Free Access
Issue
Math. Model. Nat. Phenom.
Volume 4, Number 1, 2009
Modelling and numerical methods in contact mechanics
Page(s) 183 - 194
DOI https://doi.org/10.1051/mmnp/20094109
Published online 27 January 2009
  1. H. Brézis. Analyse fonctionnelle. Masson, Paris 1985. [Google Scholar]
  2. C, Xu, J. L. Prince. Snakes, shapes, and gradient vector flow. IEEE Transactions on Image Processing, 7 1998, 359-369. [Google Scholar]
  3. P.G. Ciarlet. Mathematical elasticity. North-Holland 1993. [Google Scholar]
  4. J. Cousty, L. Najman, M. Couprie, S. Clément-Guinaudeau, T. Goissen, J. Garot. Automated, accurate and fast segmentation of 4D cardiac MR images. Functional Imaging and Modeling of the Heart (FIMH), LNCS, Springer, (2007), No. 4466, 474-483. [Google Scholar]
  5. B. Faugeras, J. Pousin. Variational asymptotic derivation of an elastic model arising from the problem of 3D automatic segmentation of cardiac images. Analysis and Applications, 2 (2004), No. 4, 1–33. [Google Scholar]
  6. F. Krasucki, S. Lenci. Yield design of bonded joints. Eur. J. Mech. A Solids, 19 (2000), No. 4, 649–667. [CrossRef] [MathSciNet] [Google Scholar]
  7. J. Necas. Les méthodes directes en théorie des équations elliptiques. Masson, Paris, 1967. [Google Scholar]
  8. O.A. Oleinik, A.S. Shamaev, G.A. Yosifian. Mathematical problems in elasticity and homogenization. Studies in Mathematics and its applications, Noth-Holland 1992. [Google Scholar]
  9. Q.C. Pham, F. Vincent, P. Clarysse, P. Croisille, I.E. Magnin. A FEM-based deformable model for the 3D segmentation and tracking of the heart in cardiac MRI., Proceedings of the 2nd International Symposium on Image and Signal Processing and Analysis, ISPA (2001), 250-254. [Google Scholar]
  10. M. Picq J. Pousin, Y. Rouchdy, A linear 3D elastic segmentation model for vector fields. Application to the heart segmentation in MRI. Journal Of Mathematical Imaging and Vision, 27 (2007), No. 3, 241–255. [Google Scholar]
  11. P. Pebay, T. Baker, J. Pousin. Dynamic meshing for finite element based segmentation of cardiac imagery. Fifth World Congress on Computational Mechanics, (2002). [Google Scholar]
  12. Y. Rouchdy, J. Pousin , J. Schaerer, P. Clarysse. A nonlinear elastic deformable template for soft structure segmentation. Application to heart segmentation in MRI. J. Inverse Problems, 23 (2007), No. 3, 1017–1035. [CrossRef] [Google Scholar]
  13. L. Tartar. Topics in nonlinear analysis. Publications Mathématiques d'Orsay, 1978. [Google Scholar]
  14. J. Simon. Compact Sets in the Space Lp(O, T; B). Ann. Math. Pura Appl., (IV) Vol. CXLVI (1987), 65-96. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.