Free Access
Issue
Math. Model. Nat. Phenom.
Volume 4, Number 1, 2009
Modelling and numerical methods in contact mechanics
Page(s) 44 - 87
DOI https://doi.org/10.1051/mmnp/20094103
Published online 27 January 2009
  1. G. Alfano, F. De Angelis, L. Rosati. General solution procedures in elasto/viscoplasticity. Computer Methods in Applied Mechanics and Engineering, 190 (2001), 5123-5147. [CrossRef] [Google Scholar]
  2. F. Auricchio. A viscoplastic constitutive equation bounded between two generalized plasticity models. International Journal of Plasticity, 13 (1997), 697-721. [CrossRef] [Google Scholar]
  3. F. Auricchio. A robust integration-algorithm for a finite-strain shape-memory-alloy superelastic model. International Journal of Plasticity, 17 (2001), 971-990. [CrossRef] [Google Scholar]
  4. F. Auricchio, R.L. Taylor. Shape-memory alloys: modelling and numerical simulations of the finite-strain superelastic behavior. Computer Methods in Applied Mechanics and Engineering, 143 (1997), 175-194. [CrossRef] [Google Scholar]
  5. I.A. Balagansky, Yu.A. Karanik, V.A. Agureikin, A.V. Vinogradov, A.I. Balagansky. Fracture behavior of explosively loaded spherical molded steel shells. Theoretical and applied fracture mechanics, 36 (2001), 165-173. [CrossRef] [Google Scholar]
  6. R.R. Balokhonov, P.V. Makarov, V.A. Romanova, I.Yu. Smolin. Simulation of crystal plasticity under dynamic loading. Computational Materials Science, 16 (1999), 355-361. [CrossRef] [Google Scholar]
  7. E. Baron, M.B. Rubin, D.Z. Yankelevsky. Thermomechanical constitutive equations for the dynamic response of ceramics. International Journal of Solids and Structures, 40 (2003), 4519-4548. [CrossRef] [Google Scholar]
  8. J.B. Bdzil, D. S. Stewart, T. L. Jackson. Program burn algorithms based on detonation shock dynamics: discrete approximations of detonation flows with discontinuous front models. Journal of Computational Physics, 174 (2001), No. 2, 870-902. [CrossRef] [Google Scholar]
  9. D.J. Benson, L. Stainier. An Eulerian shell formulation for fluid-structure interaction. Computer Methods in Applied Mechanics and Engineering, 187 (2000), 571-590. [CrossRef] [Google Scholar]
  10. G. C. Bessette, E. B. Becker, L. M. Taylor, D. L. Littlefield. Modeling of impact problems using an h-adaptive, explicit Lagrangian finite element method in three dimensions. Computer Methods in Applied Mechanics and Engineering, 192 (2003), No. 13-14, 1649-1679. [CrossRef] [Google Scholar]
  11. N.M. Bessonov, D.J. Song. Application of vector calculus to numerical simulation of continuum mechanics problems. Journal of Computational Physics, 167 (2001), No. 1, 22-38. [CrossRef] [Google Scholar]
  12. N. Bessonov, S. Golovashchenko. Numerical simulation of pulsed electromagnetic stamping processes. Proceedings of 1st International Conference on High Speed Forming, Dortmund, Germany, 2004, 83-91. [Google Scholar]
  13. M. Brünig. Nonlinear finite element analysis based on a large strain deformation theory of plasticity. Computers & Structures, 69 (1998), 117-128. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  14. D. Chen, S.T.S. Al-Hassani, Z. Yin, Y. Yu. Modelling shock loading behavior of concrete. International Journal of Solids and Structures, 38 (2001), 8787-8803. [CrossRef] [Google Scholar]
  15. O.I. Cherepanov. Localized viscoelastoplastic strain in mesovolume of heterogeneouse medium under different loading types. Theoretical and applied fracture mechanics, 31 (1999), 189-202. [CrossRef] [Google Scholar]
  16. O.I. Cherepanov, I.Yu. Smolin, Yu.P. Stefanov, P.V. Makarov. Integration of influence of internal structure of heterogeneous materials on plastic flow and fracture. Computational Materials Science, 16 (1999), 25-31. [CrossRef] [Google Scholar]
  17. P.W. Christensen. A nonsmooth Newton method for elastoplastic problems. Computer Methods in Applied Mechanics and Engineering, 191 (2002), 1189-1219. [CrossRef] [MathSciNet] [Google Scholar]
