Free Access
Issue
Math. Model. Nat. Phenom.
Volume 4, Number 2, 2009
Delay equations in biology
Page(s) 119 - 139
DOI https://doi.org/10.1051/mmnp/20094206
Published online 26 March 2009
  1. M. Adimy, L. Pujo-Menjouet. A mathematical model describing cellular division with a proliferating phase duration depending on the maturity of cells. Electronic Journal of Differential Equations, (2003) No. 107, 1–14.
  2. E.P. Alyea, R.J. Soiffer, C. Canning, D. Neuberg, R. Schlossman, C. Pickett, H. Collins, Y. Wang, K.C. Anderson, J. Ritz. Toxicity and efficacy of defined doses of CD4+ donor lymphocytes for treatment of relapse after allogeneic bone marrow transplant. Blood, 19 (1998), No. 10, 3671–3680.
  3. G.R. Angstreich, B.D. Smith, R.J. Jones. Treatment options for chronic myeloid leukemia: imatinib versus interferon versus allogeneic transplant. Curr. Opin. Oncol., 16 (2004), No. 2, 95–99. [CrossRef] [PubMed]
  4. R. Antia, C.T. Bergstrom, S.S. Pilyugin, S.M. Kaech, R. Ahmed. Models of CD8+ responses: 1. What is the antigen-independent proliferation program. J. Theor. Biol., 221 (2003), No. 4, 585–598.
  5. A. Bagg. Chronic myeloid leukemia: a minimalistic view of post-therapeutic monitoring. J. Mol. Diagn., 4 (2002), No. 1, 1–10. [CrossRef] [PubMed]
  6. S.J. Benson, Y. Ye", DSDP5: Software For semidefinite programming. (Sept. 2005) Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, ANL/MCS-P1289-0905, http://www.mcs.anl.gov/ benson/dsdp, (Submitted to ACM Transactions on Mathematical Software).
  7. D.L. Chao, S. Forrest, M.P. Davenport, A.S. Perelson. Stochastic stage-structured modeling of the adaptive immune system. Proc. IEEE Comput. Soc. Bioinform. Conf., 2 (2003), 124–131. [PubMed]
  8. C.I. Chen, H.T. Maecker, P.P. Lee. Development and dynamics of robust T-cell responses to CML under imatinib treatment. Blood, 111 (2008), No. 11, 5342-5349. [CrossRef] [PubMed]
  9. C. Colijn, M.C. Mackey. A mathematical model of hematopoiesis–I. Periodic chronic myelogenous leukemia. J. Theor. Biol., 237 (2005), No. 2, 117–132.
  10. C. Colijn, M.C. Mackey. A mathematical model of hematopoiesis–II. Cyclical neutropenia. J. Theor. Biol., 237 (2005), No. 2, 133–146.
  11. R.H. Collins, Jr., O. Shpilberg, W.R. Drobyski, D.L. Porter, S. Giralt, R. Champlin, S.A. Goodman, S.N. Wolff, W. Hu, C. Verfaillie, A. List, W. Dalton, N. Ognoskie, A. Chetrit, J.H. Antin, J. Nemunaitis. Donor leukocyte infusions in 140 patients with relapsed malignancy after allogeneic bone marrow transplantation. J. Clin. Oncol., 15 (1997), No. 2, 433–444. [PubMed]
  12. J. Cortes, M. Talpaz, S. O'Brien, D. Jones, R. Luthra, J. Shan, F. Giles, S. Faderl, S. Verstovsek, G. Garcia-Manero, M.B. Rios, H. Kantarjian. Molecular responses in patients with chronic myelogenous leukemia in chronic phase treated with imatinib mesylate. Clin. Cancer Res., 11 (2005), No. 9, 3425-3432. [CrossRef] [PubMed]
  13. S.M. Kaech, R. Ahmed. Memory CD8+ T cell differentiation: initial antigen encounter triggers a developmental program in naïve cells. Nat. Immunol., 2 (2001), No. 5, 415–422. [PubMed]
  14. P.S. Kim. Mathematical Models of the Activation and Regulation of the Immune System. PhD thesis, Stanford University (2007).
  15. T. Klingebiel, P.G. Schlegel. GVHD: overview on pathophysiology, incidence, clinical and biological features. Bone Marrow Transplant., 21 (1998), Suppl. 2, S45–S49.
