Free Access
Math. Model. Nat. Phenom.
Volume 4, Number 5, 2009
Modelling of geographical processes and natural resources
Page(s) 128 - 143
Published online 02 October 2009
  1. V. Alcaraz-Gonzalez, J. Harmand, A. Rapaport, J.-P. Steyer, V. Gonzalez Alvarez, C. Pelayo Ortiz. Application of a robust interval observer to an anaerobic digestion process. Developments in Chemical Engineering Mineral Processing, 13 (2005), No. 3/4, 267–278. [Google Scholar]
  2. V. Alcaraz-Gonzalez, J. Harmand, A. Rapaport, J.-P. Steyer, V. Gonzalez Alvarez, C. Pelayo Ortiz. Robust interval-based regulation for anaerobic digestion processes. Water Science and Technology, 52 (2005), No. 1-2, 449–456. [Google Scholar]
  3. J.F. Andrews. Kinetic models of biological waste treatment process. Biotech. Bioeng. Symp., 2 (1971), 5–34. [Google Scholar]
  4. J.F. Andrews. Dynamics and control of wastewater systems. Water quality management library, vol. 6, 1998. [Google Scholar]
  5. J.F. Busb, J.F. Andrews. Dynamic modelling and control strategies for the activated sludge process. J. of Wat. Pollut. Control Fed., 47 (1975), 1055–1080. [Google Scholar]
  6. C.R. Curds. Computer simulation of microbial population dynamics in the activated sludge process. Water Research 5 (1971), 1049–1066. [Google Scholar]
  7. D. Dochain, M. Perrier. Control design for nonlinear wastewater treatment processes. Wat. Sci. Tech. 11-12 (1993), 283–293. [Google Scholar]
  8. D. Dochain, M. Perrier. Dynamical modelling, analysis, monitoring and control design for nonlinear bioprocess. T. Scheper (Ed.), Advances in Biochemical and Biotechnology, 56 (1997), Spring Verlag, Berlin, 147–197. [Google Scholar]
  9. C. Gómez-Quintero, I. Queinnec. Robust estimation for an uncertain linear model of an activated sludge process. Proc. of the IEEE Conference on Control Applications (CCA), Glasgow (UK), (2002), 18-20 december. [Google Scholar]
  10. M.Z. Hadj-Sadok, J.L. Gouzé. Estimation of uncertain models of activated sludge processes with interval observers. J. of Process Control, 11 (2001), 299–310. [CrossRef] [Google Scholar]
  11. B. Haegeman, C. Lobry, J. Harmand. Modeling bacteria flocculation as density-dependent growth. Aiche Journal, 53 (2007), No.2, 535–539. [Google Scholar]
  12. S. Marsili-Libelli. Optimal control of the activated sludge process. Trans. Inst. Meas. Control, 6 (1984), 146–152. [CrossRef] [Google Scholar]
  13. A. Martínez, C. Rodríguez, M.E. Vázquez-Méndez. Theoretical and numerical analysis of an optimal control problem related to wastewater treatment. SIAM J. CONTROL OPTIM., Vol. 38 (2000), No. 5, 1534–1553. [Google Scholar]
  14. M.K. Rangla, K.J. Burnham, L. Coyle, R.I. Stephens. Simulation of activated sludge process control strategies. Simulation '98. International Conference on (Conf. Publ. No. 457), 30 Sep - 2 Oct (1998), 152–157. [Google Scholar]
  15. A. Rapaport, J. Harmand. Robust regulation of a class of partially observed nonlinear continuous bioreactors. J. of Process Control, 12 (2002), No. 2, 291–302. [Google Scholar]
  16. M. Serhani, J.L. Gouzé, N. Raïssi. Dynamical study and robustness for a nonlinear wastewater treatment model. Proceeding book “Systems Theory: Modeling, Analysis & Control, FES2009”, Eds A. EL Jaï, L. Afifi & E. Zerrik, PUP, ISBN 978-2-35412-043-6, pp. 571-578. [Google Scholar]
  17. H.L. Smith. Monotone dynamical systems: an introduction to the theory of competitive and cooperative systems. American Matheatical society, 1995. [Google Scholar]
  18. H.L. Smith, P. Waltman. The theory of the chemostat. Cambridge University Press, Cambridge, 1995. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.