Free Access
Issue
Math. Model. Nat. Phenom.
Volume 5, Number 2, 2010
Mathematics and neuroscience
Page(s) 185 - 207
DOI https://doi.org/10.1051/mmnp/20105207
Published online 10 March 2010
  1. C. Ajmone Marsan. Focal electrical stimulation. In: Experimental Models of Epilepsy: A manual for the laboratory worker. Eds D. P. Purpura, J. K. Penry, D. Tower, D. M. Woodbury and R. Walter, Raven Press, New York, 1972. [Google Scholar]
  2. S. Amari. Dynamics of pattern formation in lateral-inhibition type neural fields. Biol. Cybern., 27 (1977), No. 2, 77–87. [CrossRef] [PubMed] [Google Scholar]
  3. F. AtayA. Hutt. Stability and bifurcations in neural fields with finite propagation speed and general connectivity. SIAM J. Appl. Math., 65 (2005), No. 2, 644–666. [Google Scholar]
  4. U. B. Barnikol, O. V. Popovych, C. Hauptmann, V. Sturm, H. J. FreundP. A. Tass. Tremor entrainment by patterned low-frequency stimulation. Philos. Transact. A Math. Phys. Eng. Sci., 366 (2008), No. 1880, 3543–3573. [Google Scholar]
  5. R. Bartolow. Experimental investigations into the functions of the human brain. AM. J. Med. Sci., 1874, 305–313. [CrossRef] [Google Scholar]
  6. N. P. Bechtereva, A. N. BondarchukV. M. Smirnov. Therapeutic electrostimulations of deep brain structures. Vopr Neirokhir, 1 (1972), 115–120. [Google Scholar]
  7. A. L. Benabid, P. Pollak, A. Louveau, S. HenryJ. de Rougemont. Combined (thalamotomy and stimulation) stereotactic surgery of the Vim thalamic nucleus for bilateral Parkinson disease. Appl. Neurophysiol., 50 (1987), No. 1-6, 344–346. [PubMed] [Google Scholar]
  8. A. L. Benabid, W. Bradley, J. Mitrofanis, C. Xia, B. Piallat, V. Fraix, A. Batir, P. Krack, P. PollakF. Berger. Therapeutic electrical stimulation of the central nervous system. C. R. Biologies, 328 (2005), 177–186. [CrossRef] [Google Scholar]
  9. S. A. Chkhenkeli. Direct deep brain stimulation: first steps toward the feedback control of seizures. In: Epilepsy as a dynamical disease, p. 249-262. Eds J. Milton and P. Jung, Springer-Verlag, New York, 2003. [Google Scholar]
  10. J. Echauz, H. Firpi, G. Georgoulas. Intelligent control strategies for neurostimulation. In: Applications of intelligent control of engineering systems. Ed P. K. Valavanis, Springer, 2009. [Google Scholar]
  11. R. Edwards. Approximation of neural network dynamics by reaction-diffusion equations. Math. Meth. App. Sci., 19 (1996), 651–677. [CrossRef] [Google Scholar]
  12. G. B. ErmentroutJ. D. Cowan. A mathematical theory of visual hallucination patterns. Biol. Cybern., 34 (1979), No. 3, 137–150. [CrossRef] [PubMed] [Google Scholar]
  13. A. Eusebio, A. Pogosyan, S. Wang, B. Averbeck, L. D. Gaynor, S. Cantiniaux, T. Witjas, P. Limousin, J. P. AzulayP. Brown. Resonance in subthalamo-cortical circuits in Parkinson’s disease. Brain, 132 (2009), No. 8, 2139–2150. [CrossRef] [PubMed] [Google Scholar]
  14. W. Gerstner, R. Kempter, J. L. van HemmenH. Wagner. A neuronal learning rule for sub-millisecond temporal coding. Nature, 383 (1996), 76–81. [CrossRef] [PubMed] [Google Scholar]
  15. F. A. Gibbs, E. L. GibbsW. G. Lennox. The likeness of the cortical dysrhythmias of schizophrenia and psychomotor epilepsy. Am. J. Psychiatry, 95 (1938), 255–269. [Google Scholar]
  16. P. L. Gildenberg. History of electrical neuromodulation for chronic pain. Pain Medicine, 7 (2006), S7–S13. [CrossRef] [Google Scholar]
  17. B. J. Gluckman, E. J. Neel, T. I. Neto, W. L. Ditto, M. L. SpanoS. J. Schiff. Electric field suppression of epileptiform activity in hippocampal slices. J. Neurophysiol., 6 (1996), 4202–4205. [Google Scholar]