  16. H.J. Kolb, A. Schattenberg, J.M. Goldman, B. Hertenstein, N. Jacobsen, W. Arcese, P. Ljungman, A. Ferrant, L. Verdonck, D. Niederwieser, et al. Graft-versus-leukemia effect of donor lymphocyte transfusions in marrow grafted patients. European Group for Blood and Marrow Transplantation Working Party Chronic Leukemia". Blood, 86 (1995), No. 5, 2041–2050.
  17. N.L. Komarova, D. Wodarz. Drug resistance in cancer: Principles of emergence and prevention. Proc. Natl. Acad. Sci. USA, 102 (2005), No. 27, 9714–9719. [CrossRef] [PubMed]
  18. N.N. Krasovskii. Stability of Motion. Stanford University Press, 1963.
  19. K-A. Kreuzer, C.A. Schmidt, J. Schetelig, T.K. Held, C. Thiede, G. Ehninger, W. Siegert. Kinetics of stem cell engraftment and clearance of leukaemia cells after allogeneic stem cell transplantation with reduced intensity conditioning in chronic myeloid leukaemia. Eur. J. Haematol., 69 (2002), No. 1, 7–10. [CrossRef] [PubMed]
  20. S.J Lee. Chronic myelogenous leukaemia. Br. J. Haematol., 111 (2000), No. 4, 993–1009. [CrossRef] [PubMed]
  21. T. Luzyanina, K. Engelborghs, S. Ehl, P. Klenerman, G. Bocharov. Low level viral persistence after infection with LCMV: a quantitative insight through numerical bifurcation analysis. Math. Biosci., 173 (2004), No. 1, 1–23. [CrossRef]
  22. W.A.E. Marijt, M.H.M. Heemskerk, F.M. Kloosterboer, E. Goulmy, M.G.D Kester, M.A.W.G. van der Hoorn, S.A.P. van Luxemburg-Heys, M. Hoogeboom, T. Mutis, J.W. Drijfhout, J.J. van Rood, R. Willemze, J.H.F. Falkenburg. Hematopoiesis-restricted minor histocompatibility antigens HA-1- or HA-2-specific T cells can induce complete remissions of relapsed leukemia. Proc. Natl. Acad. Sci. USA, 100 (2003), No. 5, 2742–2747. [CrossRef]
  23. F. Mazenc, P.S. Kim, S.-I. Niculescu. Stability of a combined Gleevec and immune model involving delays: linear and global analysis. Proceedings of the 47th IEEE Conference on Decision and Control (2008).
  24. R. Mercado, S. Vijh, S.E. Allen, K. Kerksiek, I.M. Pilip, E.G. Pamer. Early programming of T cell populations responding to bacterial infection. J. Immunol., 165 (2000), No. 12, 6833–6839. [PubMed]
  25. F. Michor, T.P. Hughes, Y. Iwasa, S. Branford, N.P. Shah, C.L. Sawyers, M.A. Nowak. Dynamics of chronic myeloid leukaemia. Nature, 435 (2005), No. 7046, 1267–1270. [CrossRef] [PubMed]
  26. J.J. Molldrem, P.P. Lee, C. Wang, K. Felio, H.M. Kantarjian, R.E. Champlin, M.M. Davis. Evidence that specific T lymphocytes may participate in the elimination of chronic myelogenous leukemia. Nat. Med., 6 (2000), No. 8, 1018–1023. [CrossRef] [PubMed]
  27. H. Moore, N.K. Li. A mathematical model for chronic myelogenous leukemia (CML) and T cell interaction. J. Theor. Biol., 225 (2004), No. 4, 513–523. [CrossRef] [PubMed]
  28. K. Murali-Krishna, J.D. Altman, M. Suresh, D.J.D. Sourdive, D.J.D. Zajac, J.D. Miller, J. Slansky, R. Ahmed. Counting antigen-specific CD8+ T cells: a re-evaluation of bystander activation during viral infection. Immunity, 8 (1998), No. 2, 177–187. [CrossRef] [PubMed]
  29. B. Neiman. A mathematical model of chronic myelogenous leukaemia. Master's thesis University College, Oxford University, (2002).
  30. P.W. Nelson, A.S. Perelson. Mathematical analysis of delay differential equation models of HIV-1 infection. Math. Biosci., 179 (2002), No. 1, 73–94. [CrossRef] [MathSciNet] [PubMed]
  31. S. Niculescu, P.S. Kim, D. Levy, P.P. Lee. On stability of a combined Gleevec and immune model of chronic myelogenous leukemia: exploiting delay system structure. Proceedings of 2007 IFAC Symposium on Nonlinear Control (2007).