  18. P.G. Ciarlet. Mathematical Elasticity, 1, Three Dimensional Elasticity. North-Holland, Amsterdam, 1993. [Google Scholar]
  19. G. Cocchetti, U. Perego. A rigorous bound on error in backward-difference elastoplastic time-integration. Computer Methods in Applied Mechanics and Engineering, 192 (2003), 4909-4927. [CrossRef] [Google Scholar]
  20. A. Düster, E. Rank. A p-version finite element approach for two- and three-dimensional problems of the J2 flow theory with non-linear isotropic hardening. International Journal for Numerical Methods in Engineering, 53 (2002), 49-63. [CrossRef] [Google Scholar]
  21. N.A. Fellows, P.C. Barton. Development of impact model for ceramic-faced semi-infinite armor. International Journal of Impact Engineering, 22 (1999), 793-811. [CrossRef] [Google Scholar]
  22. Z.Q. Feng, Z. Feng, M. Domaszewski. Some computational aspects for analysis of low- and high- velocity impact of deformable bodies. International Journal of Non-Linear Mechanics, 37 (2002), 1029-1036. [CrossRef] [Google Scholar]
  23. J. Fish, K. Shek. Computational aspects of incrementally objective algorithms for large deformation plasticity. International Journal for numerical methods in engineering, 44 (1999), 839-851. [CrossRef] [Google Scholar]
  24. S. Golovashchenko N. Bessonov. Development of Sharp Flanging Technology for Aluminum Panels. Proceedings of the 6th International Conference on Numerical Simulation of 3D Sheet Forming Processes, NUMISHEET 2005, Detroit, MI, 687-690. [Google Scholar]
  25. S. Golovashchenko, N. Bessonov, R. Davies. Analysis of Blank-Die Contact Interaction in Pulsed Forming Processes. 3st International Conference on High Speed Forming, Germany, 2008. [Google Scholar]
  26. J. Guo, J.V. Cox. Implementation of a plasticity bond model for reinforced concrete. Computers & Structures, 77 (2000), 65-82. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  27. Y.M. Gupta, J.L. Ding. Impact load spreading in layered materials and structures: concept and quantitative measure. International Journal of Impact Engineering, 27 (2002),, 277-291. [Google Scholar]
  28. E. Hoashi, T. Yokomine, A. Shimizu, T. Kunugi. Numerical analysis of wave-type heat transfer propagating in a thin foil irradiated by short-pulsed laser. International Journal of Heat and Mass Transfer, 46 (2003), 4083-4095. [CrossRef] [Google Scholar]
  29. B. P. Howell, G. J. Ball. A Free-Lagrange augmented Godunov method for the simulation of elasticplastic solids. Journal of Computational Physics, 175 (2002), No. 1, 128-167. [CrossRef] [Google Scholar]
  30. L. Jing. A review of techniques, advances and outstanding issues in numerical modelling for rock mechanics and rock engineering. International Journal of Rock Mechanics and Mining Sciences, 40 (2003), No. 3, 283-353. [CrossRef] [Google Scholar]
  31. L. Jing, J. A. Hudson. Numerical methods in rock mechanics. International Journal of Rock Mechanics and Mining Sciences, 39 (2002), No. 4, 409-427. [CrossRef] [Google Scholar]
  32. G.R. Johnson, S.R. Beissel. Damping algorithms and effects for explicit dynamics computations. International Journal of Impact Engineering, 25 (2001), 911-925. [CrossRef] [Google Scholar]
  33. A.S. Khan, S. Huang, Continuum theory of plasticity. John Wiley & Sons, New-York, 1995. [Google Scholar]
  34. S.P. Kiselev, V.P. Kiselev. Superdeep penetration of particles into a metal target. International Journal of Impact Engineering, 27 (2002), 135-152. [CrossRef] [Google Scholar]
  35. A. Le van, G. de Saxcae, P. Le Grognec. General formulation for local integration in standard elastoplasticity with an arbitrary hardening model. Computers and Structures, 81 (2003), 2099-2109. [CrossRef] [Google Scholar]
  36. M. Lee, Y.H. Yoo. Analysis of ceramic/metal armour systems. International Journal of Impact Engineering, 25 (2001), 819-829. [CrossRef] [Google Scholar]
