Free Access
Issue
Math. Model. Nat. Phenom.
Volume 5, Number 6, 2010
Ecology (Part 2)
Page(s) 196 - 242
DOI https://doi.org/10.1051/mmnp/20105610
Published online 13 September 2010
  1. Global Fund to Fight AIDS, Tuberculosis, and Malaria. Fighting Tuberculosis. Geneva, Switzerland: (2006). Retrieved September 9, 2006, http://www.theglobalfund.org/en/about/tuberculosis/default.asp, 2006. [Google Scholar]
  2. World Health Organization. Global tuberculosis control: surveillance, planning, financing. Geneva, Switzerland: World Health Organization, 2009. [Google Scholar]
  3. WHO. Hepatitis B. /http://www.who.int/mediacentre/factsheets/fs204/en/ index.htmlS, revised August 2008, 2008. [Google Scholar]
  4. C. DyeB.G. Williams. Eliminating human tuberculosis in the twenty-first century. J. R. Soc. Interface, 5 (2008), 653-662. [CrossRef] [PubMed] [Google Scholar]
  5. C. ChintuA. Mwinga. An African perspective of tuberculosis and HIV/AIDS. Lancet, 353 (1999), 997-1005. [CrossRef] [PubMed] [Google Scholar]
  6. R. Williams. Global challenges in liver disease. Hepatol., 44 (2006), No. 3, 521-526. [CrossRef] [Google Scholar]
  7. T. FriedenR.C. Driver. Tuberculosis control: past 10 years and future progress. Tuberculosis, 83 (2003), 82-85. [CrossRef] [Google Scholar]
  8. K.M. De CockR.E. Chaisson. Will DOTS do it? A reappraisal of tuberculosis control in countries with high rates of HIV infection. Int. J. Tuberc. Lung Dis., 3 (1999), 457-465. [PubMed] [Google Scholar]
  9. Global Fund Against AIDS, TB and Malaria. The Global Tuberculosis Epidemic, Geneva, Switzerland, 2004. [Google Scholar]
  10. D. Lavanchy. Hepatitis B virus epidemiology, disease burden, treatment and current and emerging prevention and control measures. J. Viral. Hepat., 11 (2004), 97-107. [Google Scholar]
  11. W.J. Edmunds, G.F. MedleyD.J. Nokes. The transmission dynamics and control of hepatitis B virus in the Gambia. Stat. Med., 15 (1996), 2215-2233. [CrossRef] [PubMed] [Google Scholar]
  12. W.J. Edmunds, G.F. MedleyD.J. Nokes. Vaccination against hepatitis B virus in highly endemic area: waning vaccine-induced immunity and the need for booster doses. Trans. R. Soc. Trop. Med. Hyg., 90 (1996), 436-440. [CrossRef] [PubMed] [Google Scholar]
  13. W.J. Edmunds, G.F. Medley, D.J. Nokes, A.J. HallH.C. Whittle. The influence of age on the development of the hepatitis B carrier state. Proc. R. Soc. Lond. B, 253 (1993), 197-201. [CrossRef] [Google Scholar]
  14. W.J. Edmunds, G.F. Medley, D.J. Nokes, A.J. HallH.C. Whittle. Epidemiological patterns of hepatitis B virus (HBV) in highly endemic areas. Epidemiol. Infect., 117 (1996), 313-325. [CrossRef] [PubMed] [Google Scholar]
  15. S.T. Goldstein, F.J. Zhou, S.C. Hadler, B.P. Bell, E.E. MastH.S. Margolis. A mathematical model to estimate global hepatitis B disease burden and vaccination impact. Int. J. Epidemiol., 34 (2005), 1329-1339. [CrossRef] [PubMed] [Google Scholar]
  16. S. Hahnea, M. Ramsaya, K. Balogun, W.J. EdmundP. Mortimer. Incidence and routes of transmission of hepatitis B virus in England and Wales, 1995-2000:implications for immunisation policy. J. Clin. Virol., 29 (2004), 211-220. [CrossRef] [PubMed] [Google Scholar]
  17. J. Hou, Z. LiuF. Gu. Epidemiology and prevention of hepatitis B virus infection. Int. J. Med. Sci., 2 (2005), No. 1, 50-57. [PubMed] [Google Scholar]
  18. K.C. Hyams. Risks of chronicity following acute hepatitis B virus infection: a review. Clin. Infect. Dis., 20 (1995), 992-1000. [PubMed] [Google Scholar]
  19. J.D. JiaH. Zhuang. The overview of the seminar on chronic hepatitis B. Chin. J. Hepatol., 12 (2004), 698-699. [Google Scholar]
  20. D. Lavanchy. Hepatitis B virus epidemiology, disease burden, treatment and current and emerging prevention and control measures. J. Viral. Hepat., 11 (2004) 97-107. [Google Scholar]
  21. C.A. Blal, S.R.L. Passos, C. Horn, I. Georg, M.G. Bonecini, V.C. RollaL. D. Castro. High prevalence of hepatitis B virus among tuberculosis patients with and without HIV in Rio de Janeiro, Brazil. Eur. Soc. Clin. Micro., 24 (2005), 41-43. [CrossRef] [Google Scholar]
