Free Access
Math. Model. Nat. Phenom.
Volume 5, Number 4, 2010
Spectral problems. Issue dedicated to the memory of M. Birman
Page(s) 122 - 149
Published online 12 May 2010
  1. M. Christ, A. Kiselev. Scattering and wave operators for one-dimensional Schrödinger operators with slowly decaying nonsmooth potentials. Geom. Funct. Anal., 12 (2002), 1174–1234. [CrossRef] [MathSciNet] [Google Scholar]
  2. D. Damanik, B. Simon. Jost functions and Jost solutions for Jacobi matrices. I. A necessary and sufficient condition for Szegő asymptotics. Invent. Math., 165 (2006), No. 1, 1–50. [CrossRef] [MathSciNet] [Google Scholar]
  3. S. Denisov. On weak asymptotics for Schrödinger evolution. Mathematical Modelling of Natural Phenomena (to appear). [Google Scholar]
  4. S. Denisov. On the existence of wave operators for some Dirac operators with square summable potential. Geom. Funct. Anal., 14 (2004), No. 3, 529–534. [MathSciNet] [Google Scholar]
  5. S. Denisov, S. Kupin. Asymptotics of the orthogonal polynomials for the Szegő class with a polynomial weight. J. Approx. Theory, 139 (2006), No. 1–2, 8–28. [CrossRef] [MathSciNet] [Google Scholar]
  6. S. Denisov. Absolutely continuous spectrum of multidimensional Schrödinger operator. Int. Math. Res. Not., 2004, No. 74, 3963–3982. [CrossRef] [Google Scholar]
  7. R. Killip. Perturbations of one-dimensional Schrödinger operators preserving the absolutely continuous spectrum. Int. Math. Res. Not., 2002, 2029–2061. [CrossRef] [Google Scholar]
  8. R. Killip, B. Simon. Sum rules and spectral measure of Schrödinger operators with L2 potentials. Ann. of Math., (2) 170 (2009), No. 2, 739–782. [CrossRef] [MathSciNet] [Google Scholar]
  9. P. Lax, R. Phillips. Scattering theory. Pure and Applied Mathematics, Academic Press Inc., Boston, 1989. [Google Scholar]
  10. S.N. Naboko. Dense point spectra of Schrödinger and Dirac operators. Theor. Mat. Fiz., 68 (1986), 18–28. [Google Scholar]
  11. B. Simon. Orthogonal polynomials on the unit circle. Parts 1 and 2. American Mathematical Society Colloquium Publications, American Mathematical Society, Providence, 2005. [Google Scholar]
  12. B. Simon. Some Schrödinger operators with dense point spectrum. Proc. Amer. Math. Soc., 125 (1997), 203–208. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.