  18. B. J. Gluckman, H. Nguyen, S. L. WeinsteinS. J. Schiff. Adaptive electric field control of epileptic seizures. J. Neurosci., 21 (2001), No. 2, 290–600. [Google Scholar]
  19. S. Grillner, A. KozlovJ. H. Kotaleski. Integrative neuroscience: linking levels of analyses. Curr. Opin. Neurobiol., 15 (2005), No. 5, 614–621. [CrossRef] [PubMed] [Google Scholar]
  20. R. Hassler, F. MundigerT. Riechert. Correlations between clinical and autoptic findings in stereotaxic operations in parkinsonism. Confin. Neurol., 26 (1965), 282–290. [PubMed] [Google Scholar]
  21. A. L. HodgkinA. F. Huxley. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol., 117 (1952), No. 4, 500–544. [CrossRef] [PubMed] [Google Scholar]
  22. J. C. Horton, D. L. Adams. The cortical column: a structure without a function. Phil. Trans. of the Royal Soc. B, 360 (2005), No. 1456, 837–862. [CrossRef] [Google Scholar]
  23. X. Huang, W. C. Troy, Q. Yang, H. Ma, C. R. Laing, S. J. SchiffJ. Y. Wu. Spiral waves in disinhibited mammalian neocortex. J. Neurosci., 24 (2004), 9897–9902. [CrossRef] [PubMed] [Google Scholar]
  24. E. M. Izhikevich. Simple model of spiking neurons. Transactions on Neural Networks, 14 (2003), 1569–1572. [CrossRef] [PubMed] [Google Scholar]
  25. E. M. Izhikevich. Polychronization: computation with spikes. Neural Computation, 18 (2006), 245–282. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  26. H. H. Jasper. Recording from microelectrodes in stereotactic surgery for Parkinson’s disease. J. Neurosurg., 24 (1966), 219–221. [Google Scholar]
  27. E. I. Kandel. Functional and stereotactic neurosurgery. Plenum Medical Book Co, New York, 1966. [Google Scholar]
  28. R. R. Llinas, U. Ribary, D. Jeanmonod, E. Kronberg, P. P. Mitra. Thalamocortical dysrhythmia: a neurological and neuropsychiatric syndrome characterized by magnetoencephalography. Proc. Natl. Acad. Sci. USA, 96 (1999), No 26, 15222–15227. [CrossRef] [PubMed] [Google Scholar]
  29. H. O. Lüders. Deep brain stimulation and epilepsy. Martin Dunitz, New York, 2004. [Google Scholar]
  30. C. C. McIntyre, S. Mori, D. L. Sherman, N. V. ThakorJ. L. Vitek. Electric field and stimulating influence generated by deep brain stimulation of the subthalamic nucleus. Clin. Neurophysiol., 115 (2004), No. 3, 589–595. [CrossRef] [PubMed] [Google Scholar]
  31. W. Meissner, A. Leblois, D. Hansel, B. Bioulac, C. E. Gross, A. BenazzouzT. Boraud. Subthalamic high frequency stimulation resets subthalamic firing and reduces abnormal oscillations. Brain, 128 (2005), No. 10, 2372–2382. [CrossRef] [PubMed] [Google Scholar]
  32. JMilton, P. Jung. Epilepsy as a dynamical disease. Springer-Verlag, New York, 2003. [Google Scholar]
  33. J. Modolo, J. HenryA. Beuter. Dynamics of the subthalamo-pallidal complex in Parkinson’s disease during deep brain stimulation. J. Biol. Phys., 34 (2008), No. 3-4, 351–366. [Google Scholar]
  34. J. Modolo, A. Beuter. Contribution of cortical inputs to subthalamic activity during deep brain stimulation. Proceedings of the Neurocomp 2008 conference, Marseille, France (2008). [Google Scholar]
  35. J. ModoloA. Beuter. Linking brain dynamics, neural mechanisms and deep brain stimulation in Parkinson’s disease: an integrated perspective. Med. Eng. Phys., 31 (2009), 615–623. [CrossRef] [PubMed] [Google Scholar]
  36. D. Q. NykampD. Tranchina. A population density approach that facilitates largescale modeling of neural networks : analysis and an application to orientation tuning. J. Comput. Neurosci., 8 (2000), No. 1, 19–50. [CrossRef] [PubMed] [Google Scholar]
  37. J. Olszewski. The thalamus of the Macaca Mulatta. An atlas for use with the stereotactic instrument. Basel Karger, 1952. [Google Scholar]
