Free Access
Math. Model. Nat. Phenom.
Volume 5, Number 3, 2010
Mathematical modeling in the medical sciences
Page(s) 206 - 227
Published online 28 April 2010
  1. A. Alon. An introduction to systems biology: design principles of biological circuits. Chapman and Hall, Boca Raton, 2007.
  2. E. Abbodanzieri, W. Greenleaf, J. Shaevitz, R. Landick, S. Block. Direct observation of base-pair stepping by RNA polymerase. Nature, 438 (2005), 460-465. [CrossRef] [PubMed]
  3. L. Bai, R. Fulbright, M. Wang. Mechanochemical kinetics of transcription elongation. Phys. Rev. Lett., 98 (2007), No. 6, 068103. [CrossRef] [PubMed]
  4. G. Bar-Nahum, V. Epshtein, A. Ruckenstein, R. Rafikov, A. Mustaev, E. Nudler. A ratchet mechanism of transcription elongation and its control. Cell, 120 (2005), No. 2, 183-193. [CrossRef] [PubMed]
  5. A. Blank, J. Gallant, R. Burgess, L. Loeb. An RNA polymerase mutant with reduced accuracy of chain elongation. Biochemistry, 25 (1986), No. 20, 5920-5928. [CrossRef] [PubMed]
  6. Y. Chen, D. Chafin, D. Price, A. Greenleaf. Drosophila RNA polymerase II mutants that affect transcription elongation. Jour. Biol. Chem., 271 (1996), No. 11, 5993-5999. [CrossRef]
  7. G. Eichhorn, P. Chuknyisky, J. Butzow, R. Beal, C. Garland, C. Janzen, P. Clark, E. Tarien. A structural model for fidelity in transcription. Proc. Natl. Acad. Sci., 91 (1994), No. 16, 7613-7617. [CrossRef]
  8. D. Gillespie. A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comp. Phys., 22 (1976), No. 4, 403-434. [NASA ADS] [CrossRef] [MathSciNet]
  9. D. Gillespie. Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem., 81 (1977), No. 25, 2340-2361. [CrossRef]
  10. S. Greive, P. von Hippel. Thinking quantitatively about transcriptional regulation. Nat. Rev. Mol. Cell Biol., 6 (2005), 221-232. [CrossRef] [PubMed]
  11. K. Herbert, W. Greenleaf, S. Block. Single-molecule studies of RNA polymerase: motoring along. Annu. Rev. Biochem., 77 (2008), 149-176. [CrossRef] [PubMed]
  12. W. Hlavacek, A. Redondo, H. Metzger, C. Wofsy, B. Goldstein. Kinetic proofreading models for cell signaling predict ways to escape kinetic proofreading. Proc. Natl. Acad. Sci., 98 (2001), No. 13, 7295-7300. [CrossRef]
  13. S. Holmes, T. Santangelo, C. Cunningham, J. Roberts, D. Erie. Kinetic investigation of Escherichia coli RNA polymerase mutants that influence nucleotide discrimination and transcription fidelity. Jour. Biol. Chem., 281(2006), No. 27, 18677-18683. [CrossRef]
  14. J. Hopfield. Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity. Proc. Natl. Acad. Sci., 71 (1974), No. 10, 4135-4139. [CrossRef]
  15. K. Howe, C. Kane, A. Ares. Perturbation of transcription elongation influences the fidelity of internal exon inclusion in saccharomyces cerevisiae. RNA, 9 (2003), No. 8, 993-1006. [CrossRef] [PubMed]
  16. C. Jeon, K. Agarwal. Fidelity of RNA polymerase II transcription controlled by elongation factor TFIIS. Proc. Natl. Acad. Sci., 93 (1996), No. 24, 13677-13682. [CrossRef]
  17. M. Kireeva, Y. Nedlialkov, G. Cremona, Y. Purtov, L. Lubkowska, F. Malagon, Z. Burton, J. Strathern, M. Kashlev. Transient reversal of RNA polymerase II active site closing controls fidelity of transcription elongation. Mol. Cell, 30 (2008), No. 5, 557-566. [CrossRef] [PubMed]
  18. R. Libby, J. Gallant. The role of RNA polymerase in transcriptional fidelity. Mol. Microbiol., 5 (1991), No. 5, 999-1004. [CrossRef] [PubMed]
  19. R. Libby, J Gallant. Phosphorolytic error correction during transcription. Mol. Microbiol., 12 (1994), No. 1, 121-129. [CrossRef] [PubMed]
  20. R. Libby, L. Nelson, J. Calvo, J. Gallant. Transcriptional proofreading in escherichia coli. EMBO Jour., 8 (1989), No. 10, 3153-3158.
