Free Access
Math. Model. Nat. Phenom.
Volume 5, Number 1, 2010
Cell migration
Page(s) 224 - 238
Published online 03 February 2010
  1. M. J. Miller, S. H. Wei, I. ParkerM. D. Cahalan. Two photon imaging of lymphocyte motility and antigen response in intact lymph node. Science 296 (2002), 1869–1873 [CrossRef] [PubMed] [Google Scholar]
  2. S. Stoll, J. Delon, T. M. BrotzR. N. Germain. Dynamic Imaging of T Cell-Dendritic Cell Interactions in Lymph Nodes. Science 296 (2002), 1873–1876 [CrossRef] [PubMed] [Google Scholar]
  3. U. H. von Andrian. T cell activation in six dimensions. Science 296 (2002), 1815–1817 [CrossRef] [PubMed] [Google Scholar]
  4. R. F. Murphy. Putting proteins on the map. Nat. Biotechnol. 24 (2006), 1223–1224 [CrossRef] [PubMed] [Google Scholar]
  5. W. Schubert et al. Analyzing proteome topology and function by automated multidimensional fluorescence microscopy. Nat. Biotechnol. 24 (2006), 1270–1278 [CrossRef] [PubMed] [Google Scholar]
  6. W. AltR. T. Tranquillo. Basic morphogenetic system modeling shape changes of migrating cells: how to explain fluctuating lamellipodial dynamics. Journal of Biol. Systems 3 (1995), No. 4 905–916 [Google Scholar]
  7. M. T. Figge, A. Garin, M. Gunzer, M. Kosco-Vilbois, K.-M. ToellnerM. Meyer-Hermann. Deriving a germinal center lymphocyte migration model from two-photon data. Journal of Exp. Med. 205 (2008), No. 13, 3019–3029 [CrossRef] [Google Scholar]
  8. M. Meyer-Hermann, M. T. FiggeK.-M. Toellner. Germinal centres seen through the mathematical eye: B cell models on the catwalk. Trends in Immunology 30 (2009), No. 4, 157–164 [CrossRef] [PubMed] [Google Scholar]
  9. F. GranerJ. A. Glazier. Simulation of biological cell sorting using a two-dimensional extended Potts model. Phys. Rev. Lett. 69 (1992), No. 13, 2013–2016 [CrossRef] [PubMed] [Google Scholar]
  10. M. E. Meyer-HermannP. K. Maini. Interpreting two-photon imaging data of lymphocyte motility. Phys. Review E 71 (2005), No. 6, 061912–061923 [CrossRef] [Google Scholar]
  11. F. A. Meineke, C. S. PottenM. Loeffler. Cell migration and organization in the intestinal crypt using a lattice-free model. Cell Prolif. 34 (2001), No. 4, 253–266 [CrossRef] [PubMed] [Google Scholar]
  12. T. BeyerM. Meyer-Hermann. Mechanisms of organogenesis of primary lymphoid follicles. Int. Immunol. 20 (2008), No. 4, 615–623 [CrossRef] [PubMed] [Google Scholar]
  13. M. Bock, A. K. Tyagi, J.-U. Kreft, W. Alt. Generalized Voronoi tessellation as a model of two-dimensional cell tissue dynamics. arXiv:0901.4469v2 []. [Google Scholar]
  14. J. Galle, M. HoffmannG. Aust. From single cells to tissue architecture – a bottom-up approach to modeling the spatio-temporal organisation of complex multi-cellular systems. J. Math. Biol. 58 (2009), 261–283 [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  15. T. J. Newman. Modeling multicellular systems using subcellular elements. Mathematical Biosciences and Engineering 2 (2005), No. 3, 611–622 [Google Scholar]
  16. S. A. S, ersiusT. J. Newman. Modeling cell rheology with the Subcellular Element Model. Phys. Biol. 5 (2008), No. 1 Cell migration, 015002–015014 [CrossRef] [PubMed] [Google Scholar]