  22. M.H. Kuniholm, J. Mark, M. Aladashvili, N. Shubladze, G. Khechinashvili, T. Tsertsvadze, C. del Rio, K.E. Nelson. Risk factors and algorithms to identify hepatitis C, hepatitis B, and HIV among Georgian tuberculosis patients. Int. Soc. Inf. Dis., (2007) doi: 10.1016/j.ijid.2007.04.015. [Google Scholar]
  23. R. Bellamy, C. Ruwende, T. Corrah, K.P.W.J. McAdam, M. Thursz, H.C. WhittleA.V.S. Hill. Tuberculosis and Chronic Hepatitis B Virus Infection in Africans and Variation in the Vitamin D Receptor Gene. J. Inf. Dis., 179 (1999), 721-724. [CrossRef] [Google Scholar]
  24. A.R. Lifson, D. Thai, A. O’Fallon, W.A. MillsK. Hang. Prevalence of tuberculosis, hepatitis B virus, and intestinal parasitic infections among refugees to Minnesota. Public Health Rep., 117 (2002), 69-77. [PubMed] [Google Scholar]
  25. K.A. McGlynn, E.D. LustbaderW.T. London. Immune responses to hepatitis B virus and tuberculosis infections in Southeast Asian refugees. Amer. J. Epide., 122 (1985), 1032-1036. [Google Scholar]
  26. P.A. PatelM.D. Voigt. Prevalence and interaction of hepatitis B and latent tuberculosis in Vietnamese immigrants to the United States. Amer. J. Gastr., 97 (2002), 1198-1203. [CrossRef] [Google Scholar]
  27. N.W.Y. Leung. Treatment Of Tuberculosis In Patients With Hepatitis. Hong Kong Practitioner, 19 (1997), 6-13. [Google Scholar]
  28. W.O. KermackA.G. McKendrick. A contribution to the mathematical theory of epidemics. Proc. Roy. Soc., A115 (1927), 700-721. [Google Scholar]
  29. R.M. Anderson, R.M. May. Infectious Disease of Humans: Dynamics and Control. Oxford University Press, London/New York, 1992. [Google Scholar]
  30. K.B. BlyussY.N. Kyrychko. On a basic model of a two-disease epidemic. Appl. Math. Comput., 160 (2005), 177-187. [CrossRef] [MathSciNet] [Google Scholar]
  31. R. Naresh, A. Tripathi. Modelling and analysis of HIV-TB co-infection in a variable size population. Math. Model. Anal., 10(3) (2005), 275-286. [MathSciNet] [Google Scholar]
  32. E.F. Long, N.K. Vaidya, M.L. Brandeau. Controlling Co-epidemic: Analysis of HIV and tuberculosis infection analysis. Oper. Res., 56 (2008), No. 6, 1366-1381. doi:10.1287/opre.1080.0571. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  33. N. Bacaer, R. Ouifki, C. Pretorious, R. WoodB. William. Modelling the joint epidemics of TB and HIV in a South African township. J. Math. Biol., 57 (2008), 557-593. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  34. O. Sharomi, C.N. Podder, A.B. GumelB. Song. Mathematical analysis of the transmission dynamics of HIV/TB co-infection in the presence of treatment. Math. Biosci. Eng., 5 (2008), 145-174. [MathSciNet] [PubMed] [Google Scholar]
  35. Z. Mukandavire, A.B. Gumel, W. GariraJ.M. Tchuenche. Mathematical analysis of a model for HIV-malaria co-infection. Math. Biosci. Engr., 6 (2009), 333-362. [CrossRef] [Google Scholar]
  36. E. Mtisi, H. Rwezaura, J.M. Tchuenche. A mathematical analysis of malaria and tuberculosis co-dynamics. Dis. Cont. Dyn. Syst. Series B, 12 (2009) 827-864 2009 doi:10.3934/dcdsb.2009.12.827 [CrossRef] [Google Scholar]
  37. L-I.W. Roeger, Z. FengC.C. Chavez. Modelling TB and HIV co-infections. Math. Bios. Eng., 6 (2009), 815-837. [Google Scholar]
  38. S. BowongJ.J. Tewa. Mathematical analysis of a tuberculosis model with differential infectivity. Com. Non. Sci. Num. Sim., 14 (2009), 4010-4021. [Google Scholar]
  39. S. Hahnea, M. Ramsaya, K. Balogun, W.J. EdmundP. Mortimer. Incidence and routes of transmission of hepatitis B virus in England and Wales, 1995-2000: implications for immunization policy. J. Clin. Virol., 29 (2004), 211-220. [CrossRef] [PubMed] [Google Scholar]
  40. C. Dye, S. Schele. For the WHO global surveillance and monitoring project. Global burden of tuberculosis estimated incidence, prevalence and mortality by country. 282 (1999), 677-686. [Google Scholar]
