Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

This article has been cited by the following article(s):

Measurements and models of reactive transport in geological media

Brian Berkowitz, Ishai Dror, Scott K. Hansen and Harvey Scher
Reviews of Geophysics 54 (4) 930 (2016)
DOI: 10.1002/2016RG000524
See this article

Continuous-time random walks on networks with vertex- and time-dependent forcing

C. N. Angstmann, I. C. Donnelly, B. I. Henry and T. A. M. Langlands
Physical Review E 88 (2) (2013)
DOI: 10.1103/PhysRevE.88.022811
See this article

Subdiffusion of mixed origin with chemical reactions

V. P. Shkilev
Journal of Experimental and Theoretical Physics 117 (6) 1066 (2013)
DOI: 10.1134/S1063776113140045
See this article

Persistent random walk of cells involving anomalous effects and random death

Sergei Fedotov, Abby Tan and Andrey Zubarev
Physical Review E 91 (4) (2015)
DOI: 10.1103/PhysRevE.91.042124
See this article

Stochastic modeling analysis of sequential first-order degradation reactions and non-Fickian transport in steady state plumes

Daniel K. Burnell, James W. Mercer and Charles R. Faust
Water Resources Research 50 (2) 1260 (2014)
DOI: 10.1002/2013WR013814
See this article

A Semi-Markov Algorithm for Continuous Time Random Walk Limit Distributions

G. Gill, P. Straka, A. Nepomnyashchy and V. Volpert
Mathematical Modelling of Natural Phenomena 11 (3) 34 (2016)
DOI: 10.1051/mmnp/201611303
See this article

Transport equations for subdiffusion with nonlinear particle interaction

P. Straka and S. Fedotov
Journal of Theoretical Biology 366 71 (2015)
DOI: 10.1016/j.jtbi.2014.11.012
See this article

Subdiffusion-reaction processes withA→Breactions versus subdiffusion-reaction processes withA+B→Breactions

Tadeusz Kosztołowicz and Katarzyna D. Lewandowska
Physical Review E 90 (3) (2014)
DOI: 10.1103/PhysRevE.90.032136
See this article

Reaction-anomalous diffusion processes for A+B⇌C

Wen-Biao Zhang and Ming Yi
Physica A: Statistical Mechanics and its Applications 527 121347 (2019)
DOI: 10.1016/j.physa.2019.121347
See this article

Cattaneo-type subdiffusion-reaction equation

Tadeusz Kosztołowicz
Physical Review E 90 (4) (2014)
DOI: 10.1103/PhysRevE.90.042151
See this article

A fractional-order infectivity SIR model

C.N. Angstmann, B.I. Henry and A.V. McGann
Physica A: Statistical Mechanics and its Applications 452 86 (2016)
DOI: 10.1016/j.physa.2016.02.029
See this article

A Fractional Order Recovery SIR Model from a Stochastic Process

C. N. Angstmann, B. I. Henry and A. V. McGann
Bulletin of Mathematical Biology 78 (3) 468 (2016)
DOI: 10.1007/s11538-016-0151-7
See this article

Non-linear continuous time random walk models

Helena Stage and Sergei Fedotov
The European Physical Journal B 90 (11) (2017)
DOI: 10.1140/epjb/e2017-80400-5
See this article

A discrete time random walk model for anomalous diffusion

C.N. Angstmann, I.C. Donnelly, B.I. Henry and J.A. Nichols
Journal of Computational Physics 293 53 (2015)
DOI: 10.1016/j.jcp.2014.08.003
See this article

Generalized fractional diffusion equations for subdiffusion in arbitrarily growing domains

C. N. Angstmann, B. I. Henry and A. V. McGann
Physical Review E 96 (4) (2017)
DOI: 10.1103/PhysRevE.96.042153
See this article

Discretization of fractional differential equations by a piecewise constant approximation

C.N. Angstmann, B.I. Henry, B.A. Jacobs and A.V. McGann
Mathematical Modelling of Natural Phenomena 12 (6) 23 (2017)
DOI: 10.1051/mmnp/2017063
See this article

Nonlinear subdiffusive fractional equations and the aggregation phenomenon

Sergei Fedotov
Physical Review E 88 (3) (2013)
DOI: 10.1103/PhysRevE.88.032104
See this article

Integrodifferential formulations of the continuous-time random walk for solute transport subject to bimolecularA+B→0reactions: From micro- to mesoscopic

Scott K. Hansen and Brian Berkowitz
Physical Review E 91 (3) (2015)
DOI: 10.1103/PhysRevE.91.032113
See this article

Aging continuous time random walks with A → B reaction

Hong Zhang, Guo-hua Li and Bao Zhang
The European Physical Journal B 92 (6) (2019)
DOI: 10.1140/epjb/e2019-90525-0
See this article

Generalized master equations and fractional Fokker–Planck equations from continuous time random walks with arbitrary initial conditions

C.N. Angstmann, B.I. Henry and I. Ortega-Piwonka
Computers & Mathematics with Applications 73 (6) 1315 (2017)
DOI: 10.1016/j.camwa.2016.11.015
See this article

A Mathematical Model for the Proliferation, Accumulation and Spread of Pathogenic Proteins Along Neuronal Pathways with Locally Anomalous Trapping

C. N. Angstmann, I. C. Donnelly, B. I. Henry, et al.
Mathematical Modelling of Natural Phenomena 11 (3) 142 (2016)
DOI: 10.1051/mmnp/20161139
See this article