  37. Z.Y. Liu, S. Kubota, S. Itoh. Numerical study on hypervelocity acceleration of flyer plates by overdriven detonation of high explosive. International Journal of Impact Engineering, 26 (2001), 443-452. [CrossRef] [Google Scholar]
  38. V. A. Lubarda. Elastoplatcity theory, CRP Press, New York, 2000. [Google Scholar]
  39. L.X. Luccioni, J.M. Pestana, A. Rodriguez-Marek. An implicit integration algorithm for the finite element implementation of a nonlinear anisotropic material model including hysteretic nonlinearity. Computer Methods in Applied Mechanics and Engineering, 190 (2000), 1827-1844. [CrossRef] [Google Scholar]
  40. M. Maenchen, S. Sack. The tensor code. In: B. Alder (Ed.), Methods in Computational Physics, Vol. 3, Academic Press, New-York, 1964, 181-210. [Google Scholar]
  41. R. Mahnken. Anisotropic creep modelling based on elastic projection operators with applications to CMSX-4 superalloy. Computer Methods in Applied Mechanics and Engineering, 191 (2002), 1611-1637. [CrossRef] [Google Scholar]
  42. P.V. Makarov, V.A. Romanova. Mesoscale plastic flow generation and development for polycrystals. Theoretical and Applied Fracture Mechanics, 33 (2000), 1-7. [CrossRef] [Google Scholar]
  43. P.V. Makaraov, S. Schmauder, O.I. Cherepanov, I.Yu. Smolin, V.A. Romanova, R.R. Balokhonov, D.Yu. Saraev, E. Soppa, P. Kizler, G. Fischer, S. Hu, M. Ludwig. Simulation of elastic-plastic deformation and fracture of materials at micro-, meso- and macrolevels. Theoretical and Applied Fracture Mechanics, 37 (2001), 183-244. [CrossRef] [Google Scholar]
  44. Mariotti, J. P. Perlat, J. M. Guérin. A numerical approach for partially saturated geomaterials under shock. International Journal of Impact Engineering, 28 (2003), No. 7, 717-741. [CrossRef] [Google Scholar]
  45. G. H. Miller, P. Colella. A High-order Eulerian Godunov method for elasticplastic flow in solids. Journal of Computational Physics, 167 (2001), No. 1, 131-176. [CrossRef] [Google Scholar]
  46. F.J. Montáns. Implicit algorithms for multilayer J2 plasticity. Computer Methods in Applied Mechanics and Engineering, 189 (2000), 673-700. [CrossRef] [MathSciNet] [Google Scholar]
  47. S. K. Naboulsi, A. N. Palazotto. Damage model for metalmatrix composite under high intensity loading. International Journal of Plasticity, 19 (2003), No. 4, 435-468. [CrossRef] [Google Scholar]
  48. L. Noels, L. Stainier, J.-P. Ponthot. On the use of large time steps with an energy momentum conserving algorithm for non-linear hypoelastic constitutive models. International Journal of Solids and Structures, 41 (2004), 663693. [Google Scholar]
  49. P. Papadopoulos, J. Lu. On the formulation and numerical solution of problems in anisotropic finite plasticity. Computer Methods in Applied Mechanics and Engineering, 190 (2001), 4889-4910. [CrossRef] [Google Scholar]
  50. A.N. Parshikov, S.A. Medin. Smoothed particle hydrodynamics using interparticle contact algorithms. Journal of Computational Physics, 180 (2002), No. 1, 358-382. [CrossRef] [Google Scholar]
  51. V.L. Popov, A. Gervé, B. Kehrwald, I. Yu. Smolin. Simulation of wear in combustion engines. Computational Materials Science, 19 (2000), 285-291. [CrossRef] [Google Scholar]
  52. J.P. Ponthot. Unified stress update algorithms for the numerical simulation of large deformation elasto-plastic and elasto-viscoplastic processes. International Journal of Plasticity, 18 (2002), 91-126. [CrossRef] [Google Scholar]
  53. B.A. Roeder, C.T. Sun. Dynamic penetration of alumina/aluminum laminates: experiments and modelling. International Journal of Impact Engineering, 25 (2001), 169-185. [CrossRef] [Google Scholar]
  54. V. Romanova, R. Balokhonov, P. Makarov, S. Schmauder, E. Soppa. Simulation of elasto-plastic behaviour of an artificial 3D-structure under dynamic loading. Computational Materials Science, 28 (2003), 518528. [Google Scholar]
  55. M. B. Rubin, S. R. Bodner. A three-dimensional nonlinear model for dissipative response of soft tissue. International Journal of Solids and Structures, 39 (2002), No. 19, 5081-5099. [CrossRef] [Google Scholar]
