The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
M. Doumic
Math. Model. Nat. Phenom., 2 3 (2007) 121-152
Published online: 2008-06-15
This article has been cited by the following article(s):
Exponential Ergodicity of a Degenerate Age-Size Piecewise Deterministic Process
Ignacio Madrid
Acta Applicandae Mathematicae 187 (1) (2023)
DOI: 10.1007/s10440-023-00597-z
See this article
Cell cycle length and long‐time behavior of an age‐size model
Katarzyna Pichór and Ryszard Rudnicki
Mathematical Methods in the Applied Sciences 45 (10) 5797 (2022)
DOI: 10.1002/mma.8139
See this article
A Model for the Lifespan Loss Due to a Viral Disease: Example of the COVID-19 Outbreak
Kayode Oshinubi, Cécile Fougère and Jacques Demongeot
Infectious Disease Reports 14 (3) 321 (2022)
DOI: 10.3390/idr14030038
See this article
Improving cancer treatments via dynamical biophysical models
M. Kuznetsov, J. Clairambault and V. Volpert
Physics of Life Reviews 39 1 (2021)
DOI: 10.1016/j.plrev.2021.10.001
See this article
On first-order hyperbolic partial differential equations with two internal variables modeling population dynamics of two physiological structures
Hao Kang, Xi Huo and Shigui Ruan
Annali di Matematica Pura ed Applicata (1923 -) 200 (2) 403 (2021)
DOI: 10.1007/s10231-020-01001-5
See this article
Nonlinear Physiologically Structured Population Models with Two Internal Variables
Hao Kang, Xi Huo and Shigui Ruan
Journal of Nonlinear Science 30 (6) 2847 (2020)
DOI: 10.1007/s00332-020-09638-5
See this article
On the non existence of non negative solutions to a critical Growth-Fragmentation Equation
Miguel Escobedo
Annales de la Faculté des sciences de Toulouse : Mathématiques 29 (1) 177 (2020)
DOI: 10.5802/afst.1629
See this article
Qualitative Properties of a Cell Proliferating Model with Multi-phase Transition and Age Structure
Youssef El Alaoui and Larbi Alaoui
Advances in Science, Technology and Engineering Systems Journal 5 (6) 01 (2020)
DOI: 10.25046/aj050601
See this article
Modeling of Tumor Occurrence and Growth - I
S.N. Antontsev, A.A. Papin , M.A. Tokareva, E.I. Leonova and E.A. Gridushko
Izvestiya of Altai State University (4(114)) 70 (2020)
DOI: 10.14258/izvasu(2020)4-11
See this article
Eigensolutions and spectral analysis of a model for vertical gene transfer of plasmids
Eva Stadler
Journal of Mathematical Biology 78 (5) 1299 (2019)
DOI: 10.1007/s00285-018-1310-2
See this article
A numerical approach to determine mutant invasion fitness and evolutionary singular strategies
Coralie Fritsch, Fabien Campillo and Otso Ovaskainen
Theoretical Population Biology 115 89 (2017)
DOI: 10.1016/j.tpb.2017.05.001
See this article
How does variability in cell aging and growth rates influence the Malthus parameter?
