The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
M. Doumic
Math. Model. Nat. Phenom., 2 3 (2007) 121-152
Published online: 2008-06-15
This article has been cited by the following article(s):
35 articles
Selected aspects of avascular tumor growth reproduced by a hybrid model of cell dynamics and chemical kinetics
Marco Scianna Mathematical Biosciences 370 109168 (2024) https://doi.org/10.1016/j.mbs.2024.109168
Blood Lipoproteins Shape the Phenotype and Lipid Content of Early Atherosclerotic Lesion Macrophages: A Dual-Structured Mathematical Model
Keith L. Chambers, Mary R. Myerscough, Michael G. Watson and Helen M. Byrne Bulletin of Mathematical Biology 86 (9) (2024) https://doi.org/10.1007/s11538-024-01342-9
A comprehensive review of computational cell cycle models in guiding cancer treatment strategies
Chenhui Ma and Evren Gurkan-Cavusoglu npj Systems Biology and Applications 10 (1) (2024) https://doi.org/10.1038/s41540-024-00397-7
Mathematical Modeling of Cell Growth via Inverse Problem and Computational Approach
Ivanna Andrusyak, Oksana Brodyak, Petro Pukach and Myroslava Vovk Computation 12 (2) 26 (2024) https://doi.org/10.3390/computation12020026
Exponential Ergodicity of a Degenerate Age-Size Piecewise Deterministic Process
Ignacio Madrid Acta Applicandae Mathematicae 187 (1) (2023) https://doi.org/10.1007/s10440-023-00597-z
A Model for the Lifespan Loss Due to a Viral Disease: Example of the COVID-19 Outbreak
Kayode Oshinubi, Cécile Fougère and Jacques Demongeot Infectious Disease Reports 14 (3) 321 (2022) https://doi.org/10.3390/idr14030038
Cell cycle length and long‐time behavior of an age‐size model
Katarzyna Pichór and Ryszard Rudnicki Mathematical Methods in the Applied Sciences 45 (10) 5797 (2022) https://doi.org/10.1002/mma.8139
Improving cancer treatments via dynamical biophysical models
M. Kuznetsov, J. Clairambault and V. Volpert Physics of Life Reviews 39 1 (2021) https://doi.org/10.1016/j.plrev.2021.10.001
On first-order hyperbolic partial differential equations with two internal variables modeling population dynamics of two physiological structures
Hao Kang, Xi Huo and Shigui Ruan Annali di Matematica Pura ed Applicata (1923 -) 200 (2) 403 (2021) https://doi.org/10.1007/s10231-020-01001-5
On the non existence of non negative solutions to a critical Growth-Fragmentation Equation
Miguel Escobedo Annales de la Faculté des sciences de Toulouse : Mathématiques 29 (1) 177 (2020) https://doi.org/10.5802/afst.1629
Modeling of Tumor Occurrence and Growth - I
S.N. Antontsev, A.A. Papin , M.A. Tokareva, E.I. Leonova and E.A. Gridushko Izvestiya of Altai State University (4(114)) 70 (2020) https://doi.org/10.14258/izvasu(2020)4-11
Nonlinear Physiologically Structured Population Models with Two Internal Variables
Hao Kang, Xi Huo and Shigui Ruan Journal of Nonlinear Science 30 (6) 2847 (2020) https://doi.org/10.1007/s00332-020-09638-5
Qualitative Properties of a Cell Proliferating Model with Multi-phase Transition and Age Structure
Youssef El Alaoui and Larbi Alaoui Advances in Science, Technology and Engineering Systems Journal 5 (6) 01 (2020) https://doi.org/10.25046/aj050601
Eigensolutions and spectral analysis of a model for vertical gene transfer of plasmids
Eva Stadler Journal of Mathematical Biology 78 (5) 1299 (2019) https://doi.org/10.1007/s00285-018-1310-2
How does variability in cell aging and growth rates influence the Malthus parameter?
