonlinear fractional reaction subdiffusion equations

Sheelan Osman and Trevor Langlands
Fractional Calculus and Applied Analysis 25 (6) 2166 (2022)
https://doi.org/10.1007/s13540-022-00096-2

Anomalous Stochastic Transport of Particles with Self-Reinforcement and Mittag–Leffler Distributed Rest Times

Daniel Han, Dmitri V. Alexandrov, Anna Gavrilova and Sergei Fedotov
Fractal and Fractional 5 (4) 221 (2021)
https://doi.org/10.3390/fractalfract5040221

Reaction–subdiffusion equations for the A→B reaction in space- and time-dependent force fields: A study for the anomalous dielectric relaxation

Tao Hong, Yusong Hu, Zhengming Tang and Kama Huang
Physica A: Statistical Mechanics and its Applications 562 125349 (2021)
https://doi.org/10.1016/j.physa.2020.125349

A General Framework for Fractional Order Compartment Models

Christopher N. Angstmann, Austen M. Erickson, Bruce I. Henry, et al.
SIAM Review 63 (2) 375 (2021)
https://doi.org/10.1137/21M1398549

Recent advances in physiologically based pharmacokinetic and pharmacodynamic models for anticancer nanomedicines

Jong Hyuk Byun, Dong-Gyun Han, Hyun-Jong Cho, In-Soo Yoon and Il Hyo Jung
Archives of Pharmacal Research 43 (1) 80 (2020)
https://doi.org/10.1007/s12272-020-01209-2

Numeric solution of advection–diffusion equations by a discrete time random walk scheme

Christopher N. Angstmann, Bruce I. Henry, Byron A. Jacobs and Anna V. McGann
Numerical Methods for Partial Differential Equations 36 (3) 680 (2020)
https://doi.org/10.1002/num.22448

Subdiffusion-limited fractional reaction-subdiffusion equations with affine reactions: Solution, stochastic paths, and applications

Sean D. Lawley
Physical Review E 102 (4) (2020)
https://doi.org/10.1103/PhysRevE.102.042125

Generalised Geometric Brownian Motion: Theory and Applications to Option Pricing

Viktor Stojkoski, Trifce Sandev, Lasko Basnarkov, Ljupco Kocarev and Ralf Metzler
Entropy 22 (12) 1432 (2020)
https://doi.org/10.3390/e22121432

Time Fractional Fisher–KPP and Fitzhugh–Nagumo Equations

Christopher N. Angstmann and Bruce I. Henry
Entropy 22 (9) 1035 (2020)
https://doi.org/10.3390/e22091035

An implicit Keller Box numerical scheme for the solution of fractional subdiffusion equations

S.A. Osman and T.A.M. Langlands
Applied Mathematics and Computation 348 609 (2019)
https://doi.org/10.1016/j.amc.2018.12.015

Bimolecular reactive transport in a two-dimensional velocity field in disordered media

Rami Ben-Zvi, Harvey Scher and Brian Berkowitz
Journal of Physics A: Mathematical and Theoretical 52 (42) 424005 (2019)
https://doi.org/10.1088/1751-8121/ab4077

Fluid Reactive Anomalous Transport with Random Waiting Time Depending on the Preceding Jump Length

Hong Zhang and Guo-Hua Li
Journal of Statistical Physics 174 (3) 548 (2019)
https://doi.org/10.1007/s10955-018-2185-8

Two dimensional diffusion-controlled triplet–triplet annihilation kinetics

Grégoire C. Gschwend, Morgan Kazmierczak, Astrid J. Olaya, Pierre-François Brevet and Hubert H. Girault
Chemical Science 10 (32) 7633 (2019)
https://doi.org/10.1039/C9SC00957D

Time-fractional geometric Brownian motion from continuous time random walks

C.N. Angstmann, B.I. Henry and A.V. McGann
Physica A: Statistical Mechanics and its Applications 526 121002 (2019)
https://doi.org/10.1016/j.physa.2019.04.238

Generalized Master Equations for Random Walks with Time-Dependent Jump Sizes

Diego Torrejon and Maria Emelianenko
SIAM Journal on Applied Mathematics 78 (3) 1330 (2018)
https://doi.org/10.1137/17M1127673

Random walk on temporal networks with lasting edges

Julien Petit, Martin Gueuning, Timoteo Carletti, Ben Lauwens and Renaud Lambiotte
Physical Review E 98 (5) (2018)
https://doi.org/10.1103/PhysRevE.98.052307

Variable order fractional Fokker–Planck equations derived from Continuous Time Random Walks

Peter Straka
Physica A: Statistical Mechanics and its Applications 503 451 (2018)
https://doi.org/10.1016/j.physa.2018.03.010

A continuous time random walk (CTRW) integro-differential equation with chemical interaction

Rami Ben-Zvi, Alon Nissan, Harvey Scher and Brian Berkowitz
The European Physical Journal B 91 (1) (2018)
https://doi.org/10.1140/epjb/e2017-80417-8

Generalized fractional diffusion equations for subdiffusion in arbitrarily growing domains