AdélaÏde Olivier
Kinetic & Related Models 10 (2) 481 (2017)
DOI: 10.3934/krm.2017019
See this article
Numerical rate function determination in partial differential equations modeling cell population dynamics
Andreas Groh, Holger Kohr and Alfred K. Louis
Journal of Mathematical Biology 74 (3) 533 (2017)
DOI: 10.1007/s00285-016-1032-2
See this article
Links between deterministic and stochastic approaches for invasion in growth-fragmentation-death models
Fabien Campillo, Nicolas Champagnat and Coralie Fritsch
Journal of Mathematical Biology 73 (6-7) 1781 (2016)
DOI: 10.1007/s00285-016-1012-6
See this article
Blood Cell Dynamics: Half of a Century of Modelling
L. Pujo-Menjouet and V. Volpert
Mathematical Modelling of Natural Phenomena 11 (1) 92 (2016)
DOI: 10.1051/mmnp/201611106
See this article
Mathematical Oncology 2013
Jean Clairambault
Modeling and Simulation in Science, Engineering and Technology, Mathematical Oncology 2013 265 (2014)
DOI: 10.1007/978-1-4939-0458-7_9
See this article
Modeling circadian clock–cell cycle interaction effects on cell population growth rates
R. El Cheikh, S. Bernard and N. El Khatib
Journal of Theoretical Biology 363 318 (2014)
DOI: 10.1016/j.jtbi.2014.08.008
See this article
Designing proliferating cell population models with functional targets for control by anti-cancer drugs
Frédérique Billy and Jean Clairambault
Discrete & Continuous Dynamical Systems - B 18 (4) 865 (2013)
DOI: 10.3934/dcdsb.2013.18.865
See this article
How to Build a Multiscale Model in Biology
Samuel Bernard
Acta Biotheoretica 61 (3) 291 (2013)
DOI: 10.1007/s10441-013-9199-z
See this article
Mathematical and numerical analysis of a model for anti-angiogenic therapy in metastatic cancers
Sébastien Benzekry
ESAIM: Mathematical Modelling and Numerical Analysis 46 (2) 207 (2012)
DOI: 10.1051/m2an/2011041
See this article
Self-similarity in a general aggregation–fragmentation problem. Application to fitness analysis
Vincent Calvez, Marie Doumic and Pierre Gabriel
Journal de Mathématiques Pures et Appliquées 98 (1) 1 (2012)
DOI: 10.1016/j.matpur.2012.01.004
See this article
Circadian rhythm and cell population growth
Jean Clairambault, Stéphane Gaubert and Thomas Lepoutre
Mathematical and Computer Modelling 53 (7-8) 1558 (2011)
DOI: 10.1016/j.mcm.2010.05.034
See this article
Mathematical analysis of a two-dimensional population model of metastatic growth including angiogenesis
Benzekry Sébastien
Journal of Evolution Equations 11 (1) 187 (2011)
DOI: 10.1007/s00028-010-0088-5
See this article
Optimizing cancer pharmacotherapeutics using mathematical modeling and a systems biology approach
Jean Clairambault
Personalized Medicine 8 (3) 271 (2011)
DOI: 10.2217/pme.11.20
See this article
Oscillations in a molecular structured cell population model
Ricardo Borges, Àngel Calsina and Sílvia Cuadrado
Nonlinear Analysis: Real World Applications 12 (4) 1911 (2011)
DOI: 10.1016/j.nonrwa.2010.12.007
See this article
EIGENELEMENTS OF A GENERAL AGGREGATION-FRAGMENTATION MODEL
MARIE DOUMIC JAUFFRET and PIERRE GABRIEL
Mathematical Models and Methods in Applied Sciences 20 (05) 757 (2010)
DOI: 10.1142/S021820251000443X
See this article
Stability Analysis of a Simplified Yet Complete Model for Chronic Myelogenous Leukemia
Marie Doumic-Jauffret, Peter S. Kim and Benoît Perthame
Bulletin of Mathematical Biology 72 (7) 1732 (2010)
DOI: 10.1007/s11538-009-9500-0
See this article
Biological Boundaries and Biological Age
Jacques Demongeot
Acta Biotheoretica 57 (4) 397 (2009)
DOI: 10.1007/s10441-009-9087-8
See this article
Comparison of Perron and Floquet Eigenvalues in Age Structured Cell Division Cycle Models
J. Clairambault, S. Gaubert and Th. Lepoutre
Mathematical Modelling of Natural Phenomena 4 (3) 183 (2009)
DOI: 10.1051/mmnp/20094308
See this article
Modelling Physiological and Pharmacological Control on Cell Proliferation to Optimise Cancer Treatments
J. Clairambault
Mathematical Modelling of Natural Phenomena 4 (3) 12 (2009)
DOI: 10.1051/mmnp/20094302
See this article
Synchrony in reaction–diffusion models of morphogenesis: applications to curvature-dependent proliferation and zero-diffusion front waves
Lamia Abbas, Jacques Demongeot and Nicolas Glade
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 367 (1908) 4829 (2009)
DOI: 10.1098/rsta.2009.0170
See this article