Free Access
Math. Model. Nat. Phenom.
Volume 4, Number 4, 2009
Page(s) 149 - 171
Published online 11 July 2009
  1. D. Amarie, J. A. Glazier, S. C. Jacobson. Compact microfluidic structures for generating spatial and temporal gradients. Anal. Chem., 79 (2007), No. 24, 9471–9477. [CrossRef] [PubMed] [Google Scholar]
  2. D. Ambrosi, A. Gamba, G. Serini. Cell directional persistence and chemotaxis in vascular morphogenesis. B. Math. Biol., 66 (2004), No. 6, 1851–1873. [CrossRef] [Google Scholar]
  3. A. R. A. Anderson, M. A. J. Chaplain, K. A. Rejniak, editors. Single-Cell-Based Models in Biology and Medicine. Mathematics and Biosciences in Interaction. Birkhaüser, Basel, Switzerland, 2007. [Google Scholar]
  4. C. Bakal, J. Aach, G. Church, N. Perrimon. Quantitative morphological signatures define local signaling networks regulating cell morphology. Science, 316 (2007), No. 5832, 1753–1756. [CrossRef] [PubMed] [Google Scholar]
  5. A. Balter, R. M. H. Merks, N. J. Popławski, M. Swat, J. A. Glazier. The Glazier–Graner–Hogeweg model: Extensions, future directions, and opportunities for further study. In A. R. A. Anderson, M. A. J. Chaplain, K. A. Rejniak, editors, Single-Cell-Based Models in Biology and Medicine, Mathematics and Biosciences in Interaction, pages 151–167. Birkhaüser, Basel, Switzerland, 2007. [Google Scholar]
  6. J. B. Beltman, A. F. M. Maree, J. N. Lynch, M. J. Miller, R. J. de Boer. Lymph node topology dictates T cell migration behavior. J. Exp. Med., 204 (2007), No. 4, 771–780. [CrossRef] [PubMed] [Google Scholar]
  7. G. W. Brodlan, D. A. Clausi. Embryonic tissue morphogenesis modeled by FEM. J. Biomech. Eng.-T. ASME, 116 (1994), No. 2, 146–155. [CrossRef] [Google Scholar]
  8. N. Caille, O. Thoumine, Y. Tardy, J.-J. Meister. Contribution of the nucleus to the mechanical properties of endothelial cells. J. Biomech., 35 (2002), No. 2, 177–187. [CrossRef] [PubMed] [Google Scholar]
  9. R. R. Chen, E. A. Silva, W. W. Yuen, A. A. Brock, C. Fischbach, A. S. Lin, R. E. Guldberg, D. J. Mooney. Integrated approach to designing growth factor delivery systems. FASEB J., 21 (2007), No. 14, 3896–903. [CrossRef] [PubMed] [Google Scholar]
  10. S. Christley, M. S. Alber, S. A. Newman. Patterns of mesenchymal condensation in a multiscale, discrete stochastic model. PLoS Comput. Biol., 3 (2007), No. 4, e76. [Google Scholar]
  11. T. Cickovski, K. Aras, M. S. Alber, J. A. Izaguirre, M. Swat, J. A. Glazier, R. M. H. Merks, T. Glimm, H. G. E. Hentschel, S. A. Newman. From genes to organisms via the cell - a problem-solving environment for multicellular development. Comput. Sci. Eng., 9 (2007), No. 4, 50–60. [Google Scholar]
  12. E. H. Davidson. A genomic regulatory network for development. Science, 295 (2002), No. 5560, 1669–1678. [CrossRef] [PubMed] [Google Scholar]
  13. E. Flenner, F. Marga, A. Neagu, L. Kosztin, G. Forgacs. Relating biophysical properties across scales. Curr. Top. Dev. Biol., 81 (2008), 461–483. [CrossRef] [PubMed] [Google Scholar]
  14. G. Forgacs, S. A. Newman. Biological physics of the developing embryo. Cambridge University Press, 2005. [Google Scholar]
  15. A. Gamba, D. Ambrosi, A. Coniglio, A. de Candia, S. D. Talia, E. Giraudo, G. Serini, L. Preziosi, F. Bussolino. Percolation, morphogenesis, and Burgers dynamics in blood vessels formation. Phys. Rev. Lett., 90 (2003), No. 11, 118101. [CrossRef] [PubMed] [Google Scholar]
