Issue |
Math. Model. Nat. Phenom.
Volume 4, Number 2, 2009
Delay equations in biology
|
|
---|---|---|
Page(s) | 92 - 118 | |
DOI | https://doi.org/10.1051/mmnp/20094205 | |
Published online | 26 March 2009 |
Generalization of the Kermack-McKendrick SIR Model to a Patchy Environment for a Disease with Latency
Department of Applied Mathematics University of Western Ontario
London, Ontario, Canada N6A 5B7
Corresponding author: xzou@uwo.ca
In this paper, with the assumptions that an infectious disease has a fixed latent period in a population and the latent individuals of the population may disperse, we reformulate an SIR model for the population living in two patches (cities, towns, or countries etc.), which is a generalization of the classic Kermack-McKendrick SIR model. The model is given by a system of delay differential equations with a fixed delay accounting for the latency and non-local terms caused by the mobility of the individuals during the latent period. We analytically show that the model preserves some properties that the classic Kermack-McKendrick SIR model possesses: the disease always dies out, leaving a certain portion of the susceptible population untouched (called final sizes). Although we can not determine the two final sizes, we are able to show that the ratio of the final sizes in the two patches is totally determined by the ratio of the dispersion rates of the susceptible individuals between the two patches. We also explore numerically the patterns by which the disease dies out, and find that the new model may have very rich patterns for the disease to die out. In particular, it allows multiple outbreaks of the disease before it goes to extinction, strongly contrasting to the classic Kermack-McKendrick SIR model.
Mathematics Subject Classification: 34K18 / 34K20 / 34D 23 / 37N25 / 92D30
Key words: infectious disease / SIR model / latent period / patch / non-local infection / dispersion / multiple outbreaks
© EDP Sciences, 2009
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.