Issue |
Math. Model. Nat. Phenom.
Volume 8, Number 2, 2013
Anomalous diffusion
|
|
---|---|---|
Page(s) | 55 - 87 | |
DOI | https://doi.org/10.1051/mmnp/20138205 | |
Published online | 24 April 2013 |
An Explicitly Solvable Nonlocal Eigenvalue Problem and the Stability of a Spike for a Sub-Diffusive Reaction-Diffusion System
Department of Mathematics, University of British
Columbia 1984 Mathematics Road, Vancouver, V6T1Z2, BC, Canada
⋆
Corresponding author. E-mail: ward@math.ubc.ca
The stability of a one-spike solution to a general class of reaction-diffusion (RD) system with both regular and anomalous diffusion is analyzed. The method of matched asymptotic expansions is used to construct a one-spike equilibrium solution and to derive a nonlocal eigenvalue problem (NLEP) that determines the stability of this solution on an O(1) time-scale. For a particular sub-class of the reaction kinetics, it is shown that the discrete spectrum of this NLEP is determined in terms of the roots of certain simple transcendental equations that involve two key parameters related to the choice of the nonlinear kinetics. From a rigorous analysis of these transcendental equations by using a winding number approach and explicit calculations, sufficient conditions are given to predict the occurrence of Hopf bifurcations of the one-spike solution. Our analysis determines explicitly the number of possible Hopf bifurcation points as well as providing analytical formulae for them. The analysis is implemented for the shadow limit of the RD system defined on a finite domain and for a one-spike solution of the RD system on the infinite line. The theory is illustrated for two specific RD systems. Finally, in parameter ranges for which the Hopf bifurcation is unique, it is shown that the effect of sub-diffusion is to delay the onset of the Hopf bifurcation.
Mathematics Subject Classification: 35K57 / 35B25 / 35B35
Key words: matched asymptotic expansions / nonlocal eigenvalue problem / winding number / Hopf bifurcation / sub–diffusion
© EDP Sciences, 2013
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.