AdélaÏde Olivier Kinetic & Related Models 10 (2) 481 (2017) https://doi.org/10.3934/krm.2017019
Numerical rate function determination in partial differential equations modeling cell population dynamics
Andreas Groh, Holger Kohr and Alfred K. Louis Journal of Mathematical Biology 74 (3) 533 (2017) https://doi.org/10.1007/s00285-016-1032-2
A numerical approach to determine mutant invasion fitness and evolutionary singular strategies
Coralie Fritsch, Fabien Campillo and Otso Ovaskainen Theoretical Population Biology 115 89 (2017) https://doi.org/10.1016/j.tpb.2017.05.001
Blood Cell Dynamics: Half of a Century of Modelling
L. Pujo-Menjouet and V. Volpert Mathematical Modelling of Natural Phenomena 11 (1) 92 (2016) https://doi.org/10.1051/mmnp/201611106
Links between deterministic and stochastic approaches for invasion in growth-fragmentation-death models
Fabien Campillo, Nicolas Champagnat and Coralie Fritsch Journal of Mathematical Biology 73 (6-7) 1781 (2016) https://doi.org/10.1007/s00285-016-1012-6
Mathematical Oncology 2013
Jean Clairambault Modeling and Simulation in Science, Engineering and Technology, Mathematical Oncology 2013 265 (2014) https://doi.org/10.1007/978-1-4939-0458-7_9
Modeling circadian clock–cell cycle interaction effects on cell population growth rates
R. El Cheikh, S. Bernard and N. El Khatib Journal of Theoretical Biology 363 318 (2014) https://doi.org/10.1016/j.jtbi.2014.08.008
How to Build a Multiscale Model in Biology
Samuel Bernard Acta Biotheoretica 61 (3) 291 (2013) https://doi.org/10.1007/s10441-013-9199-z
Designing proliferating cell population models with functional targets for control by anti-cancer drugs
Frédérique Billy and Jean Clairambault Discrete & Continuous Dynamical Systems - B 18 (4) 865 (2013) https://doi.org/10.3934/dcdsb.2013.18.865
Mathematical and numerical analysis of a model for anti-angiogenic therapy in metastatic cancers
Sébastien Benzekry ESAIM: Mathematical Modelling and Numerical Analysis 46 (2) 207 (2012) https://doi.org/10.1051/m2an/2011041
Self-similarity in a general aggregation–fragmentation problem. Application to fitness analysis
Vincent Calvez, Marie Doumic and Pierre Gabriel Journal de Mathématiques Pures et Appliquées 98 (1) 1 (2012) https://doi.org/10.1016/j.matpur.2012.01.004
Mathematical analysis of a two-dimensional population model of metastatic growth including angiogenesis
Benzekry Sébastien Journal of Evolution Equations 11 (1) 187 (2011) https://doi.org/10.1007/s00028-010-0088-5
Optimizing Cancer Pharmacotherapeutics Using Mathematical Modeling and a Systems Biology Approach
Jean Clairambault Personalized Medicine 8 (3) 271 (2011) https://doi.org/10.2217/pme.11.20
Circadian rhythm and cell population growth
Jean Clairambault, Stéphane Gaubert and Thomas Lepoutre Mathematical and Computer Modelling 53 (7-8) 1558 (2011) https://doi.org/10.1016/j.mcm.2010.05.034
Oscillations in a molecular structured cell population model
Ricardo Borges, Àngel Calsina and Sílvia Cuadrado Nonlinear Analysis: Real World Applications 12 (4) 1911 (2011) https://doi.org/10.1016/j.nonrwa.2010.12.007
EIGENELEMENTS OF A GENERAL AGGREGATION-FRAGMENTATION MODEL
MARIE DOUMIC JAUFFRET and PIERRE GABRIEL Mathematical Models and Methods in Applied Sciences 20 (05) 757 (2010) https://doi.org/10.1142/S021820251000443X
Stability Analysis of a Simplified Yet Complete Model for Chronic Myelogenous Leukemia
Marie Doumic-Jauffret, Peter S. Kim and Benoît Perthame Bulletin of Mathematical Biology 72 (7) 1732 (2010) https://doi.org/10.1007/s11538-009-9500-0
Comparison of Perron and Floquet Eigenvalues in Age Structured Cell Division Cycle Models
J. Clairambault, S. Gaubert and Th. Lepoutre Mathematical Modelling of Natural Phenomena 4 (3) 183 (2009) https://doi.org/10.1051/mmnp/20094308
Biological Boundaries and Biological Age
Jacques Demongeot Acta Biotheoretica 57 (4) 397 (2009) https://doi.org/10.1007/s10441-009-9087-8
Modelling Physiological and Pharmacological Control on Cell Proliferation to Optimise Cancer Treatments
J. Clairambault Mathematical Modelling of Natural Phenomena 4 (3) 12 (2009) https://doi.org/10.1051/mmnp/20094302
Synchrony in reaction–diffusion models of morphogenesis: applications to curvature-dependent proliferation and zero-diffusion front waves
Lamia Abbas, Jacques Demongeot and Nicolas Glade Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 367 (1908) 4829 (2009) https://doi.org/10.1098/rsta.2009.0170