  38. A. Omurtag, B. W. Knight, L. Sirovich. On the simulation of large populations of neurons. J. Comput. Neurosci., 8 (2000), No. 5, 51–63. [CrossRef] [PubMed] [Google Scholar]
  39. A. Pascual, J. Modolo, A. Beuter. Is a computational model useful to understand the effect of deep brain stimulation in Parkinson’s disease? J. Integr. Neurosci., 5 (2006), No. 4, 541–559. [CrossRef] [PubMed] [Google Scholar]
  40. J. Richmond. The 3Rs-Past, present and future. Scand. J. Lab. Anim. Sci., 27 (2000), 84–92. [Google Scholar]
  41. J. E. RubinD. Terman. High frequency stimulation of the subthalamic nucleus eliminates pathological thalamic rhythmicity in a computational model. J. Comput. Neurosci., 16 (2004), No. 3, 211–235. [CrossRef] [PubMed] [Google Scholar]
  42. D. Rubino, K. A. RobbinsN. G. Hatsopoulos. Propagating waves mediate information transfer in the motor cortex. Nature Neurosci., 9 (2006), No. 12, 1549–1557. [CrossRef] [Google Scholar]
  43. J. D. SpeelmanD. A. Bosch. Resurgence of functional neurosurgery for Parkinson’s disease: a historical perspective. Mov. Disord., 13 (1998), No. 3, 582–588. [CrossRef] [PubMed] [Google Scholar]
  44. E. A. Spiegel, H. T. Wycis, M. MarksA. S. Lee. Stereotaxic apparatus for operations on the human brain. Science, 106 (1947), 349–350. [CrossRef] [PubMed] [Google Scholar]
  45. A. A. Spiegel, H. T. Wycis. Stereoencephalotomy (thalamic related procedures) part 1: Methods and atlas for the human brain. Grune and Stratton, New York, 1952. [Google Scholar]
  46. P. A. Tass. Phase Resetting in Medicine and Biology. Stochastic Modelling and Data Analysis. Series: Springer Series in Synergetics, 1999. [Google Scholar]
  47. D. Terman, J. E. Rubin, A. C. YewC. J. Wilson. Activity patterns in a model for the subthalamopallidal network of the basal ganglia. J. Neurosci., 22 (2002), No. 7, 2963–2976. [PubMed] [Google Scholar]
  48. L. Timmermann, J. Gross, M. Dirks, J. Volkmann, H. J. FreundA. Schnitzler. The cerebral oscillatory network of parkinsonian resting tremor. Brain, 126 (2003), No. 1, 199–212. [CrossRef] [PubMed] [Google Scholar]
  49. L. Timmermann, E. Florin, C. Reck. Pathological cerebral oscillatory activity in Parkinson’s disease: a critical review on methods, data and hypotheses. Expert Rev. Med. Dev., 4 (2007), No 5, 651–61. [CrossRef] [Google Scholar]
  50. M. S. Titcombe, L. Glass, D. GuehlA. Beuter. Dynamics of Parkinsonian tremor during deep brain stimulation. Chaos, 11 (2001), No. 4, 766–773. [CrossRef] [PubMed] [Google Scholar]
  51. J. L. P. Velazquez. Brain, behaviour and mathematics: Are we using the right approaches? Physica D, 212 (2005), 161–182. [CrossRef] [MathSciNet] [Google Scholar]
  52. J. A. VilenskyS. Gilman. Horsley was the first to use electrical stimulation of the human cerebral cortex intraoperatively. Surg. Neurol., 58 (2002), 425–426. [CrossRef] [PubMed] [Google Scholar]
  53. H. R. WilsonJ. D. Cowan. A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik, 13 (1973), No. 2, 55–80. [CrossRef] [PubMed] [Google Scholar]
  54. T. WichmannM. R. Delong. Deep brain stimulation for neurologic and neuropsychiatric disorders. Neuron, 52 (2006), No. 1, 197–204. [CrossRef] [PubMed] [Google Scholar]
  55. A. Winfree. Are cardiac waves relevant to epileptic waves propagation? In: Epilepsy as a dynamical disease, p. 165-188. Eds J. Milton and P. Jung, Springer-Verlag, New York, 2003. [Google Scholar]
  56. J. S. Yeomans. Principles of Brain Stimulation. Oxford University Press, New York, 1990. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.