Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Mathematical Modeling of Cell Growth via Inverse Problem and Computational Approach

Ivanna Andrusyak, Oksana Brodyak, Petro Pukach and Myroslava Vovk
Computation 12 (2) 26 (2024)
https://doi.org/10.3390/computation12020026

Selected aspects of avascular tumor growth reproduced by a hybrid model of cell dynamics and chemical kinetics

Marco Scianna
Mathematical Biosciences 370 109168 (2024)
https://doi.org/10.1016/j.mbs.2024.109168

Cell cycle length and long‐time behavior of an age‐size model

Katarzyna Pichór and Ryszard Rudnicki
Mathematical Methods in the Applied Sciences 45 (10) 5797 (2022)
https://doi.org/10.1002/mma.8139

A Model for the Lifespan Loss Due to a Viral Disease: Example of the COVID-19 Outbreak

Kayode Oshinubi, Cécile Fougère and Jacques Demongeot
Infectious Disease Reports 14 (3) 321 (2022)
https://doi.org/10.3390/idr14030038

On first-order hyperbolic partial differential equations with two internal variables modeling population dynamics of two physiological structures

Hao Kang, Xi Huo and Shigui Ruan
Annali di Matematica Pura ed Applicata (1923 -) 200 (2) 403 (2021)
https://doi.org/10.1007/s10231-020-01001-5

Qualitative Properties of a Cell Proliferating Model with Multi-phase Transition and Age Structure

Youssef El Alaoui and Larbi Alaoui
Advances in Science, Technology and Engineering Systems Journal 5 (6) 01 (2020)
https://doi.org/10.25046/aj050601

On the non existence of non negative solutions to a critical Growth-Fragmentation Equation

Miguel Escobedo
Annales de la Faculté des sciences de Toulouse : Mathématiques 29 (1) 177 (2020)
https://doi.org/10.5802/afst.1629

Modeling of Tumor Occurrence and Growth - I

S.N. Antontsev, A.A. Papin , M.A. Tokareva, E.I. Leonova and E.A. Gridushko
Izvestiya of Altai State University (4(114)) 70 (2020)
https://doi.org/10.14258/izvasu(2020)4-11

Numerical rate function determination in partial differential equations modeling cell population dynamics

Andreas Groh, Holger Kohr and Alfred K. Louis
Journal of Mathematical Biology 74 (3) 533 (2017)
https://doi.org/10.1007/s00285-016-1032-2

A numerical approach to determine mutant invasion fitness and evolutionary singular strategies

Coralie Fritsch, Fabien Campillo and Otso Ovaskainen
Theoretical Population Biology 115 89 (2017)
https://doi.org/10.1016/j.tpb.2017.05.001

How does variability in cell aging and growth rates influence the Malthus parameter?

AdélaÏde Olivier
Kinetic & Related Models 10 (2) 481 (2017)
https://doi.org/10.3934/krm.2017019

Links between deterministic and stochastic approaches for invasion in growth-fragmentation-death models

Fabien Campillo, Nicolas Champagnat and Coralie Fritsch
Journal of Mathematical Biology 73 (6-7) 1781 (2016)
https://doi.org/10.1007/s00285-016-1012-6

Modeling circadian clock–cell cycle interaction effects on cell population growth rates

R. El Cheikh, S. Bernard and N. El Khatib
Journal of Theoretical Biology 363 318 (2014)
https://doi.org/10.1016/j.jtbi.2014.08.008

Designing proliferating cell population models with functional targets for control by anti-cancer drugs

Frédérique Billy and Jean Clairambault
Discrete & Continuous Dynamical Systems - B 18 (4) 865 (2013)
https://doi.org/10.3934/dcdsb.2013.18.865

Self-similarity in a general aggregation–fragmentation problem. Application to fitness analysis

Vincent Calvez, Marie Doumic and Pierre Gabriel
Journal de Mathématiques Pures et Appliquées 98 (1) 1 (2012)
https://doi.org/10.1016/j.matpur.2012.01.004

Mathematical and numerical analysis of a model for anti-angiogenic therapy in metastatic cancers

Sébastien Benzekry
ESAIM: Mathematical Modelling and Numerical Analysis 46 (2) 207 (2012)
https://doi.org/10.1051/m2an/2011041

Oscillations in a molecular structured cell population model

Ricardo Borges, Àngel Calsina and Sílvia Cuadrado
Nonlinear Analysis: Real World Applications 12 (4) 1911 (2011)
https://doi.org/10.1016/j.nonrwa.2010.12.007

Mathematical analysis of a two-dimensional population model of metastatic growth including angiogenesis

Benzekry Sébastien
Journal of Evolution Equations 11 (1) 187 (2011)
https://doi.org/10.1007/s00028-010-0088-5

Optimizing cancer pharmacotherapeutics using mathematical modeling and a systems biology approach

Jean Clairambault
Personalized Medicine 8 (3) 271 (2011)
https://doi.org/10.2217/pme.11.20

EIGENELEMENTS OF A GENERAL AGGREGATION-FRAGMENTATION MODEL

MARIE DOUMIC JAUFFRET and PIERRE GABRIEL
Mathematical Models and Methods in Applied Sciences 20 (05) 757 (2010)
https://doi.org/10.1142/S021820251000443X

Stability Analysis of a Simplified Yet Complete Model for Chronic Myelogenous Leukemia

Marie Doumic-Jauffret, Peter S. Kim and Benoît Perthame
Bulletin of Mathematical Biology 72 (7) 1732 (2010)
https://doi.org/10.1007/s11538-009-9500-0

Modelling Physiological and Pharmacological Control on Cell Proliferation to Optimise Cancer Treatments

J. Clairambault
Mathematical Modelling of Natural Phenomena 4 (3) 12 (2009)
https://doi.org/10.1051/mmnp/20094302

Synchrony in reaction–diffusion models of morphogenesis: applications to curvature-dependent proliferation and zero-diffusion front waves

Lamia Abbas, Jacques Demongeot and Nicolas Glade
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 367 (1908) 4829 (2009)
https://doi.org/10.1098/rsta.2009.0170

Comparison of Perron and Floquet Eigenvalues in Age Structured Cell Division Cycle Models

J. Clairambault, S. Gaubert and Th. Lepoutre
Mathematical Modelling of Natural Phenomena 4 (3) 183 (2009)
https://doi.org/10.1051/mmnp/20094308