  56. D. Sherman. Impact failure mechanisms in alumina tiles on finite thickness support and the effect of confinement. International Journal of Impact Engineering, 24 (2000), 313-328. [CrossRef] [Google Scholar]
  57. C.H.M. Simha, S.J. Bless, A. Bedford. Computational modelling of the penetration response of a high-purity ceramic. International Journal of Impact Engineering, 27 (2002), 65-86. [CrossRef] [Google Scholar]
  58. J. C. Simo, T. J. R. Hughes. Computational inelasticity. In: Interdisciplinary Applied Mathematics, Vol.7, 1998. [Google Scholar]
  59. I.Y. Smolin, P.V. Makarov, D.V. Shmick, I.V. Savlevich. A micropolar model od plastic deformation of polycrystals at the mesolevels. Computational Materials Science, 19 (2000), 133-142. [CrossRef] [Google Scholar]
  60. S.C. Song, Z.P. Duan, D.W. Tan. The application of B-P constitutive equations in finite element analysis of high velocity impact. International Journal of Solids and Structures, 38 (2001), 5215-5222. [CrossRef] [Google Scholar]
  61. J.B. Stevens, R.C. Batra. Adiabatic shear bands in the Taylor impact test for a WHA rod. International Journal of Plasticity, 14 (1998), No. 9, 841-854. [CrossRef] [Google Scholar]
  62. Y.P. Stefanov. Wave dynamics of cracks and multiple contact surface interaction. Theoretical and Applied Fracture Mechanics, 34 (2000), 101-108. [CrossRef] [Google Scholar]
  63. H.H. Vaziri, J.S. Jalali, R. Islam. An analytical model for stability analysis of rock layers over a circular opening. International Journal of Solids and Structures, 38 (2001), 3735-3757. [CrossRef] [Google Scholar]
  64. M. Wallin, A. Ristnmaa. Accurate stress updating algorithm based on constant strain rate assumption. Computer Methods in Applied Mechanics and Engineering, 190 (2001), 5583-5601. [CrossRef] [Google Scholar]
  65. M.L. Wilkins. Calculation of elastic-plastic flow. In: B. Alder (Ed.), Methods in Computational Physics, Vol. 3, Academic Press, New-York, 1964, 211-263. [Google Scholar]
  66. M.L. Wilkins. Calculation of elastic-plastic flow. In: B. Alder (Ed.), Numerical Methods in Hydrodynamics, translated from English, Mir, Moscow, 1967. [Google Scholar]
  67. M.L. Wilkins. Computer simulation of dynamic phenomena. Scientific Computation, Springer, 1998. [Google Scholar]
  68. M.L. Wilkins. Mechanics of penetration and perforation. International Journal of Engineering Sciences, 16 (1978), 793-807. [CrossRef] [Google Scholar]
  69. M.L. Wilkins. Use of artificial viscosity in multidimensional fluid dynamics calculations. Journal of Computational Physics, 36 (1980), 291-303. [Google Scholar]
  70. M.L. Wilkins. Modelling the behavior of materials. In: International Conference on Structural Impact and Crachworthiness, 1984, 243-277. [Google Scholar]
  71. M.L, Wilkins, M.W. Guinan. Impact of cylinders on a rigid boundary. Journal of Applied Physics, 44 (1973), 1200-1206. [CrossRef] [Google Scholar]
  72. M.L, Wilkins, M.W. Guinan. Plane stress calculations with a two dimensional elastic-plastic computer program. UCRL-77251. University of California, Lawrence Livermore Laboratory, (1976). [Google Scholar]
  73. K. Wünnemann, B.A. Ivanov. Numerical modelling of the impact crater depthdiameter dependence in an acoustically fluidized target. Planetary and Space Science, 51 (2003), 831-845. [CrossRef] [Google Scholar]
  74. F. Xiao. Unified formulation for compressible and incompressible flows by using multi-integrated moments I: one-dimensional inviscid compressible flow. Journal of Computational Physics, 195 (2004), 629-654. [CrossRef] [MathSciNet] [Google Scholar]
  75. R. Zaera, S. Sánchez-Sáez, J.L. Pérez-Castellanos, C. Navarro. Modelling of the adhesive layer in mixed ceramic/metal armours subjected to impact. Composites part A: Applied Science and Manufacturing, 31 (2000), 823-833. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.