The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
R. Rudnicki , R. Wieczorek
Math. Model. Nat. Phenom., 1 1 (2006) 81-97
Published online: 2008-05-15
This article has been cited by the following article(s):
16 articles
Ryszard Rudnicki and Radosław Wieczorek 1 (2024) https://doi.org/10.1007/978-3-031-75270-4_1
Ryszard Rudnicki and Radosław Wieczorek 85 (2024) https://doi.org/10.1007/978-3-031-75270-4_6
Hydrodynamic limit of a stochastic model of proliferating cells with chemotaxis
Radosław Wieczorek Kinetic and Related Models 16 (3) 373 (2023) https://doi.org/10.3934/krm.2022032
Explicit solutions to some fragmentation equations with growth or decay*
Jacek Banasiak, David Wetsi Poka and Sergey Shindin Journal of Physics A: Mathematical and Theoretical 55 (19) 194001 (2022) https://doi.org/10.1088/1751-8121/ac5fe7
Algorithm for numerical solutions to the kinetic equation of a spatial population dynamics model with coalescence and repulsive jumps
Igor Omelyan, Yuri Kozitsky and Krzysztof Pilorz Numerical Algorithms 87 (2) 895 (2021) https://doi.org/10.1007/s11075-020-00992-9
Mathematical Study of an Inflammatory Model for Atherosclerosis: A Nonlinear Renewal Equation
Nicolas Meunier and Nicolas Muller Acta Applicandae Mathematicae 161 (1) 107 (2019) https://doi.org/10.1007/s10440-018-0206-x
A simulation study on how the resource competition and anti-predator cooperation impact the motile-phytoplankton groups’ formation under predation stress
Ilhem Bouderbala, Nadjia El Saadi, Alassane Bah and Pierre Auger Ecological Modelling 391 16 (2019) https://doi.org/10.1016/j.ecolmodel.2018.10.019
A 3D Individual-Based Model to Study Effects of Chemotaxis, Competition and Diffusion on the Motile-Phytoplankton Aggregation
Ilhem Bouderbala, Nadjia El Saadi, Alassane Bah and Pierre Auger Acta Biotheoretica 66 (4) 257 (2018) https://doi.org/10.1007/s10441-018-9318-y
A mathematical model for continuous crystallization
A. Rachah, D. Noll, F. Espitalier and F. Baillon Mathematical Methods in the Applied Sciences 39 (5) 1101 (2016) https://doi.org/10.1002/mma.3553
A Mathematical Analysis of Fractional Fragmentation Dynamics with Growth
Emile Franc Doungmo Goufo Journal of Function Spaces 2014 1 (2014) https://doi.org/10.1155/2014/201520
Existence Results for a Michaud Fractional, Nonlocal, and Randomly Position Structured Fragmentation Model
Emile Franc Doungmo Goufo, Riëtte Maritz, Stella Mugisha and Abdon Atangana Mathematical Problems in Engineering 2014 (1) (2014) https://doi.org/10.1155/2014/361234
A Stochastic Weighted Particle Method for Coagulation--Advection Problems
Robert I. A. Patterson and Wolfgang Wagner SIAM Journal on Scientific Computing 34 (3) B290 (2012) https://doi.org/10.1137/110843319
Stochastic semigroups and their applications to biological models
Katarzyna Pichór, Ryszard Rudnicki and Marta Tyran-Kamińska Demonstratio Mathematica 45 (2) 463 (2012) https://doi.org/10.1515/dema-2013-0377
Transport processes with coagulation and strong fragmentation
Jacek Banasiak Discrete & Continuous Dynamical Systems - B 17 (2) 445 (2012) https://doi.org/10.3934/dcdsb.2012.17.445
Markov chain model of phytoplankton dynamics
Radosław Wieczorek International Journal of Applied Mathematics and Computer Science 20 (4) 763 (2010) https://doi.org/10.2478/v10006-010-0058-7
Conservativeness in nonlocal fragmentation models
Jacek Banasiak and S.C. Oukouomi Noutchie Mathematical and Computer Modelling 50 (7-8) 1229 (2009) https://doi.org/10.1016/j.mcm.2009.07.002