  21. F. Malagon, M. Kireeva, B. Shafer, L. Lubkowska, M. Kashlev, J. Strathern. Mutations in the saccharomyces cerevisiae RPB1 gene conferring hypersensitivity to 6-Azauracil. Genetics, 172 (2006), No. 4, 2201-2209. [CrossRef] [PubMed]
  22. P. Mason, K. Struhl. Distinction and relationship between elongation rate and processivity of RNA polymerase II in vivo. Mol. Cell, 17 (2005), No. 6, 831-840. [CrossRef] [PubMed]
  23. M. de la Mata, C. Alonso, S. Kadener, J. Fededa, M. Blaustein, J. Pelisch, P. Cramer, D. Bentley, A. Kornblihtt. A Slow RNA Polymerase II Affects Alternative Splicing in Vivo. Mol. Cell, 12 (2003), No. 2, 525-532. [CrossRef] [PubMed]
  24. T. McKeithan. Kinetic proofreading in T-cell receptor signal transduction. Proc. Natl. Acad. Sci., 92 (1995), No. 11, 5042-5046. [CrossRef]
  25. J. Ninio. Kinetic amplification of enzyme discrimination. Biochimie, 57 (1975), No. 5, 587-595. [CrossRef] [PubMed]
  26. J. Roberts, S. Shankar, J. Filter. RNA polymerase elongation Ffactors. Annu. Rev. Microbiol., 62 (2008), 211-233. [CrossRef] [PubMed]
  27. J. Roussel, R. Zhu. Stochastic kinetics description of a simple transcription model. Bull. Math. Biol., 68 (2006), No. 7, 1681-1713. [CrossRef] [MathSciNet] [PubMed]
  28. J. Shaevitz, E. Abbondanzieri, R. Landick, S. Block. Backtracking by single RNA polymerase molecules observed at near-base-pair resolution. Nature, 426 (2003), 684-687. [CrossRef] [PubMed]
  29. R. Sims, R. Belotserkovskaya, D. Reinberg. Elongation by RNA polymerase II: the short and long of it. Genes Dev., 18 (2004), 2437-2468. [CrossRef] [PubMed]
  30. C. Springgate, L. Loeb. On the fidelity of transcription by escherichia coli ribonucleic acid polymerase. J. Mol. Biol., 97 (1975), No. 4, 577-591. [CrossRef] [PubMed]
  31. E. Stepanova, J. Lee, M. Ozerova, E. Semenova, K. Datsenko, B. Wanner, K. Severinov, S. Borukhov. Analysis of promoter targets for Escheichia coli transcription elongation factor GreA in vivo and in vitro. J. Bateriol., 189 (2007), No. 24, 8772-8785. [CrossRef]
  32. P. Swain, E. Siggia. The role of proofreading in signal transduction specifity. Biophys. J., 82 (2007), No. 6, 2928-2933. [CrossRef]
  33. V. Tadigotla, D. O’Maoileidigh, A. Sengupta, V. Epshtein, R. Ebright, E. Nudler, A. Ruckenstein. Thermodynamic and kinetic modeling of transcriptional pausing. Prof. Natl. Acad. Sci.,103 (2006), No. 12, 4439-4444. [CrossRef]
  34. J. Thomas, A. Platas, D. Hawley. Transcriptional fidelity and proofreading by RNA polymerase II Cell, 93 (1998), No. 4, 627-637. [CrossRef] [PubMed]
  35. T. Tlusty, R. Bar-Ziv, A. Libchaber. High-fidelity DNA sensing by protein binding fluctuations. Phys. Rev. Lett., 93 (2004), No. 25, 2581031.
  36. U. Vogel, K. Jensen. The RNA chain elongation rate in escherichia coli depends on the growth rate. J. Bacteriol., 176 (1994), No. 10, 2807-2813. [PubMed]
  37. M. Voliotis, N. Cohen, C. Molina-Paris, T. Liverpool. Fluctuations, pauses, and backtracking in DNA transcription. Biophys. J., 94 (2008), No. 2, 334-348. [CrossRef] [PubMed]
  38. M. Voliotis, N. Cohen, C. Molina-Paris, T. Liverpool. Backtracking and error correction in DNA transcription in The Art and Science of Statistical Bioinformatics. 104-107, Leeds University Press, Leeds, 2008.
  39. P. Xie. A dynamic model for transcription elongation and sequence-dependent short pauses by RNA polymerase. BioSystems, 93 (2008), 199-210. [CrossRef] [PubMed]
  40. Y. Yamada, C. Peskin. A chemical kinetic model of transcriptional elongation. LANL ArXiv (2006), q-bio.BM/0603012.
  41. Y. Yamada, C. Peskin. A look-ahead model for the elongation dynamics of transcription. Biophys. J., 96 (2009), No. 8, 3015-3031. [CrossRef] [PubMed]
  42. N. Zenkin, Y. Yuzenkova, K. Severinov. Transcript-assisted transcriptional proofreading. Science, 313 (2006), No. 5786, 518-520. [CrossRef] [PubMed]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.