  32. A. Papachristodoulou, M.M. Peet, S. Lall. Stability Analysis of Nonlinear Time-Delay Systems. IEEE Transactions on Automatic Control (Special Issue on Positive Polynomials in Control), 2009.
  33. P. Paschka, M.C. Muller, K. Merx, S. Kreil, C. Schoch, T. Lahaye, A. Weisser, A. Petzold, H. Konig, U. Berger, H. Gschaidmeier, R. Hehlmann, A. Hochhaus. Molecular monitoring of response to imatinib (Glivec) in CML patients pretreated with interferon alpha. Low levels of residual disease are associated with continuous remission. Leukemia, 17 (2003), No. 9, 1687–1694.
  34. M.M. Peet. Web site for Matthew M. Peet. http://mmae.iit.edu/ mpeet, (2009).
  35. M.M. Peet, A. Papachristodoulou, S. Lall. Positive forms and stability of linear time-delay systems. SIAM Journal on Control and Optimization, 47 (2009), No. 6, 3237–3258. [CrossRef]
  36. A.S. Perelson, G. Weisbuch. Immunology for Physicists Rev. Mod. Phys., 69 (1997), No. 4, 1219–1267.
  37. L. Pujo-Menjouet, M.C. Mackey. Contribution to the study of periodic chronic myelogenous leukemia. Comptes Rendus Biologiques, 327 (2004), 235–244. [CrossRef] [PubMed]
  38. I. Roeder, M. Horn, I. Glauche, A. Hochhaus, M.C. Mueller, M. Loeffler. Dynamic modeling of imatinib-treated chronic myeloid leukemia: functional insights and clinical implications. Nat. Med., 12 (2006), No. 10, 1181–1184. [CrossRef] [PubMed]
  39. C.L. Sawyers. Chronic myeloid leukemia. New Engl. J. Med., 340 (1999), No. 17, 1330–1340. [CrossRef]
  40. C.L. Sawyers, A. Hochhaus, E. Feldman, J.M. Goldman, C.B. Miller, O.G. Ottmann, C.A. Schiffer, M. Talpaz, F. Guilhot, M.W. Deininger, T. Fischer, S.G. O'Brien, R.M. Stone, C.B. Gambacorti-Passerini, N.H. Russell, J.J. Reiffers, T.C. Shea, B. Chapuis, S. Coutre, S. Tura, E. Morra, R.A. Larson, A. Saven, C. Peschel, A. Gratwohl, F. Mandelli, M. Ben-Am, I. Gathmann, R. Capdeville, R.L. Paquette, B.J. Druker", Imatinib induces hematologic and cytogenetic responses in patients with chronic myelogenous leukemia in myeloid blast crisis: results of a phase II study. Blood, 99 (2002), No. 10, 3530–3539.
  41. C.A. Schiffer, R. Hehlmann, R. Larson. Perspectives on the treatment of chronic phase and advanced phase CML and Philadelphia chromosome positive ALL. Leukemia, 17 (2003), No. 4, 691–699. [CrossRef] [PubMed]
  42. G. Stengle. A nullstellensatz and a positivstellensatz in semialgebraic geometry. Mathematische Annalen, 207 (1973), 87–97. [CrossRef]
  43. J.F. Sturm. Using SeDuMi 1.02, a Matlab toolbox for optimization over symmetric cones. Optimization Methods and Software, (1999), vol. 11–12, 625-653, Version 1.05 available at http://fewcal.kub.nl/sturm/software/sedumi.html.
  44. S.F.T. Thijsen, G.J. Schuurhuis, J.W. van Oostveen, G.J. Ossenkoppele. Chronic mlyeloid leukemia from basics to bedside. Leukemia, 13 (1999), No. 11, 1646–1674. [CrossRef] [PubMed]
  45. M. Uzunel, J. Mattsson, M. Brune, J-E. Johansson, J. Aschan, O. Ringden. Kinetics of minimal residual disease and chimerism in patients with chronic myeloid leukemia after nonmyeloablative conditioning and allogeneic stem cell transplantation. Blood, 101 (2003), No. 2, 469–472. [CrossRef] [PubMed]
  46. M.J. van Stipdonk, E.E. Lemmens, S.P. Schoenberger. Naïve CTLs require a single brief period of antigenic stimulation for clonal expansion and differentiation. Nat. Immunol., 2 (2001), No. 5, 423–429. [PubMed]
  47. M. Villasana, A. Radunskaya. A delay differential equation model for tumor growth. J. Math. Biol., 47 (2003), No. 3, 270–294. [CrossRef] [MathSciNet] [PubMed]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.