  16. J. A. Glazier, A. Balter, N. J. Popławski. Magnetization to morphogenesis: a brief history of the Glazier-Graner-Hogeweg model. In A. R. A. Anderson, M. A. J. Chaplain, and K. A. Rejniak, editors, Single Cell-Based Models in Biology and Medicine, Mathematics and Biosciences in Interaction, pages 79–106. Birkhaüser, Basel, Switzerland, 2007. [Google Scholar]
  17. J. A. Glazier, F. Graner. Simulation of the differential adhesion driven rearrangement of biological cells. Phys. Rev. E, 47 (1993), No. 3, 2128–2154. [CrossRef] [PubMed] [Google Scholar]
  18. V. A. Grieneisen, J. Xu, A. F. M. Marée, P. Hogeweg, B. Scheres. Auxin transport is sufficient to generate a maximum and gradient guiding root growth. Nature, 449 (2007), No. 7165, 1008–13. [CrossRef] [PubMed] [Google Scholar]
  19. D. Guidolin, B. Nico, A. S. Belloni, G. G. Nussdorfer, A. Vacca, D. Ribatti. Morphometry and mathematical modelling of the capillary-like patterns formed in vitro by bone marrow macrophages of patients with multiple myeloma. Leukemia, 21 (2007), No. 10, 2201–3. [CrossRef] [PubMed] [Google Scholar]
  20. M. S. Hutson, G. W. Brodland, J. Yang, D. Viens. Cell sorting in three dimensions: Topology, fluctuations, and fluidlike instabilities. Phys. Rev. Lett., 101 (2008), No. 14, 4. [Google Scholar]
  21. J. Käfer, T. Hayashi, A. F. M. Marée, R. W. Carthew, F. Graner. Cell adhesion and cortex contractility determine cell patterning in the drosophila retina. Proc. Natl. Acad. Sci. U.S.A., 104 (2007), No. 47, 18549–54. [CrossRef] [PubMed] [Google Scholar]
  22. K. Keren, Z. Pincus, G. M. Allen, E. L. Barnhart, G. Marriott, A. Mogilner, J. A. Theriot. Mechanism of shape determination in motile cells. Nature, 453 (2008), No. 7194. [Google Scholar]
  23. M. A. Kiskowski, M. S. Alber, G. L. Thomas, J. A. Glazier, N. B. Bronstein, J. Pu, S. A. Newman. Interplay between activator-inhibitor coupling and cell-matrix adhesion in a cellular automaton model for chondrogenic patterning. Dev. Biol., 271 (2004), No. 2, 372–87. [CrossRef] [PubMed] [Google Scholar]
  24. D. Manoussaki. A mechanochemical model of angiogenesis and vasculogenesis. ESAIM-Math. Model. Num., 37 (2003), No. 4, 581–599. [CrossRef] [EDP Sciences] [Google Scholar]
  25. D. Manoussaki, S. R. Lubkin, R. B. Vernon, J. D. Murray. A mechanical model for the formation of vascular networks in vitro. Acta Biotheor., 44 (1996), No. 3-4, 271–282. [CrossRef] [PubMed] [Google Scholar]
  26. A. F. M. Marée, V. A. Grieneisen, P. Hogeweg. The Cellular Potts Model and biophysical properties of cells, tissues and morphogenesis. In A. R. A. Anderson, M. J. Chaplain, K. A. Rejniak, editors, Single-Cell-Based Models in Biology and Medicine, Mathematics and Biosciences in Interaction, pages 107–136. Birkhaüser, Basel, Switzerland, 2007. [Google Scholar]
  27. A. F. M. Marée, P. Hogeweg. Modelling dictyostelium discoideum morphogenesis: the culmination. B. Math. Biol., 64 (2002), No. 2, 327–353. [CrossRef] [Google Scholar]
  28. A. F. M. Marée, A. Jilkine, A. Dawes, V. A. Grieneisen, L. Edelstein-Keshet. Polarization and movement of keratocytes: A multiscale modelling approach. B. Math. Biol., 68 (2006), No. 5, 1169–1211. [Google Scholar]
  29. R. M. H. Merks, J. A. Glazier. A cell-centered approach to developmental biology. Phys. A, 352 (2005), No. 1, 113–130. [Google Scholar]