  17. D. E. Ingber. Cellular tensegrity I. Cell structure and hierarchical systems biology. J. Cell Sci. 116 (2003), 1157–1173 [CrossRef] [PubMed] [Google Scholar]
  18. D. E. Ingber. Tensegrity II. How structural networks inuence cellular information-processing networks. J. Cell Sci. 116 (2003), 1397–1408 [CrossRef] [PubMed] [Google Scholar]
  19. G. Schaller, M. Meyer-Hermann. Kinetic and dynamic Delaunay tetrahedralizations in three dimensions. Comput. Phys., Commun. 162 (2004), No. 1 Cell migration, 9–23. [CrossRef] [Google Scholar]
  20. T. Beyer, G. Schaller, A. DeutschM. Meyer-Hermann. Parallel dynamic and kinetic regular triangulation in three dimensions. Comput. Phys. Commun. 172 (2005), No. 2, 86–108 [CrossRef] [Google Scholar]
  21. A. Okabe, B. Boots, K. Sugihara, S. N. Chiu. Spatial tessellations: concepts and applications of Voronoi diagrams. Probability and Statistics. John Wiley & Sons, Inc., New York, 1992. [Google Scholar]
  22. E. Mücke. A robust implementation for three-dimensional Delaunay triangulations. Internat. J. Comput. Geom. Appl. 2 (1998), No. 8, 255–276 [Google Scholar]
  23. F. Cazals e J. Giesen. Delaunay triangulation based surface reconstruction: ideas and algorithms. Institut National De Recherche En Informatic et en AutomatiqueRapport de recherche No. 5393 (2004). [Google Scholar]
  24. M. Meyer-Hermann. Delaunay-Object-Dynamics: cell mechanics with a 3D kinetic and dynamic weighted Delaunay-triangulation. Curr. Top. Dev. Biol. 81 (2008), 373–399. [Google Scholar]
  25. T. BeyerM. Meyer-Hermann. The treatment of non-flippable configurations in three dimensional regular triangulations. WSEAS Trans. Syst. 5 (2006), No. 5, 1100–1107 [Google Scholar]
  26. G. SchallerM. Meyer-Hermann. Multicellular tumor spheroid in an off-lattice Voronoi/Delaunay cell model. Phys. Rev. E 71 (2005), No. 5, 051910–051925 [CrossRef] [MathSciNet] [Google Scholar]
  27. G. V. Reddy, M. G. Heisler, D. W. EhrhardtE. M. Meyerowitz. Real-time lineage analysis reveals oriented cell divisions associated with morphogenesis at the shoot apex of Arabidopsis thaliana. Development 131 (2004), No. 17, 4225–4237 [CrossRef] [PubMed] [Google Scholar]
  28. N. Amenta, M. Bern, M. Kamvysselis. A new Voronoi-based surface reconstruction algorithm. SIGGRAPH ’98: Proceedings of the 25th annual conference on computer graphics and interactive techniques, ACM, New York, 1998. [Google Scholar]
  29. N. AmentaM. Bern. Surface reconstruction by Voronoi filtering. Discrete and Computational Geometry 22 (1999), No. 4, 481–504 [CrossRef] [MathSciNet] [Google Scholar]
  30. G. Grise, M. Meyer-Hermann. Surface reconstruction using Delaunay triangulation for applications in life sciences. Submitted (2009). [Google Scholar]
  31. L. Verlet. Computer experiments on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys. Rev. 159 (1967), No. 1 Cell migration, 98–103 [CrossRef] [Google Scholar]
  32. L. Verlet. Computer experiments on classical fluids. II. Equilibrium correlation functions. Phys. Rev. 165 (1968), No. 1 Cell migration, 201–214 [CrossRef] [Google Scholar]
  33. Wu-Yi Hsiang. On the sphere packing problem and the proof of Kepler’s conjecture. Internat. J. Math. 4 (1993), No. 5, 739–831 [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.