Mathematical Modelling of Subdiffusion-reaction Systems

A. A. Nepomnyashchy and V. Volpert
Mathematical Modelling of Natural Phenomena 11 (1) 26 (2016)
DOI: 10.1051/mmnp/201611102
See this article

Generalized Master Equations for Random Walks with Time-Dependent Jump Sizes

Diego Torrejon and Maria Emelianenko
SIAM Journal on Applied Mathematics 78 (3) 1330 (2018)
DOI: 10.1137/17M1127673
See this article

Modelling the advancement of the impurities and the melted oxygen concentration within the scope of fractional calculus

Abdon Atangana and Dumitru Baleanu
International Journal of Non-Linear Mechanics 67 278 (2014)
DOI: 10.1016/j.ijnonlinmec.2014.09.010
See this article

Continuous Time Random Walk Based Theory for a One-Dimensional Coarsening Model

Diego Torrejon, Maria Emelianenko and Dmitry Golovaty
Journal of Elliptic and Parabolic Equations 2 (1-2) 189 (2016)
DOI: 10.1007/BF03377401
See this article

Two dimensional diffusion-controlled triplet–triplet annihilation kinetics

Grégoire C. Gschwend, Morgan Kazmierczak, Astrid J. Olaya, Pierre-François Brevet and Hubert H. Girault
Chemical Science 10 (32) 7633 (2019)
DOI: 10.1039/C9SC00957D
See this article

Generalized Continuous Time Random Walks, Master Equations, and Fractional Fokker--Planck Equations

C. N. Angstmann, I. C. Donnelly, B. I. Henry, T. A. M. Langlands and P. Straka
SIAM Journal on Applied Mathematics 75 (4) 1445 (2015)
DOI: 10.1137/15M1011299
See this article

From stochastic processes to numerical methods: A new scheme for solving reaction subdiffusion fractional partial differential equations

C.N. Angstmann, I.C. Donnelly, B.I. Henry, et al.
Journal of Computational Physics 307 508 (2016)
DOI: 10.1016/j.jcp.2015.11.053
See this article

Continuous time random walk with A→B reaction in flows

G.H. Li, H. Zhang and B. Zhang
Physica A: Statistical Mechanics and its Applications 532 121917 (2019)
DOI: 10.1016/j.physa.2019.121917
See this article

Transient modeling of non-Fickian transport and first-order reaction using continuous time random walk

Daniel K. Burnell, Scott K. Hansen and Jie Xu
Advances in Water Resources 107 370 (2017)
DOI: 10.1016/j.advwatres.2017.06.014
See this article

Bimolecular reactive transport in a two-dimensional velocity field in disordered media

Rami Ben-Zvi, Harvey Scher and Brian Berkowitz
Journal of Physics A: Mathematical and Theoretical 52 (42) 424005 (2019)
DOI: 10.1088/1751-8121/ab4077
See this article

Reaction Subdiffusion with Random Waiting Time Depending on the Preceding Jump Length

Hong Zhang and Guo-Hua Li
Chinese Physics Letters 35 (9) 090501 (2018)
DOI: 10.1088/0256-307X/35/9/090501
See this article

Variable order fractional Fokker–Planck equations derived from Continuous Time Random Walks

Peter Straka
Physica A: Statistical Mechanics and its Applications 503 451 (2018)
DOI: 10.1016/j.physa.2018.03.010
See this article

Reaction-subdiffusion in moving fluids

H. Zhang and G. H. Li
Physical Review E 98 (4) (2018)
DOI: 10.1103/PhysRevE.98.042132
See this article

Fluid Reactive Anomalous Transport with Random Waiting Time Depending on the Preceding Jump Length

Hong Zhang and Guo-Hua Li
Journal of Statistical Physics 174 (3) 548 (2019)
DOI: 10.1007/s10955-018-2185-8
See this article

Random walk on temporal networks with lasting edges

Julien Petit, Martin Gueuning, Timoteo Carletti, Ben Lauwens and Renaud Lambiotte
Physical Review E 98 (5) (2018)
DOI: 10.1103/PhysRevE.98.052307
See this article

Fractional Order Compartment Models

Christopher N. Angstmann, Austen M. Erickson, Bruce I. Henry, et al.
SIAM Journal on Applied Mathematics 77 (2) 430 (2017)
DOI: 10.1137/16M1069249
See this article

A time-fractional generalised advection equation from a stochastic process

C.N. Angstmann, B.I. Henry, B.A. Jacobs and A.V. McGann
Chaos, Solitons & Fractals 102 175 (2017)
DOI: 10.1016/j.chaos.2017.04.040
See this article

An implicit Keller Box numerical scheme for the solution of fractional subdiffusion equations

S.A. Osman and T.A.M. Langlands
Applied Mathematics and Computation 348 609 (2019)
DOI: 10.1016/j.amc.2018.12.015
See this article

A continuous time random walk (CTRW) integro-differential equation with chemical interaction

Rami Ben-Zvi, Alon Nissan, Harvey Scher and Brian Berkowitz
The European Physical Journal B 91 (1) (2018)
DOI: 10.1140/epjb/e2017-80417-8
See this article

Numeric solution of advection–diffusion equations by a discrete time random walk scheme

Christopher N. Angstmann, Bruce I. Henry, Byron A. Jacobs and Anna V. McGann
Numerical Methods for Partial Differential Equations (2019)
DOI: 10.1002/num.22448
See this article

Time-fractional geometric Brownian motion from continuous time random walks

C.N. Angstmann, B.I. Henry and A.V. McGann
Physica A: Statistical Mechanics and its Applications 526 121002 (2019)
DOI: 10.1016/j.physa.2019.04.238
See this article