  30. R. M. H. Merks, S. A. Newman, J. A. Glazier. Cell-oriented modeling of in vitro capillary development. In ACRI 2004: Sixth International conference on Cellular Automata for Research and Industry, Lect. Notes Comput. Sc., 3305 (2004), 425–434. [CrossRef] [Google Scholar]
  31. R. M. H. Merks, S. V. Brodsky, M. S. Goligorksy, S. A. Newman, J. A. Glazier. Cell elongation is key to in silico replication of in vitro vasculogenesis and subsequent remodeling. Dev. Biol., 289 (2006), No. 1, 44–54. [CrossRef] [PubMed] [Google Scholar]
  32. R. M. H. Merks, J. A. Glazier. Dynamic mechanisms of blood vessel growth. Nonlinearity, 19 (2006), No. 1, C1–C10. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  33. R. M. H. Merks, E. D. Perryn, A. Shirinifard, J. A. Glazier. Contact-inhibited chemotaxis in de novo and sprouting blood-vessel growth. PLoS Comput. Biol., 4 (2008), No. 9, e1000163. [Google Scholar]
  34. P. Namy, J. Ohayon, P. Tracqui. Critical conditions for pattern formation and in vitro tubulogenesis driven by cellular traction fields. J. Theor. Biol., 227 (2004), No. 1, 103–120. [Google Scholar]
  35. T. Newman. Modeling multicellular systems using subcellular elements. Math. Biosci. Eng., 2 (2005), No. 3, 613–624. [MathSciNet] [PubMed] [Google Scholar]
  36. E. Palsson. A 3-D model used to explore how cell adhesion and stiffness affect cell sorting and movement in multicellular systems. J. Theor. Biol., 254 (2008), No. 1, 1–13. [CrossRef] [PubMed] [Google Scholar]
  37. S. Petronis, C. Gretzer, B. Kasemo, J. Gold. Model porous surfaces for systematic studies of material-cell interactions. J. Biomed. Mater. Res. A, 66 (2003), No. 3, 707–21. [CrossRef] [PubMed] [Google Scholar]
  38. N. J. Popławski, A. Shirinifard, M. Swat, J. A. Glazier. Simulation of single-species bacterial-biofilm growth using the Glazier-Graner-Hogeweg model and the CompuCell3D modeling environment. Math. Biosci. Eng., 5 (2008), No. 2, 355–388. [MathSciNet] [PubMed] [Google Scholar]
  39. C. A. Reinhart-King, M. Dembo, D. A. Hammer. The dynamics and mechanics of endothelial cell spreading. Biophys. J., 89 (2005), No. 1, 676–89. [CrossRef] [PubMed] [Google Scholar]
  40. C. A. Reinhart-King, M. Dembo, D. A. Hammer. Cell-cell mechanical communication through compliant substrates. Biophys. J., 95 (2008), No. 12, 6044–51. [CrossRef] [PubMed] [Google Scholar]
  41. K. A. Rejniak. An immersed boundary framework for modelling the growth of individual cells: an application to the early tumour development. J. Theor. Biol., 247 (2007), No. 1, 186–204. [CrossRef] [PubMed] [Google Scholar]
  42. K. A. Rejniak, A. R. A. Anderson. A computational study of the development of epithelial acini: I. sufficient conditions for the formation of a hollow structure. B. Math. Biol., 70 (2008), No. 3, 677–712. [CrossRef] [Google Scholar]
  43. J. P. Rieu, A. Upadhyaya, J. A. Glazier, N. B. Ouchi, Y. Sawada. Diffusion and deformations of single hydra cells in cellular aggregates. Biophys. J., 79 (2000), No. 4, 1903–1914. [CrossRef] [PubMed] [Google Scholar]
  44. S. A. Sandersius, T. J. Newman. Modeling cell rheology with the subcellular element model. Phys. Biol., 5 (2008), No. 1, 015002. [CrossRef] [PubMed] [Google Scholar]
  45. N. J. Savill, P. Hogeweg. Modelling morphogenesis: from single cells to crawling slugs. J. Theor. Biol., 184 (1997), No. 3, 229–235. [CrossRef] [Google Scholar]
