Issue |
Math. Model. Nat. Phenom.
Volume 12, Number 1, 2017
Hamiltonian Systems
|
|
---|---|---|
Page(s) | 41 - 61 | |
DOI | https://doi.org/10.1051/mmnp/201712104 | |
Published online | 03 February 2017 |
Bifurcations of Cubic Homoclinic Tangencies in Two-dimensional Symplectic Maps
1
Departament de Mathemàtiques i Informàtica, Universitat de Barcelona, Spain
2
N.I. Lobachevsky Nizhny Novgorod University, Russia
3
Fachbereich Mathematik und Informatik, Universität Bremen, Germany
* Corresponding author. E-mail: gonchenko@ub.edu
We study bifurcations of cubic homoclinic tangencies in two-dimensional symplectic maps. We distinguish two types of cubic homoclinic tangencies, and each type gives different first return maps derived to diverse conservative cubic Hénon maps with quite different bifurcation diagrams. In this way, we establish the structure of bifurcations of periodic orbits in two parameter general unfoldings generalizing to the conservative case the results previously obtained for the dissipative case. We also consider the problem of 1:4 resonance for the conservative cubic Hénon maps.
Mathematics Subject Classification: 37C25 / 37C29 / 37E30 / 37G05 / 37G25
Key words: symplectic map / homoclinic tangency / cubic Hénon map / bifurcation / 1:4 resonance
© EDP Sciences, 2017
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.