  41. National Committee of Fight Against Tuberculosis. Guide de personnel de la santé, Cameroon, 2008. [Google Scholar]
  42. National Institute of Statistics. Evolution des systèmes statistiques nationaux, Cameroon, 2007. [Google Scholar]
  43. G. Birkhoff, G. C. Rota. Ordinary Differential Equations. 4th edition, John Wiley & Sons, Inc., New York, 1989. [Google Scholar]
  44. V. HutsonK. Schmitt. Permanence and the dynamics of biological systems. Math. Biosci., 111 (1992), 1-71. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  45. H.W. Hethcothe. The mathematics of infectious disease. SIAM Review, 42 (2000), 599-653. [Google Scholar]
  46. C.W. Shepard, E.P. Simard, L. Finelli, A.E. FioreB.P. Bell. Hepatitis B virus infection: epidemiology and vaccination. Epidemiol. Rev., 28 (2006), 112-125. [CrossRef] [PubMed] [Google Scholar]
  47. V. Lakshmikantham, S. Leela, A. Martynyuk. Stability Analysis of Nonlinear Systems. Marcel Dekker Inc., New York and Basel, pp. 31, 1989. [Google Scholar]
  48. H.L. Smith, P. Waltman. The Theory of the Chemostat. Cambridge University Press, 1995. [Google Scholar]
  49. S.N. Zhang. Comparison theorems on boundedness. Funkcial. Ekvac., 31 (1988), 179-196. [MathSciNet] [Google Scholar]
  50. S.M. Moghadas. Modelling the effect of imperfect vaccines on disease epidemiology. Dis. Cont. Dynam. Syst. Series B, 4 (2004), 999-1012. [CrossRef] [Google Scholar]
  51. O. Diekmann, J.A.P. HeesterbeekJ.A.P. Metz. On the definition and computation of the basic reproduction ratio R0 in the model of infectious disease in heterogeneous populations. J. Math. Biol., 2 (1990), 265-382. [Google Scholar]
  52. P. van den DriesscheJ. Watmough. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Bios., 180 (2002), 29-28. [CrossRef] [Google Scholar]
  53. J.P. LaSalle. The stability of dynamical systems. Society for Industrial and Applied Mathematics, Philadelphia, Pa, 1976. [Google Scholar]
  54. J.P. LaSalle. Stability theory for ordinary differential equations. J. Differ. Equ., 41 (1968), 57-65. [Google Scholar]
  55. N.P. Bhatia, G.P. Szegö. Stability Theory of Dynamical Systems. Springer-Verlag, 1970. [Google Scholar]
  56. J. Carr. Applications Centre Manifold Theory. Springer-Verlag, New York, 1981. [Google Scholar]
  57. C. Castillo-ChavezB. Song. Dynamical models of tuberculosis and their applications. Math. Bios. Eng., 1 (2004), 361-404. [Google Scholar]
  58. J. Dushoff, W. HuangC. Castillo-Chavez. Backwards bifurcations and catastrophe in simple models of fatal diseases. J. Math. Biol., 36 (1998), 227-248. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  59. J. Arino, C.C. McCluskeyP. van den Driessche Global result for an epidemic model with vaccination that exihibits backward bifurcation. J. Appl. Math., 64 (2003), 260-276. [Google Scholar]
  60. F. Brauer. Backward bifurcation in simple vaccination models. J. Math. Ana. Appl., 298 (2004), 418-431. [Google Scholar]
  61. Z. Feng, C. Castillo-ChavezA.F. Capurro. A model for tuberculosis with exogenous reinfection. Theor. Pop. Biol., 57 (2000), 235-247. [Google Scholar]
  62. C.Y. ChiangL.W. Riley. Exogenous reinfection in tuberculosis. Lancet Infect. Dis., 5 (2005), 629-636. [CrossRef] [PubMed] [Google Scholar]
  63. S.M. Garba, A.B. GumelM.R. Abu Bakar. Backward bifurcation in dengue transmission dynamics. Math. Bios., 215 (2008), 11-25. [Google Scholar]
  64. O. Sharomi, C.N. Podder, A.B. Gumel, E.H. ElbashaJ. Watmough. Role of incidence function in vaccine-induced backward bifurcation in some HIV models. Math. Biosci., 210 (2007), 436-463. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  65. F. Brauer, C. Castillo-Chavez. Mathematical Models in Population Biology and Epidemiology. Text in Applied Mathematics Series, 40, Springer-Verlag, New York, 2001. [Google Scholar]
  66. B.M. Murphy, B.H. SingerD. Kirschner. Comparing epidemic tuberculosis in demographically distinct populations. Maths. Biosci., 180 (2002), 161-185. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.