C. N. Angstmann, B. I. Henry and A. V. McGann
Physical Review E 96 (4) (2017)
https://doi.org/10.1103/PhysRevE.96.042153

A time-fractional generalised advection equation from a stochastic process

C.N. Angstmann, B.I. Henry, B.A. Jacobs and A.V. McGann
Chaos, Solitons & Fractals 102 175 (2017)
https://doi.org/10.1016/j.chaos.2017.04.040

Fractional Order Compartment Models

Christopher N. Angstmann, Austen M. Erickson, Bruce I. Henry, et al.
SIAM Journal on Applied Mathematics 77 (2) 430 (2017)
https://doi.org/10.1137/16M1069249

Transient modeling of non-Fickian transport and first-order reaction using continuous time random walk

Daniel K. Burnell, Scott K. Hansen and Jie Xu
Advances in Water Resources 107 370 (2017)
https://doi.org/10.1016/j.advwatres.2017.06.014

Discretization of fractional differential equations by a piecewise constant approximation

C.N. Angstmann, B.I. Henry, B.A. Jacobs and A.V. McGann
Mathematical Modelling of Natural Phenomena 12 (6) 23 (2017)
https://doi.org/10.1051/mmnp/2017063

Generalized master equations and fractional Fokker–Planck equations from continuous time random walks with arbitrary initial conditions

C.N. Angstmann, B.I. Henry and I. Ortega-Piwonka
Computers & Mathematics with Applications 73 (6) 1315 (2017)
https://doi.org/10.1016/j.camwa.2016.11.015

Continuous Time Random Walk Based Theory for a One-Dimensional Coarsening Model

Diego Torrejon, Maria Emelianenko and Dmitry Golovaty
Journal of Elliptic and Parabolic Equations 2 (1-2) 189 (2016)
https://doi.org/10.1007/BF03377401

A Mathematical Model for the Proliferation, Accumulation and Spread of Pathogenic Proteins Along Neuronal Pathways with Locally Anomalous Trapping

C. N. Angstmann, I. C. Donnelly, B. I. Henry, et al.
Mathematical Modelling of Natural Phenomena 11 (3) 142 (2016)
https://doi.org/10.1051/mmnp/20161139

Measurements and models of reactive transport in geological media

Brian Berkowitz, Ishai Dror, Scott K. Hansen and Harvey Scher
Reviews of Geophysics 54 (4) 930 (2016)
https://doi.org/10.1002/2016RG000524

From stochastic processes to numerical methods: A new scheme for solving reaction subdiffusion fractional partial differential equations

C.N. Angstmann, I.C. Donnelly, B.I. Henry, et al.
Journal of Computational Physics 307 508 (2016)
https://doi.org/10.1016/j.jcp.2015.11.053

A Semi-Markov Algorithm for Continuous Time Random Walk Limit Distributions

G. Gill, P. Straka, A. Nepomnyashchy and V. Volpert
Mathematical Modelling of Natural Phenomena 11 (3) 34 (2016)
https://doi.org/10.1051/mmnp/201611303

Mathematical Modelling of Subdiffusion-reaction Systems

A. A. Nepomnyashchy and V. Volpert
Mathematical Modelling of Natural Phenomena 11 (1) 26 (2016)
https://doi.org/10.1051/mmnp/201611102

A discrete time random walk model for anomalous diffusion

C.N. Angstmann, I.C. Donnelly, B.I. Henry and J.A. Nichols
Journal of Computational Physics 293 53 (2015)
https://doi.org/10.1016/j.jcp.2014.08.003

Integrodifferential formulations of the continuous-time random walk for solute transport subject to bimolecularA+B→0reactions: From micro- to mesoscopic

Scott K. Hansen and Brian Berkowitz
Physical Review E 91 (3) (2015)
https://doi.org/10.1103/PhysRevE.91.032113

Generalized Continuous Time Random Walks, Master Equations, and Fractional Fokker--Planck Equations

C. N. Angstmann, I. C. Donnelly, B. I. Henry, T. A. M. Langlands and P. Straka
SIAM Journal on Applied Mathematics 75 (4) 1445 (2015)
https://doi.org/10.1137/15M1011299

Stochastic modeling analysis of sequential first-order degradation reactions and non-Fickian transport in steady state plumes

Daniel K. Burnell, James W. Mercer and Charles R. Faust
Water Resources Research 50 (2) 1260 (2014)
https://doi.org/10.1002/2013WR013814

Subdiffusion-reaction processes withA→Breactions versus subdiffusion-reaction processes withA+B→Breactions

Tadeusz Kosztołowicz and Katarzyna D. Lewandowska
Physical Review E 90 (3) (2014)
https://doi.org/10.1103/PhysRevE.90.032136

Modelling the advancement of the impurities and the melted oxygen concentration within the scope of fractional calculus

Abdon Atangana and Dumitru Baleanu
International Journal of Non-Linear Mechanics 67 278 (2014)
https://doi.org/10.1016/j.ijnonlinmec.2014.09.010

Continuous-time random walks on networks with vertex- and time-dependent forcing

C. N. Angstmann, I. C. Donnelly, B. I. Henry and T. A. M. Langlands
Physical Review E 88 (2) (2013)
https://doi.org/10.1103/PhysRevE.88.022811