  46. B. G. Sengers, C. C. V. Donkelaar, C. W. J. Oomens, F. P. T. Baaijens. The local matrix distribution and the functional development of tissue engineered cartilage, a finite element study. Ann. Biomed. Eng., 32 (2004), No. 12, 1718–1727. [CrossRef] [PubMed] [Google Scholar]
  47. B. G. Sengers, M. Taylor, C. P. Please, R. O. C. Oreffo. Computational modelling of cell spreading and tissue regeneration in porous scaffolds. Biomaterials, 28 (2007), No. 10, 1926–1940. [CrossRef] [PubMed] [Google Scholar]
  48. G. Serini, D. Ambrosi, E. Giraudo, A. Gamba, L. Preziosi, F. Bussolino. Modeling the early stages of vascular network assembly. EMBO J., 22 (2003), No. 8, 1771–9. [CrossRef] [PubMed] [Google Scholar]
  49. A. Shamloo, N. Ma, M.-M. Poo, L. L. Sohn, S. C. Heilshorn. Endothelial cell polarization and chemotaxis in a microfluidic device. Lab Chip, 8 (2008), No. 8, 1292–9. [CrossRef] [PubMed] [Google Scholar]
  50. T. Sun, P. McMinn, S. Coakley, M. Holcombe, R. Smallwood, S. MacNeil. An integrated systems biology approach to understanding the rules of keratinocyte colony formation. J. Roy. Soc. Interface, 4 (2007), No. 17, 1077–1092. [CrossRef] [Google Scholar]
  51. A. Szabo, E. Mehes, E. Kosa, A. Czirok. Multicellular sprouting in vitro. Biophys. J., 95 (2008), No. 6, 2702–10. [CrossRef] [PubMed] [Google Scholar]
  52. A. Szabo, E. D. Perryn, A. Czirok. Network formation of tissue cells via preferential attraction to elongated structures. Phys. Rev. Lett., 98 (2007), No. 3, 038102. [CrossRef] [PubMed] [Google Scholar]
  53. Y. Tsukada, K. Aoki, T. Nakamura, Y. Sakumura, M. Matsuda, S. Ishii. Quantification of local morphodynamics and local GTPase activity by edge evolution tracking. PLoS Comput. Biol., 4 (2008), No. 11, e1000223. [Google Scholar]
  54. N. Tymchenko, J. Wallentin, S. Petronis, L. M. Bjursten, B. Kasemo, J. Gold. A novel cell force sensor for quantification of traction during cell spreading and contact guidance. Biophys. J., 93 (2007), No. 1, 335–45. [CrossRef] [PubMed] [Google Scholar]
  55. A. Vaziri, A. Gopinath. Cell and biomolecular mechanics in silico. Nat. Mater., 7 (2008), No. 1, 15–23. [CrossRef] [PubMed] [Google Scholar]
  56. D. Walker, J. Southgate, G. Hill, A. Holcombe, D. Hose, S. Wood, S. M. Neil, R. Smallwood. The epitheliome: agent-based modelling of the social behaviour of cells. Biosystems, 76 (2004), No. 1-3, 89–100. [CrossRef] [PubMed] [Google Scholar]
  57. G. M. Walker, J. Sai, A. Richmond, M. Stremler, C. Y. Chung, J. P. Wikswo. Effects of flow and diffusion on chemotaxis studies in a microfabricated gradient generator. Lab Chip, 5 (2005), No. 6, 611–618. [CrossRef] [PubMed] [Google Scholar]
  58. Z. Xu, N. Chen, S. C. Shadden, J. E. Marsden, M. M. Kamocka, E. D. Rosen, M. S. Alber. Study of blood flow impact on growth of thrombi using a multiscale model. Soft Matter, 5 (2009), No. 4, 769–779. [CrossRef] [Google Scholar]
  59. Z. Yin, D. Noren, C. J. Wang, R. Hang, A. Levchenko. Analysis of pairwise cell interactions using an integrated dielectrophoretic-microfluidic system. Mol. Syst. Biol., 4 (2008), 232. [PubMed] [Google Scholar]
  60. W. Zeng, G. L. Thomas, J. A. Glazier. Non-turing stripes and spots: a novel mechanism for biological cell clustering. Phys. A, 341 (2004), 482–494. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.